Negin Alisoltani 
email: negin.alisoltani@geotwin.io
  
Mostafa Ameli 
email: mostafa.ameli@univ-eiffel.fr
  
Mahdi Zargayouna 
email: mahdi.zargayouna@univ-eiffel.fr
  
Ludovic Leclercq 
email: ludovic.leclercq@univ-eiffel.fr
  
  
  
  
  
  
A SHAREABILITY CLUSTERING METHOD TO SOLVE THE DYNAMIC RIDE-SHARING PROBLEM CONSIDERING NETWORK CONGESTION

Keywords: Dynamic ride-sharing, Clustering, Shareability function, Optimal fleet management

One of the most challenging facets of dynamic ride-sharing problems is the automated matching process, especially in large-scale networks where the number of received requests is huge. Matching users to trips is very challenging in real-time since it must happen very quickly while it must ensure high quality solutions. In this paper, we rely on an exact solving method to ensure the quality of the solution, while using AI-based techniques to limit the number of requests that we feed to the solver. More precisely, we propose a clustering method based on a new space-time shareability function to put the most shareable trips inside separate clusters. Each cluster is then managed with a proposed heuristic framework in order to solve the matching problem inside each cluster. To validate our proposal, we employ the proposed method on the network of Lyon city in France, with half-million requests in the morning peak from 6 to 10 AM. The results demonstrate that the algorithm can provide high-quality solutions in a short time for large-scale problems.

INTRODUCTION

Ridesharing originated as a general concept where individual travelers share a vehicle for a trip and split travel costs with others that have similar itineraries and time schedules (Furuhata et al.,[START_REF] Furuhata | Ridesharing: The state-of-the-art and future directions[END_REF]. The spread of mobile devices and the development of Global Positioning System (GPS) make it possible for all the transport operators to adapt in real-time the transportation supply to travel demand (Zargayouna et al.,[START_REF] Zargayouna | Multiagent simulation of realtime passenger information on transit networks[END_REF]. These options make it possible to have access to the vehicles' position at any time and perform the matching process of ride-sharing in real-time. These possibilities have led to the development and progress of a new type of ride-sharing which is called real-time ride-sharing, also known as dynamic ride-sharing or ad hoc ride-sharing. Dynamic ride-sharing refers to a system that supports an automatic ride-matching process between participants on very short notice or even en-route (Agatz et al.,[START_REF] Agatz | Dynamic ride-sharing: A simulation study in metro Atlanta[END_REF].

The first issue in this application is matching the passengers and the fleet vehicles by solving a fleet management problem. Effective and efficient optimization technology that matches drivers and riders in real-time is one of the necessary components for a successful dynamic rideshare system (Agatz et al.,[START_REF] Agatz | Optimization for dynamic ride-sharing: A review[END_REF]. Matching users to trips is very challenging in real-time since it must happen very quickly. Clustering methods enhance the scalability of matching methods by reducing the search space, making it possible to parallelize and balance the computing workload, and as a consequence speeding up the matching computations.

In this paper, we propose a clustering method based on a "Shareability Function" (SF) that considers all the trips' possible matching situations. Two trips can be shared either in parallel (passengers are in the same vehicle at some point) or in sequence (Alisoltani et al.,[START_REF] Alisoltani | A Sequential Clustering Method for the Taxi-Dispatching Problem Considering Traffic Dynamics[END_REF]. The shareability function computes the extra travel time that the vehicle has to spend to service each matching situation, compared to the situation where each trip is serviced independently without sharing. Then the shareability function for each two trips is the minimum computed value among the three different situations (parallel, sequence and independence). So, when the shareability function is low for two specific requests, it means that they have high potential to be shared efficiently. We propose a clustering method based on this new function to put the most shareable trips in separate clusters. We propose a heuristic method to solve the matching problem inside each cluster. The final algorithm can provide high quality solutions in a short time for large-scale problems.

It is crucial to consider the interactions between the system and the network traffic in dynamic ride-sharing system evaluation. Also, it is important to consider other vehicles like personal cars besides the ride-sharing service vehicles in the network. In this paper, we define two different models to simulate the functioning of the proposed dynamic ride-sharing system: The "plant model", based on Macroscopic Fundamental Diagram (MFD), is used to simulate the real traffic conditions and considers both service vehicles and personal vehicles in the network; The "prediction model", based on the current mean speed, is used to calculate the travel times during the assignment process (Alisoltani et al.,Alisoltani et al.,[START_REF] Alisoltani | A Sequential Clustering Method for the Taxi-Dispatching Problem Considering Traffic Dynamics[END_REF][START_REF] Alisoltani | Optimal fleet management for real-time ride-sharing service considering network congestion[END_REF].

To validate our approach, we employ the proposed method on the real data of Lyon city in France with half-million requests in the morning peak from 6 to 10 AM. To demonstrate the clustering method's performance, we have compared the proposed method with two other clusteringbased methods from the literature (spatial and temporal clustering). The results show that the method proposed in this paper can make a significant improvement in the quality of the solution and the computation time.

Since ride-shares are established on-demand, a ride-sharing system is similar to other ondemand forms of passenger transit such as taxis and dial-a-ride services like airport shuttles (Fu-TRB 2022 Annual Meeting Original paper ruhata et al., 1). The clustering method proposed in this study can be used for other similar systems.

The remainder of this paper is structured as follows. Next section is the literature review on ride-sharing and clustering methods. In the third section, we explain our clustering method for dynamic ride-sharing. Then we define our travelers matching algorithm and describe the two simulation models used as plant and prediction models respectively. I section "Experiments" we present the case study we used and provide the results of our experiments. The last section concludes this paper.

LITERATURE REVIEW

In this section, we review the latest studies on different solution methods and clustering approaches for real-time and dynamic ride-sharing.

Dynamic ride-sharing problem addresses short-term matching or even en-route matching (Agatz et al.,[START_REF] Agatz | Dynamic ride-sharing: A simulation study in metro Atlanta[END_REF]. This fact makes the assignment problem more complex. In some studies, researchers try to narrow the feasible solution space to make the computations faster and be able to assign the vehicles to the requests that are coming at each time to the system. For example, Liu et al. [START_REF] Liu | A branch-and-cut algorithm for a realistic dial-a-ride problem[END_REF] present a method to tighten travelers time windows and eliminate unnecessary variables and constraints to narrow the solution space.

Recently Mourad et al. [START_REF] Mourad | A survey of models and algorithms for optimizing shared mobility[END_REF] has presented a survey of models and algorithms for optimizing shared mobility, and they have shown that one of the most critical problems in the solution for these systems is computation time and the solutions quality.

Compared to these approaches, this paper proposes a method that combines the benefits of exact solving in terms of solution quality and the benefits of heuristics and meta-heuristics in terms of computation time and scalability. On the one side, we present an algorithm based on branch-and-bound that can provide the optimal solution for small instances of the problem. On the other side, we introduce a method based on clustering that groups the requests and put the most shareable trips in the same clusters. The exact algorithm is executed with the requests inside each cluster. A rolling horizon approach is introduced to handle the trip requests in real-time. We show that the clustering method provides high-quality solutions while reducing the computation time significantly.

The number of request for the mobility service at every time is huge in the large-scale problems and the complexity of the solution method for the matching problem increases exponentially by small increase in the service demand. [START_REF] Qiang | Clustering algorithm for urban taxi carpooling vehicle based on data field energy[END_REF] propose an algorithm that uses the dataset of taxi get-off points and performs a clustering of taxis on urban roads. They compare their method with classical clustering methods.

However, the taxi clustering data in their study are conducted in a static environment. In Chen et al. [START_REF] Chen | Solving the first-mile ridesharing problem using autonomous vehicles[END_REF], all pickup points are partitioned into several clusters, the vehicles dispatching and the ride-TRB 2022 Annual Meeting Original paper sharing problem are solved in each cluster. Bard and Jarrah (16) show that an appropriate solution for large-scale problems is clustering the demand nodes and downsizing the network. To speed up the computation, Some researches try to limit the feasible region with clustering methods. In these methods, the demand nodes in the network are usually divided into geographically dense clusters (Özdamar and Demir,Sáez et al.,[START_REF] Özdamar | A hierarchical clustering and routing procedure for large scale disaster relief logistics planning[END_REF][START_REF] Sáez | Hybrid adaptive predictive control for the multivehicle dynamic pick-up and delivery problem based on genetic algorithms and fuzzy clustering[END_REF]. Li and Chung [START_REF] Li | Ride-sharing under travel time uncertainty: Robust optimization and clustering approaches[END_REF] propose an extended insertion algorithm in conjunction with a Tabu search method, and a cluster-first-route-second approach to find heuristic solutions. Under the assumption of one person per ride, Alonso-Mora et al. [START_REF] Alonso-Mora | On-demand highcapacity ride-sharing via dynamic trip-vehicle assignment[END_REF] show that 98% of the taxi rides currently served by over 13,000 taxis could be served with just 3,000 taxis of capacity four in New York City. The proposed clustering method in this paper, seeks the potential trips to be shared in the same vehicle and makes sure that the matching algorithm can use the maximum capacity of a vehicle to serve the requests for a specific route.

In a recent study, Yu et al. [START_REF] Yu | Optimal routing of multimodal mobility systems with ride-sharing[END_REF] consider the combination of the ride-sharing and public transportation services and formulate a mixed integer programming model for the multimodal transportation planning problem. They propose a heuristic approach (i.e., angle-based clustering algorithm) and compare its efficiency with the exact solution for different settings. They show that the clustering algorithm works well both in small and large settings. However, it is crucial to consider the interactions between the system and the network traffic in the ride-sharing problem.

In this paper, we define two distinct models for the dynamic ride-sharing to calculate the travel times during the assignment and simulate real traffic conditions.

CLUSTERING METHOD FOR DYNAMIC RIDE-SHARING Shareability function

To perform the clustering on the requests (N t ) received by the system at time t, we define the "Shareability Function" (SF i, j ) between request i and request j (∀i, j ∈ N t ). This function computes the difference between the travel time when the two trips are shared and the travel time to serve each trip individually, for each pair of requests. In case of sharing, we consider three different situations for each pair of trips (Fig. 1). In the first situation (1), two trips can be shared, and the vehicle first drops off the first passenger, and then it goes to the second passenger drop off (destination) point. In this situation, the travel time for the first passenger (T p i ) would be the summation of her/his waiting time (W s i ), the travel time between her/his origin and the next passenger origin (T OO i, j ) and the travel time between the next passenger origin and her/his destination (T OD j,i ). Similarly, the travel time for the second passenger (T p j ) would be the summation of her/his waiting time (W s j ), the travel time between her/his origin to the first passenger's destination (T OD j,i ) and the travel time from the first passenger's destination and her/his destination (T DD i, j ). So, SF i, j (shareability function for trips i and j) when two trips have the first situation can be computed as in equation 1.

T p i + T p j = W s i + T OO i, j +W s j + T OD j,i + T DD i, j ∀i, j ∈ N SF 1 i, j = T p i + T p j -(T OD i,i + T OD j, j +W i +W j ) (1) 
In situation (2), the second passenger is served by the service vehicle while the first passenger is on board. Thus, the travel time for the second passenger (T p j ) is the same as when served individually (summation of the waiting time and the time from the origin to the destination) and the travel time for the first passenger is the travel time of all the links from the first stop point (O i )

to the last one (D j ):

T p i + T p j = W s i + T OO i, j +W s j + T OD j, j + T DD j,i ∀i, j ∈ N SF 2 i, j = T p i + T p j -(T OD i,i + T OD j, j +W i +W j ) (2) 
In the third situation (3) that we consider for two trips, the trips are not shared, but the vehicle can serve two passengers sequentially (Alisoltani et al.,[START_REF] Alisoltani | A Sequential Clustering Method for the Taxi-Dispatching Problem Considering Traffic Dynamics[END_REF]. This situation must be considered in the shareability index in order to encourage putting these trips in the same group while solving the optimization problem. The travel time for both passengers in this situation is the same as when they are served individually. But the vehicle travel time can decrease if the travel time between the first destination and the second origin is less than the summation of the travel time between the first origin and the closest depot and the travel time between the start depot and the second origin.

T p i + T p j = W s i + T OD i,i +W s j + T OD j, j ∀i, j ∈ N SF 3 i, j = T p i + T p j -(T OD i,i + T OD j, j +W i +W j ) SF 3 i, j = W s i +W s j -(W i +W j ) (3) 
The best situation for each two trips is the situation with minimum SF. So the algorithm chooses the condition that the additional travel time is minimum for sharing each pair of trips:

SF i, j = min{SF 1 i, j , SF 2 i, j , SF 3 i, j } (4) 
TRB 2022 Annual Meeting Original paper

Clustering based on a dissimilarity function

After computing the shareability function, we have the function value for each pair of requests that creates a "shareability matrix". The shareability matrix is a dissimilarity matrix for the received requests: the higher the value, the least likely the two requests will be served together. In our approach, this matrix is used in the clustering process. We perform the clustering using the computed dissimilarity matrix. When we make clusters based on the SF, we put in the same cluster the trip requests that have more potential to be shared (the trips that have lower SF). There are two main categories of algorithms for clustering based on the shareability matrix, both are potentially relevant for our large-scale ride-sharing application: In Qiang and Shuang-Shuang ( 14), the authors have compared the hierarchical clustering and kmeans clustering for urban taxi carpooling in a static environment. They show that compactness and separation are almost the same for hierarchical and k-means clustering for large cluster sizes.

However, in dynamic large-scale problems, the results might be different. Besides, computation time becomes the critical criterion in this context. Thus, in our experiments, we implement both clustering methods and we assess their performance, considering both solutions quality and computation time.

Multidimentional scaling and k-means clustering

K-Means method is a partitional clustering approach for decomposing the problem into independent subsets. It defines clusters of data based on their similarity, minimizing within-cluster variances. In the clustering procedure, the preferred number of clusters (k) should be specified in the algorithm before execution. The most common algorithm uses an iterative refinement technique.

A common initialization step associates each observation (data point) with a cluster, and computes the set of cluster centroids as the mean of the observations of the cluster. Afterward, iterations will serve to optimize the clusters.

k-means clustering takes place based on the distance between points. Based on the study in Paea and Baird [START_REF] Paea | Information Architecture (IA): Using Multidimensional Scaling (MDS) and K-Means Clustering Algorithm for Analysis of Card Sorting Data[END_REF], to be able to apply the appropriate k-mean clustering method, we need to convert the dissimilarity matrix into a distance matrix. Therefore, we use the multidimensional scaling method and change the shareability matrix into a distance matrix (Wang and Boyer,[START_REF] Wang | Feature learning by multidimensional scaling and its applications in object recognition[END_REF].

Note that we have implemented the method using the mathtoolbox in C++).

After extracting the distance matrix, we are able to create the same size clusters for the data received at every assignment time step and put the most shareable trips in separate clusters using the modified k-means clustering method. This k-mean clustering is used to obtain clusters in preferred sizes (Ganganath et al.,[START_REF] Ganganath | Data clustering with cluster size constraints using a modified k-means algorithm[END_REF]. Accordingly, considering the objective function value, we can find the best trade-off between cluster size and computation time. Putting the requests in clusters can also provide the opportunity for parallel computations. So the problem is divided into TRB 2022 Annual Meeting Original paper multiple sub-problems, and we favor a uniform distribution of requests among clusters to decrease computation times and facilitate parallel computations of each sub-problem.

Hierarchical clustering

Hierarchical clustering offers a flexible and no-parametric approach and is an algorithm that builds hierarchy of clusters (Murtagh,[START_REF] Murtagh | A survey of recent advances in hierarchical clustering algorithms[END_REF].

We use the agglomerative hierarchical method, which starts with taking singleton clusters (that contain only one request per cluster) at the bottom level and continue merging two clusters at a time to build a bottom-up hierarchy of the clusters (Reddy and Vinzamuri, 30).

MATCHING ALGORITHM FOR DYNAMIC RIDE-SHARING

The matching algorithm aims to identify the travelers who can share their trips and assign them to a vehicle. In the assignment, it is important to consider both passengers' and service provider's objectives. According to the state-of-the-art, the most important operation objective for the service provider is to minimize the total travel time, and the total travel distance of vehicles (Ota et al., Qian et al.,[START_REF] Ota | STaRS: Simulating taxi ride sharing at scale[END_REF][START_REF] Qian | Optimal assignment and incentive design in the taxi group ride problem[END_REF]. The passengers also need to get to the destination on time and have the minimum waiting time (Hyland and Mahmassani,[START_REF] Hyland | Sharing Is Caring: Dynamic Autonomous Vehicle Fleet Operations Under Demand Surges[END_REF]. So we define the objective function for the matching algorithm as below where i is the index of passengers, and m is the index of vehicles, W i is the waiting time for passenger i, T p i is the travel time for passenger i, T v m is the travel time for vehicle m, D m is the travel distance for vehicle m and α, β , γ, and δ are the weights of each objective after normalization.

min ∑ i∈P (α.W s i + β .T p i ) + ∑ m∈M (γ.T v m + δ .D m ) (5) 
The main constraints for the matching process are capacity constraints, time constraints, and assignment constraints. In addition, we have considered limitations on the number of sharing.

The number of sharing for each passenger defines the allowed number of other passengers that can share their trip with this current passenger. So when the number of sharing is zero, it means that the service is not able to share and we just consider the in-sequence trips in the clustering function. But when we increase the number of sharing to one, it means that the service can serve 2 passengers at the same time. Also, we made sure that there is a sufficient number of vehicles in the fleet to serve all the requests.

The vehicle can be in two different situations. It is either circulating in the network to serve the on-board passengers (en-route vehicle) or waiting at a stop location for the new passengers (idle vehicle). Our proposed algorithm considers both situations. When the system receives a new request, it first checks the en-route vehicles that have not yet reached their maximal occupancy.

So, the first part of the algorithm assigns the new requests in priority to en-route vehicles. The algorithm works to minimize the total travel time for both vehicles and passengers while respecting the capacity of the vehicle's constraint and passengers' time window constraint. For the remaining requests, the second part of the algorithm checks the idle vehicles waiting in depots to assign the passengers. For this step, we introduce an exact method based on the branch-and-cut concept.

The method creates branches of routes and then chooses the optimal solution among the feasible routes. Fig. 2 shows this part of the algorithm. Then we introduce a rolling horizon method to solve the problem dynamically. The requests that are assumed to be known are the only ones over the next rolling horizon (20 minutes). We also use an "assignment time horizon" of 10 minutes.

TRB 2022 Annual Meeting Original paper

That means that every 10 minutes, we execute our optimization algorithm while considering the requests of the next 20 minutes. We present a small example with four requests to show the execution of the algorithm. Table 1 presents the requests. Each request has an associated number of requested seats, a maximum number of accepted sharing, an earliest pick-up time and a latest arrival time. The algorithm starts by creating branches of routes to serve the requests. It sends a car from the closest stop location to pick the passengers up at the origin point, and then it continues by adding the feasible points to the branches. First, the algorithm finds feasible branches. Figure 3 shows the final feasible solutions for the problem. The algorithm can find four feasible solutions for the problem. Table 2 shows the total passengers' waiting time, total vehicles' travel distance, and the number of vehicles for these solutions (note that the waiting time for passengers is the difference between the passengers' pick up time and the passengers' desired departure time). Solution A is when a car serves each passenger separately without sharing. In this solution, the waiting time is minimum, and the passengers wait for 28 seconds to be picked up. Solution B serves passengers The ride-sharing service's optimization system uses estimates for the predicted travel time obtained from a so-called "prediction model". When the fleet management plan is executed, a gap usually exists between the estimation and the real traffic condition. The so-called "plant model" requires dynamic adjustment of the initial assignment to fit with the conditions observed, and we use it to represent the real traffic condition.

To provide a realistic service, in the proposed simulation component of the dynamic ridesharing system, we accurately distinguish the prediction and the plant models.

The trip-based MFD is used as the plant model (Ameli et al.,[START_REF] Ameli | Departure Time Choice Models in Congested Transportation Systems Based on Mean Field Games[END_REF] to consider individual trips while keeping a very simple description of traffic dynamics (Lamotte and Geroliminis, Ameli,[START_REF] Lamotte | The morning commute in urban areas: Insights from theory and simulation[END_REF][START_REF] Ameli | Heuristic Methods for Calculating Dynamic Traffic Assignment[END_REF]. The general principle is to derive the inflow and outflow curves. When n(t) is the number of en-route vehicles at time t and the mean speed of travelers is V (n(t)) at every time t, the travel distance L i by a car i entering at time t -T (t) must satisfy the following equation:

L i = t t-T (t) V (n(s))ds (6) 
The function V (n(t)) is the speed macroscopic fundamental diagram and can be derived from common observations for a transportation network (Leclercq et al.,[START_REF] Leclercq | Macroscopic fundamental diagrams: A cross-comparison of estimation methods[END_REF]. For more details on the functioning of trip-based MFD, readers can refer to (Mariotte and Leclercq,[START_REF] Mariotte | Flow exchanges in multi-reservoir systems with spillbacks[END_REF].

The prediction model estimates the traffic situation for the next assignment time horizon (every 10 minutes) to carry out travel time prediction during optimization. In our method, we assign the passengers to the cars based on this prediction. The prediction model is based on the direct travel time from each point i to j based on the current mean speed and the associated shortest path between the two points for the next 10 minutes. Then the optimization algorithm assigns all the requests for the next 10 minutes to the en-route cars or empty waiting cars.

In the rolling horizon method, the assignment procedure rolls over a specific horizon for the requests announced of a particular optimization step. As stated earlier, the rolling horizon in TRB 2022 Annual Meeting Original paper this paper is 20 minutes, and the optimization time step is 10 minutes. So, the requests of the next 20 minutes that have not yet been assigned are optimized every 10 minutes. Some requests are re-optimized every 10 minutes. If a trip has been assigned to a vehicle which has left the depot, the algorithm does not assign it again, but if a trip is in the schedule of a waiting vehicle, the algorithm places it in the set of optimized trips in the particular horizon and re-optimizes it.

In this method, every T H 2 time step, we stop the simulations and solve a new assignment problem for the requests over a new full rolling horizon (T H). Some requests may arrive just after the end of a simulation period, and this method prevents the system from being myopic to the new demand.

EXPERIMENTS Case study

In this paper, we use data from the network of Lyon city (the second-largest urban area of France)

to evaluate the impact of proposed clustering method. The network area is more than 80 km 2 and the origins/destinations (ODs) set contains 11,314 points (Ameli et al., 39). Fig. 4 shows the network of the city.

FIGURE 4 : Network of Lyon

The network is loaded with travelers of all ODs with a given departure time to represent the morning peak hour from 6 AM to 10 AM. The number of trips during this period is 484,690. We have 279,382 personal trips in the network and 205,308 demand for the service cars in the system.

The service provider has a fleet of vehicles in a ride-sharing system to serve the service requests. Participating service vehicles start up from a number of known locations or depots and after serving the assigned requests, they stop at this allowed locations to wait for the next passengers.

TRB 2022 Annual Meeting Original paper

Determining the proper clustering method

As we said in section 4.2, we can use either the k-means clustering method or the hierarchical method to cluster the requests based on the presented shareability matrix. In our method, both the quality of the clustering method and the computation time are very important. The time complexity of k-means is linear, while that of hierarchical clustering is quadratic. Besides, k-means clustering requires prior knowledge of number k of clusters and also needs to use mutidimensional scaling to convert the similarity matrix into the distance matrix. On the other side, we can stop at whatever number of clusters we find appropriate in hierarchical clustering by interpreting the dendrogram. As we use the agglomerative hierarchical method, we can have larger clusters faster with the hierarchical method. To choose the best clustering method, we have compared both methods considering the quality of objective function and the computation time for different sizes of problems.

Table 3 shows the objective function and computation time with k-means clustering and hierarchical clustering method for different sizes of problems.

To have a baseline for the comparisons, we have computed the optimal objective function (solution method without clustering) for 112 and 

The size of clusters

We try to have the same size clusters (to avoid too big or too small clusters) to keep the computation time low and have the opportunity for sharing in all the clusters.

There are different methods in the literature to choose the optimal size of clusters. Here, the quality of the clusters (how similar are points within a cluster) is very important. Furthermore, we have to be sure that the clusters are separated from each others, and the possibility of sharing two trips from two different clusters is minimum. Thus the best way to find the optimal size of clusters is to use the Sum of Squares method (SS) (Krzanowski and Lai,[START_REF] Krzanowski | A criterion for determining the number of groups in a data set using sum-of-squares clustering[END_REF]. It is a clustering validation method that chooses the optimal size of clusters by minimizing the Within-cluster Sum of Squares (WSS) (a measure of how tight each cluster is) and maximizing the Between-cluster Sum of Squares (BSS) (a measure of how separated each cluster is from the others). We compute the WSS and BSS for all the clusters in different periods to evaluate the optimal size of clusters in different demand situations.

K-means clustering

We compute the sum of squares for k-means clustering with cluster sizes from 10 to 50. Fig. 5 shows that when the size of clusters is 30, we can find the best trade-off between WSS and BSS.

So, we choose 30 as the size of clusters when we want to cluster the service requests with k-means clustering. 

Hierarchical clustering

In the hierarchical method, we can keep the first cluster of the desired size at the bottom of the dendrogram to have the same size clusters (Hippocamplus, 41). The crucial point here is to find an approximation for the size of clusters in the hierarchical method. As we have explained earlier, we use the hierarchical clustering when the number of demand is huge. So, we analyze the size of clusters from 75 to 300. Also, in large-scale networks with high levels of traffic congestion, the demand density is different in different times of a day (during the on-set and off-set of congestion).

TRB 2022 Annual Meeting Original paper Fig. 6 shows the SS method at different times of the simulations. Increasing the size of clusters decreases the BSS. It means that more number of clusters can ensure that the clusters are separate from each others. We have determined the cluster sizes that minimize the WSS and maximize the BSS. At 6 and 7 AM, the cluster sizes 100 and 125 can make this trade-off between WSS and BSS. At 8 and 9 AM, the best cluster sizes are 125 and 150. Therefore, the best cluster size to do the simulations for this scale is 125.

Comparing the shareability clustering method with spatial and temporal methods Some researches on ride-sharing use clustering methods to scale-down the matching problem and compute the assignment for the service vehicles faster. They usually divide the space geographically and use a spatial clustering to downsize the problem (Chen et al.,[START_REF] Chen | Solving the first-mile ridesharing problem using autonomous vehicles[END_REF]. The important factor in spatial clustering is the distance between the trips' origins. So two corresponding trips can be in the same cluster if the distance between their origins is small. Another approach is to cluster the trips based on the time in a temporal clustering method. In the temporal clustering, we put two TRB 2022 Annual Meeting Original paper 

FIGURE 1 :

 1 FIGURE 1 : Trip situations

1 .

 1 Partitional clustering algorithms (Celebi, 24) cluster the data into k clusters. One of the usual algorithms for partitioned clustering is k-means clustering. K-means clustering is simple, fast, and flexible. 2. Hierarchical clustering methods in which the clusters are arranged in a tree-like structure. Hierarchical clustering can be divided into Agglomerative hierarchical clustering (AHC) and divisive clustering (Vora et al., 25).

1 and 4 FIGURE 2 :

 42 FIGURE 2 : Final assignment algorithm

FIGURE 3 :

 3 FIGURE 3 : Feasible routes for the example

FIGURE 5 :

 5 FIGURE 5 : Sum of squares method for finding the optimal size of clusters in k-means clustering

FIGURE 6 :

 6 FIGURE 6 : Sum of squares method for finding the optimal size of clusters in hierarchical clustering

FIGURE 7 :

 7 FIGURE 7 : Comparing clustering methods' objective function (market-share=50%)

FIGURE 8 :

 8 FIGURE 8 : Comparing clustering methods' computation time (market-share=50%)

  

  

TABLE 1 :

 1 Example with 4 requests (configuration)

	Request Travel distance demand nshare EPT LDT
	1	19	1	3	8:00 8:45
	2	11	2	2	8:00 8:25
	3	24	2	1	8:15 9:00
	4	18	2	3	8:30 9:20

TABLE 2 :

 2 Example with 4 requests (solutions)

	Solution Total waiting time (s) Total travel distance (m) Number of cars
	A	28	3030	4
	B	51	2085	2
	C	53	1785	2
	D	29	2265	3

TABLE 3 :

 3 Clustering methods comparison

	Method Number of requests Objective function (normalized value) Computation time (s)
	Exact		
	112	29.99	12966.00
	1092	1924.00	288000.00
	K-means clustering		
	112	30.96	100.10
	1092	1994.18	1134.00
	4482	7761.03	5340.00
	11160	20773.70	20981.10
	Hierarchical clustering		
	112	30.96	99.03
	1092	1994.59	1131.10
	4482	7791.90	5187.50
	11160	20905.87	19950.00

  1,092 requests. In both clustering methods, we try to have clusters with 50 requests to ensure potential trips to be shared inside the clusters for both test cases with 50 requests and 1092 requests. For 11,160 requests, the objective function is 0.64% lower for the k-means method, while the computation time is 5% more.In our Lyon6 + Villeurbanne test case, the maximum number of requests is 11,235. So we can use k-means clustering for this test case to have better solutions. However, for the Lyon network, we have more than 200,000 service requests. So the hierarchical method is a better solution for this network, since it is faster as it works directly with the similarity matrix, and it can provide high-quality solutions.

	a lower time.	
	K-means clustering and hierarchical clustering methods increase the objective function by
	3.22% for 112 requests and 3.64% and 3.66% for 1,092 requests, compared to the optimal solu-
	tion. Both clustering methods can decrease the computation time from 216 minutes to less than 2
	minutes. This shows that both clustering methods are very effective in terms of reducing the com-
	putation time while keeping the quality of the solution acceptable. Then, by increasing the number
	of requests, the computation time for both methods exponentially increases (the major part of the
	k-means method computation time is dedicated to the multidimensional scaling method, which
	exponentially increases by increasing the size of the problem).	
	K-means can give smaller objective function while hierarchical computation can result in
	TRB 2022 Annual Meeting	Original paper

TABLE 4 :

 4 Sum of Squares method for k-means clustering

	Number Size of clusters
	1	10
	2	20
	3	30
	4	40
	5	50

TABLE 5 :

 5 Sum of Squares method for hierarchical clustering

	Number Size of clusters
	1	75
	2	100
	3	125
	4	150
	5	175
	6	200
	7	225
	8	250
	9	275
	10	300

clustering methods on the shareability matrix to cluster the requests. Then, we described a method to solve the matching problem inside each cluster. To evaluate the method, we employed the proposed method on the network of Lyon city in France with half-million requests in the morning peak from 6 to 10 AM. The results showed that the proposed clustering method produces highquality solutions close to the optimal situation while reducing the computation time significantly.

The clustering method proposed in this study can be used for other similar systems, such as taxis and dial-a-ride services.

We have used earlier versions of this method to assess the impact of real-time ridesharing on road transportation networks (Alisoltani et al.,42). In our future works, we plan to assess its impact on large-scale multimodal networks, i.e. considering all available modes of transportation, and not only private cars using GeoTwin multi-agent simulation platform (Bauguion et al.,43).

AUTHOR CONTRIBUTION STATEMENT

All the authors have contributed to all aspects of this study, ranging from the conception and design of the methodology, analysis and interpretation of the results and discussion, and the manuscript preparation.

CONFLICT OF INTEREST

The authors declare no potential conflict of interests.