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ABSTRACT1
The transportation operators seek for control and management strategies to push the system to-2
wards the system optimum in spite of selfish drivers who make decisions in a user optimal manner.3
Motivated by the Braess paradox, we propose a framework for developing optimal traffic banning4
strategies to improve the total travel time (TTT) of a network. More specifically, our goal is to5
identify the links whose closure cause the Braess paradox. This problem belongs to the family of6
discrete network design problem (DNDP), often formulated as a bi-level mixed-integer program.7
While the literature offers several algorithms to solve the mathematical problem, additional efforts8
are required to provide a solution method that guarantees global optimality in a reasonable com-9
putation time for real-world urban networks. We propose a heuristic optimization method based10
on link filtering to reduce the solution space for an exact method and evaluate its effectiveness11
on two sub-areas of the Chicago-Sketch network. We have designed two experiments to validate12
our approach and to evaluate the trade-off between computation time and solution optimality. Our13
results show that the proposed framework converges to the same solution as the exact method in14
most cases. Also, under a fixed computation time budget, the exact method could analyze only a15
tiny fraction of all feasible solutions, while our method not only converged significantly fast but16
also provided the same solution as the exact method. Lastly, we show that by implementing an17
optimal traffic banning strategy, the system performance can be improved up to 40%.18

19
Keywords: Network design problem, Braess paradox, User equilibrium, System optimum, Optimal20
banning.21
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INTRODUCTION1
The transportation network design problem (NDP) concerns with optimal decision-making on2
modifying a network under cost constraints. The objective function of the NDP is to optimize3
a system performance measure, e.g., minimizing the total travel time (TTT), while accounting for4
the route choice behavior of drivers. The route choice behavior by itself is an optimization problem5
known as traffic assignment problem (TAP), which is solved to optimize one or more objectives.6
In road networks, fully rational drivers choose their path in a way to minimize their own travel7
cost.This principle is called user equilibrium (UE) (Wardrop, 1). The network under the UE is8
a situation in which no driver can change her path to improve her travel cost. By definition, the9
UE does not tend to optimize the network performance compared to a situation wherein drivers10
cooperate with each other in order to reach a social optimum condition (also known as the system11
optimum (SO) principle). The ratio of TTT between these two principles is known as the "price12
of anarchy" (PoA) (Koutsoupias and Papadimitriou, 2). Clearly, the ultimate goal of transporta-13
tion operators is to keep the value of PoA close to 1. This fact has motivated many studies to14
propose traffic management measures and strategies to ensure the selfish behavior of drivers re-15
sults in the SO, i.e., decreasing the PoA, while the drivers follow the UE principle (Aashtiani and16
Poorzahedy, Ma et al., Yao et al., 3–5).17

To achieve this goal, in this paper, we employ a rather counter-intuitive but well-known18
phenomenon in transportation referred to as the Braess paradox (Braess, 6). In his remarkable19
work, Braess demonstrated that adding a new link to a network degrades its performance and in-20
creases the TTT. There is a large number of theoretical and empirical implications of this paradox,21
see e.g. (Aashtiani and Poorzahedy, Yao et al., Pas and Principio, Roughgarden, Gisches and22
Rapoport, Ameli et al., Colini-Baldeschi et al., Bagloee et al., 3, 5, 7–12)). In this study, we aim to23
answer the following question: in a given network with a given Origin-Destination (OD) matrix,24
which roads should be closed to obtain the minimum TTT under the UE principle. In other words,25
the goal is to find links whose closure cause the Braess paradox. Within the scope of this study, we26
rely on static traffic assignment models. Despite their limitations in representing traffic dynamics,27
they have proved useful particularly for design and management of road networks with the merit28
of simplicity and computational efficiency Wang et al. (13).29

In our problem, the decision variable is binary, i.e., closing a link or not. This problem30
can be categorized as discrete NDP (DNDP). It is a mixed-integer problem by taking into account31
the route choice behavior of drivers under the UE principle. This problem is often formulated via32
bi-level programming (Yang and Bell, 14). Due to their intrinsic complexity, bi-level models (par-33
ticularly when a discrete decision variable exists in either the upper or the lower level problem) are34
considered as one of the most challenging global optimality problems in transportation (Ben-ayed35
and Blair, Farvaresh and Sepehri, 15, 16). Nevertheless, several methods have been proposed to36
solve it that can be categorized as exact or heuristics. The exact methods aim at finding the global37
optimum. For example, Leblanc (17) proposed a branch and bound algorithm, which he solved38
by a sequence of shortest path problems to improve computation time. Farvaresh and Sepehri (16)39
revised the branch and bound algorithm and added a Steiner minimal tree inequality to reduce the40
computation time. In a more recent study, Bagloee et al. (18) employed a generalized Benders’ de-41
composition to speed up the branch and bound algorithm. Using the Karush-Kuhn-Tucker (KKT)42
conditions to solve the lower-level problem is another approach that has been used extensively,43
see for example (Farvaresh and Sepehri, Fontaine and Minner, 16, 19). The application of exact44
methods to real-world networks is restricted (Rey, 20). Therefore, many researchers have devel-45
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oped heuristic methods to find nearly optimal solutions for medium-size networks in a reasonable1
duration of time by relaxing some of the properties of the problem. For instance, Friesz et al.2
(21) proposed simulated annealing and Poorzahedy and Abulghasemi, Poorzahedy and Rouhani3
(22, 23) developed a meta-heuristic approach based on ant colony systems. The main challenge4
these algorithms face is that they may converge to a local optimum solution that is only not worse5
than a solution in which the Braess paradox occurs. Rey (20) has conducted a comprehensive6
comparison of the computation time for some of these methods. He argues that DNDP is NP-hard7
and even medium-size instances of this problem are computationally challenging. Thus, there is a8
need for developing stable and fast exact methodologies. In this paper, we propose a framework to9
address this need.10

Traditionally, the NDP in transportation involves selecting the best solution from a limited11
number of possible expansion projects for an existing network under budget constraints. In our12
case, we are interested in the inverse problem in which some links must be closed. In the litera-13
ture, only very few studies have formulated the NDP in this way. Bagloee et al. (12) proposed a14
surrogate-based algorithm for identifying the links that need to be closed in a network. The authors15
have used supervised machine learning to train a multivariate linear regression model that treats16
the original objective function, TTT, as a black box. While such an approach may provide optimal17
results, it lacks in-depth explanatory power to be accepted as a generic solution. Ma et al. (4) have18
suggested link restrictions as a traffic management measure to cope with the Braess paradox under19
various demand scenarios. They have adapted the SO-relaxation method of Wang et al. (24) to find20
links that cause Braess Paradox. However, their method cannot be applied to real-world networks21
because of the extensive computation time required by the SO-relaxation method. Moreover, they22
have used the interdiction constraint from the original method, which imposes a minimum number23
of two changes between the possible network designs, whereas the intended solutions should seek24
for only one change. Later in section 3 of this paper, we put this issue under scrutiny. Wu and Zhu25
(25) have also looked into the features of the links that may cause the Braess paradox. By running26
series of experiments, they have concluded that the minimum saturation rate is a notable common27
feature among such links. Sun et al. (26) have come to a very similar conclusion by studying the28
network of San Francisco and show that low value of volume over capacity is an indicator for29
a link to be inefficient in the network, and its removal could have positive impacts on the TTT.30
Ameli et al. (10) have developed a simulation-based framework to compare OD path flows under31
different principles, including UE and SO. Furthermore, by introducing the concept of demand32
breakpoints at which routing decisions are significantly changed, the authors propose a method33
that could detect the Braess paradox and close these roads to improve the network performance.34

Our main goal in this paper is to extract the best subnetwork out of a given network that35
has the minimum TTT under the UE principle compared to the original network. Mathematically36
speaking, this problem can also be formulated as a 0-1 Knapsack optimization problem. The family37
of Knapsack problems considers a set of items, each having an associated profit and weight. The38
problem is then to select a subset of items such that the profit is maximized without exceeding the39
capacity of the knapsack Pisinger et al. (27). In 0-1 Knapsack problems, each item may be selected40
at most once. Here, items are the set of all built traffic network roads (links), and the Knapsack41
is a subset of links to be banned. The Knapsack has no capacity limit. The optimal sub-network42
obtained from banning the links belong to the most profitable Knapsack should serve the demand43
(i.e., keep all ODs connected), while providing minimum TTT under the UE conditions. Note44
that the number of candidates (binary decision variables) in this problem is equal to the number of45
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links in the original network. Thus, regardless of the complexity of the constraints, the problem1
becomes computationally expensive by increasing the number of links. To overcome this curse of2
dimensionality, we propose a framework to identify a set of candidate links, which has the most3
potential to be banned and contribute to the problem. In other words, we aim to decrease the4
number of items in the 0-1 Knapsack problem in order to solve it faster.5

In this study, we propose a filtering methodology to reduce the cardinality of the set of links6
whose closure cause the Braess paradox. This enables us to solve the optimal banning strategy7
problem within a reasonable computation time for even medium-size real-world networks. To the8
best of our knowledge, such an approach to solving the NDP has not been proposed in the literature.9
First, we carry out a feature selection procedure to identify relevant link features. Second, we10
build a framework to analyze links features evolution under the UE and SO principles to highlight11
and extract the potential candidates. Third, we solve the problem with an exact method for the12
potential candidates. The application of the proposed framework to a real network shows that13
by considering a small subset of links (less than 5% of the total number of links) as potential14
candidates, the computation time decreases dramatically. Finally, we compare our solution with15
the global optimum solution obtained by the exact method without any filtering. The results show16
that the impact of the roads that are not detected by our method on the system performance is17
neglectable in comparison to the global optimum solution found by the exact method. Besides the18
proposition of a new methodology, we review the most advanced exact method in the literature and19
rectify an error in the solution method, which is used in some studies.20

The remainder of this paper is structured as follows: in the next section we first review21
the fundamentals of the DNDP and its bi-level programming formulation and then present our22
solution. In section case study, we introduce our study network in which we evaluate the efficiency23
of our methodology and compare it with an exact solution approach. In section results, we present24
our results from the case study and discuss our findings, followed by some concluding remarks in25
the last section.26

METHODOLOGICAL FRAMEWORK27
In this section, we first formulate the original problem as a leader-follower game. This game can28
be formulated as a bi-level programming model. The upper-level problem is to find the best sub-29
network in which the difference between the sub-network TTT under the UE assignment and the30
original network TTT under the SO assignment is minimized. We formulate this problem as a 0-131
Knapsack problem. The lower-level problem deals with solving the TAP under the UE. Before we32
continue with the problem formulation, we provide an overview of the notations used in this paper33
in table 1.34

Problem formulation35
Let us denote a given transportation network with a directed graph G = (V,E) where V and E are36
the sets of nodes and links, respectively. We define the 0-1 Knapsack problem as follows: for37
each link (i, j) ∈ E we define an associated weight and profit. The objective is to choose a subset38
of links from the set of all links E to maximize the profit without exceeding the capacity i.e. the39
number of links in the network |E|.40

For the sake of simplicity, in this paper, we assume the weight of all links are equal to one.41
The difficulty of the solution lies in the calculation of the value of the profit for each link. One main42
difference of our 0-1 Knapsack problem with the classic one is that the value of profit of each item43
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TABLE 1: Nomenclature

E Set of all links in the original network.
Ē Set of all open links in the solution subnetwork.
Λ Set of candidate links to be considered for solution algorithm; Λ⊆ E.
V Set of all nodes in the network.
D Set of all destination nodes; D⊆V .

(i, j) Link from node i to node j; i, j ∈V ; (i, j) ∈ E.
rs OD pair of a trip from node r to node s; r ∈V ; s ∈ D.
ui j Binary decision variable for the link from node i to j to indicate whether it is opened or not.
ūi j Binary decision variable for the link from node i to j to indicate whether it is banned or not.
ti j Travel time function of link (i,j).
t0
i j Free flow travel time of link (i,j).

qrs Traffic demand between origin r and destination s.
Q The OD matrix, Q = [qrs], ∀r,s ∈V .
xi j Traffic flow on link (i,j).
xSO

i j Traffic flow on link (i,j) under the SO principle.
xUE

i j Traffic flow on link (i,j) under the UE principle.
xi j,s Traffic flow on link (i,j) travel to destination node s.
Ωu Set of all feasible network designs.
Ω̄u Set of all explored network designs.
Ωx Set of all feasible traffic flows.
Ω f Set of all feasible path flows.
M An arbitrarily large number.
λ θ

i j Value of feature θ for link (i, j) ∈ Λ.
ξi j Normalized difference between traffic flow on link (i,j) under the UE and SO principle.
Θ Vector of all considered link features.

Z(x) Objective function of the original problem.
ZRP(x) Objective function of the relaxed problem.

f rs
k Traffic flow on path k between OD pair (r,s).

δ rs
i j,k Binary variable, 1 if link (i, j) is part of path k between r and s, 0 otherwise.

solutionRP Set of tuple of banned links and links flows obtained form the solution of the relaxed problem.

varies depending on the other selected items. More specifically, because of the interdependencies1
among the links of a network, the value of profit for banning a link depends on which other links2
in the network are also banned. In our problem, the profit is defined as how much the TTT in the3
solution subnetwork under the UE gets closer to the TTT under the SO of the original network. We4
can obtain this profit by solving the lower-level problem which is a classic UE traffic assignment5
problem.6

Let D be the set of destination nodes and Q the OD matrix for this network with elements7
qrs that show the demand travelling from node r ∈ V to destination s ∈ D ⊆ V . Let xi j and ti j8
represent the traffic flow and travel time on link (i, j) ∈ E where ti j(.) represents the volume-delay9
function, which is usually modelled as a strictly increasing and convex function of xi j to make sure10
the traffic flow on each link under UE has a unique solution (Ameli et al., 28). In this paper, we11
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use the well-known BPR function:1

ti j(xi j) = t0
i j(1+βi j(

xi j

ci j
)ηi j) (1)2

where t0
i j and ci j are the free-flow travel time and capacity of link (i, j), respectively. β and η3

are the model parameters. Let us denote a feasible solution subnetwork with Ḡ = (V, Ē). We can4
then rewrite the classical profit maximization Knapsack problem as the following minimization5
problem:6

minZ(x) = ∑
(i, j)∈Ē

xi jti j((xi j))− ∑
(i, j)∈E

x̃i jti j(x̃i j) (2)

where xi j is obtained from the UE assignment on the designed subnetwrok and x̃i j from the SO7
assignment on the original network. Ē ⊆ E is the set of all links that remain open in the designed8
subnetwork i.e. Ē := {(i, j) | ui j = 1;∀(i, j) ∈ E}. ui j is the binary decision variable indicating if9
link (i, j) is open or not.10

Since demand is given and fixed, the second term in the objective function (2) is positive11
and constant. Thus, the objective function becomes simply to minimize the first term. We can then12
re-write the upper-level program as follows:13

argmin
x

∑
(i, j)∈Ē

xi jti j(xi j) (3)

subject to:14

ti j(xi j) = t0
i j(1+βi j((

xi j

ci j
)ηi j) (4)

ui j ∈ {0,1}; ∀(i, j) ∈ E (5)

where xi j is the solution of the lower-level (UE) problem (Beckmann et al., 29):15

argmin
x

∑
(i, j)∈Ē

∫ xi j

0
ti j(ω)dω (6)

subject to:16

∑
j∈V :(i, j)∈E

xi j,s− ∑
j∈V :( j,i)∈E

x ji,s = qis ∀i ∈V,∀s ∈ D (7)

∑
s∈D

xi j,s = xi j; ∀(i, j) ∈ E (8)

qss =−∑
i∈V

qis,∀s ∈ D (9)

xi j,s ≥ 0; ∀(i, j) ∈ E (10)

where constraints (7) and (9) assure flow conservation and that the demands of all destinations17
will be served. Besides, they also balance the inflow and the outflow in each node. Constraint (8)18
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FIGURE 1: Piecewise linear approximation of BPR. function

ensures that the total flow on each link is the sum of the flows of all destinations on that link. In1
order to take advantage of the state-of-the-art mixed-integer linear programming (MILP) solvers,2
we must use a piecewise linear approximation of the original BPR function 1. For that, we cut the3
link flow xi j into mi j segments between values αi j,n−1 and αi j,n (n ∈ [1,mi j]). The goal is to find4
αL

i j,n and αR
i j,n such that:5

xi j =
mi j

∑
n=1

αi j,nλ
L +αi j,nλ

R (11)

Figure 1 provides an illustration of the linear approximation of the BPR function. Moreover, we6
need to introduce an arbitrary large number M in the function to ensure the travel time on closed7
links is high enough that no traffic will be assigned to them. As a result, we rewrite the travel time8
function ti j(.) as follows:9

ti j(xi j) = t0
i j[1+

βi j

cαi j
i j

mi j

∑
n=1

(αi j,nλ
L +αi j,nλ

R)]+(1−ui j)M (12)

The exact solution method: SO-relaxation approach10
Solving the lower-level program is relatively straightforward because the link travel times and the11
constraints are linear and convex. Therefore, the solution procedure is to enumerate the finite set12
of all feasible subnetworks Ωu to find the optimal solution u∗. However, practically, this approach13
is computationally prohibitive as the cardinality of Ωu increases exponentially. In order to rectify14
this problem, the SO-relaxation approach was proposed by Wang et al. (24). The idea is to use15
the SO principle as a good approximate of the optimal solution for the UE principle and sort all16
the solutions successively in the order of increasing TTT. Optimal solution is guaranteed when the17
TTT for the unexplored solutions under the SO in not smaller than an already explored solution18
under the UE principle. The authors have used this methodology for adding new lanes and links to19
a network under budget constraints.We adapt their exact method and use it as the reference solution20
for our problem to develop an optima traffic banning strategy. The principle of the SO-relaxation21
method is described below.22
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In the first step, a relaxed problem (RP) is defined instead of the original problem in which1
the UE assignment constraint is replaced with the SO assignment. This single-level optimization2
problem is much easier to solve and yields a lower bound on the optimum of the original problem.3
Such a lower bound can serve as a starting point of an iterative process. More specifically, all4
solutions u ∈ Ωu are sorted in the order of increasing based on their SO travel time. Then, from5
the top of that list, the corresponding UE traffic assignment is solved. The travel time under the6
UE assignment of each iteration serves as an upper bound for the next possible solution. This7
iterative process is repeated until the resulting SO travel time of a solution (lower bound) is larger8
than the UE travel time of the previous solution (upper bound). Wang et al. (24) proved that the9
final solution derived from this procedure is the global optimum. In other words, there is no need10
to explore any of the remaining feasible solutions because the UE-based travel time of all the11
remaining unexplored designs cannot be less than that SO-based travel time. We formulate the12
objective function of the relaxed problem referred to as ZRP as follows:13

argmin
u∈Ωu,x∈Ωx

ZRP = ∑
(i, j)∈E

xi jti j(xi j) (13)

where Ωx and Ω f denote the set of link and path flows, defined by:14

Ωx := {x | xi j = ∑
r

∑
s

∑
k

f rs
k δ

rs
i j,k; ∀(i, j) ∈ E, ∀ f rs

k ∈Ω f } (14)

Ω f := { f |∑
k

f rs
k = qrs; ∀r,s ∈V}. (15)

Note that the constraints of the UE assignment are already incorporated in the domain x ∈ Ωx15
and u ∈ Ωu. While iterating this process, an interdiction constraint is imposed in order to avoid16
exploring an already tested solution in the process:17

∑
(i, j)∈E

[(1−ui j)ūi j +(1− ūi j)ui j]≥ 1,∀ū ∈ Ω̄u (16)

where Ω̄u is the set of already explored solutions. The pseudo-code of this iterative process is18
presented in Algorithm 1.19

It is worth to mention that in Wang et al. (24) the right side of the inequality in the constraint20
(16) is set to 2 instead of 1. This implies that the current network that is being explored must have21
at least two differences with all of the already explored networks, which is not intended by the22
proposed algorithm. Apparently, this error roots in the numerical example provided wherein a23
hypothetical scenario, the addition of two potential links to the network is being investigated and24
the constraint of the example is used for the general scenario as well. Some of the existing literature25
such as (Ma et al., Rey, 4, 20) have used the same constraint which implies that their solutions are26
not guaranteed to be global optimum .27

Proposed solution method: identifying candidate links28
Despite the significant reduction in computation time, the SO-relaxation method is still impractical29
for large-scale networks. Therefore, we propose a heuristic approach to further reduce the size of30
the solution space that the SO-relaxation algorithm must explore. We postulate that the optimal31
or nearly optimal solution is found by considering only a small fraction of the links in a network.32
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Algorithm 1: Pseudo-code for the SO-relaxation solution method
Ω̄u← [ ] ;
u∗,u∗temp← [ ];
UB←+∞;
LB← 0;
ZRP←+∞;
converged← False ;
while converged == False do

solutionRP = solve((13), s.t. inequality (14)-(16));
if |solutionRP| ≥ 0 then

return u∗;
break;

else
(u∗temp, x̃i j)← solutionRP;
ZRP← ∑(i, j)∈E x̃i jti j(x̃i j);
xi j = solve((6), s.t. (7)-(10));
LB← ∑(i, j)∈E xi jti j(xi j);
if LB ≤ UB then

UB← LB;
u∗← u∗temp;
Ω̄u = Ω̄u ∪ u∗temp

else
Ω̄u = Ω̄u ∪ u∗temp

end
if ZRP ≥UB then

converged == True;
return(u∗);
break;

end
end

end

In our approach, the problem formulation and the solution algorithm remain the same as before.1
The main difference is that we provide a list of candidate links that are more likely to exhibit the2
Braess paradox and reduce the solution space to these candidate links only. In order to identify3
such candidate links, we use some of the key features of the links in the network. The goal is to4
significantly decrease the computation time to make the solution method practical, while the final5
solution remains very close to that of the global optimum.6

In order to identify which features are important for our problem, like any other learning7
process, we need to collect a reasonable number of Braess occurrences. For a given network and8
demand profile, we do this in an iterative process as depicted in the flowchart of Figure(2). We9
scale the given demand by a global factor at each iteration step and solve the SO and UE traffic10
assignments. Afterwards, we run algorithm 1 to identify the set of links that cause the Braess11
paradox, i.e., E − Ē. At this point, we can calculate the value of each feature. In this paper, we12
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refer to each feature by θ and denote its value for link (i, j) with λ θ
i j . We define λ θ

i j as the relative1
ranking position of link (i, j) after sorting in the order of increasing all links in the network based2
on the value of θ . The value of each feature for link (i, j) as λ θ

i j ,∀θ ∈ Θ. We define the value of3
θ as the relative ranking position of link (i, j) after sorting in the order of increasing all links in4
the network based on the value of θ . In order to decide which features are important, we compare5
the summation of λ θ with a predefined threshold f . Only features that are above this threshold are6
considered for the link filtering, which is the last step in our procedure. Here, we set a cut-off score,7
i.e., pth percentile for each of the important features and filter links that are only above this score.8
Consequently, in our method, the solution space, i.e., E in objective function (13), is replaced with9
Λ defined as:10

Λ := {(i, j) | λ θ
i j ≥ P10% ∀θ ∈Θ} (17)

FIGURE 2: The flow chart of the proposed feature selection procedure and filtering process
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CASE STUDY1
In this section, we present the toy networks that we considered in order to evaluate the efficiency of2
our method. There are several transportation networks with demand provided by Stabler et al. (30)3
that have been extensively used in transportation studies Amini et al., Tilg et al. (31, 32). From4
this repository, we consider two medium-size areas in the network of the Chicago-Sketch that5
allow us to conduct our benchmark experiments. Because, as mentioned before, calculation of the6
SO-relaxation is still very expensive on these networks but feasible by normal computer resource.7
Therefore, we can have a reference point (the global optimum solution) in order to evaluate the8
quality of our solution. The two considered areas of the Chicago-Sketch are depicted in Figure9
3 highlighted by the red (hereafter called network 1) and the green (hereafter called network 2)10
rectangles. Some general information regarding the size of each of these areas is provided in table11
2. We perform two types of experiments on these two networks. But before explaining the details12
of these experiments, we first need to discuss the settings of our feature selection and link filtering13
prcedure.14

FIGURE 3: The targeted areas from the network of Chicago-Sketch (Stabler et al., 30): Network
1 boundaries are highlighted by red, and the green rectangle defines the boundaries of Network 2.

TABLE 2: Test networks characteristics

Network No. nodes No. links No. OD pairs Scenarios [Demand factors]
1 48 136 210 [2.8, 3.0, 3.5, 4.0, 4.2]
2 26 66 72 [8.9, 9.0, 9.1]
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Settings of the feature selection procedure1
As mentioned in the methodology, we design a feature selection process intending to find the2
most relevant link features to our problem. After identifying the feature(s), we apply the filtering3
procedure and pre-select a set of links. These selected links make the set of candidate links that4
we believe it contains most likely links belongs to the final optimum solution based on the learned5
feature(s). In this part, we specify the details of that general procedure for the current case study.6
First, we select network 1 and the provided demand as the inputs. The next step is to define the7
initial set of features Θ that include free flow travel time (fftt), capacity, flow under the UE (xUE

i j )8

and the SO assignment (xSO
i j ) and their difference as well as an indicator that reflects the centrality9

of a link - by counting the number of paths that a certain link is part of them. Please note that10
this set can be extended by considering different aspects. Then, we basically run the algorithm of11
flowchart (2) until we collect 50 occurrences of Braess paradox. Please note that, 50 refers to the12
number of links and not the number of iterations. Lastly, we set the feature value threshold and13
the cut-off score, which depending on computation resources and network size can be adjusted, to14
75% and 10th percentile, respectively.15

Experiments setup16
We conduct two different experiments on both networks. In the first experiment, the exact method17
is executed to obtain the global optimum solution, as the reference, in a number of different demand18
scenarios. These demand scenarios are derived by scaling up the demand by a global factor as19
provided in table 2. The number of demand scenarios and the factor for which we observed the20
Braess paradox are different for each network. This is due to the fact that the Braess paradox occurs21
only when demand lies within an intermediate range of values (Pas and Principio, 7). Once the22
results from the exact method are ready, we re-run the SO-relaxation method on the set of candidate23
links, obtained from the previous step. Finally, we compare the optimality of the obtained solution24
with the reference solution. In this experiment, we investigate the effectiveness of our filtering25
method in terms of providing a solution with an objective value, TTT, closed to the exact method.26

Basically, the exact method has to explore a large number of feasible solutions (maximum27
the total number of possibilities (2|E|) to evaluate different traffic banning strategies for each sce-28
nario). Note that the number of evaluations cannot be predicted until the algorithm converges to the29
optimum solution; however, typically, on large real-world networks, this could take up to weeks or30
months if a solution exists. For the second experiment, the performance of the proposed solution31
method is evaluated in front of the the exact method. We impose a computation time limit of three32
hours and compare the solution found by each method. The motivation for this experiment is to33
account for some reasonable computation time that the transportation planner may consider while34
making a decision which algorithm to implement. With this experiment, we aim to investigate the35
trade-of between computation time and the accuracy of the solution methods.36

RESULTS37
In this section, we first present the results of our feature selection procedure that is used to identify38
the relevant features for link filtering. Then, we provide the results of the first experiment in which39
we show the validation of the proposed methodology. After that, we discuss the second experiment40
and evaluate the performance of both solution methods under computation time budget. Lastly, we41
discuss the effectiveness of traffic banning strategy as a traffic management measure to improve42
the overall system performance.43
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Analysis of the link features1
After a careful analysis of the 50 (link) occurrences of the Braess paradox, we found only one2
feature to be relevant among all the selected features. In Figure 4a, we present the value of each3
feature for every link in the solution of the exact method i.e. links taht exhibited the Braess paradox.4
We can easily see, in the figure, that only two features seem to be relevant. By calculating the λ θ5
for these two features it becomes clear, as shown in Figure 4b, that only one feature namely the6
flow difference between the UE and SO (xUE

i j − xSO
i j ) should be considered for link filtering. Note7

that this feature is significantly correlated with PoA; however, we are going to investigate whether8
all links in the optimal banning solution always belong to the top candidate links ranked by this9
feature or not. Note that, according to the characteristics of a network, banning a link with a high10
value of xUE

i j − xSO
i j does not necessarily improve the system. It can even provide an infeasible11

sub-network, e.g., disconnecting some OD pairs. Therefore, we consider this feature for further12
investigation and validation in the next subsections through the filtering method. Regarding the13
second-best feature, intuitively, travel time on a link depends on the link travel time function ti j(.)14
in which the fftt is only one parameter. In our study, other parameters of this function are identical15
for all links (η and β in BPR function) which can be another reason that why the fftt is not a16
representative feature for the filtering procedure.17

(a) (b)

FIGURE 4: (a) Ranking position of the feature with respect to the rest of the links in the corre-
sponding network and (b) Number of times a feature appears in the top 10%.

In order to be able to compare the value of xUE
i j − xSO

i j in different scenarios and links with18

different levels of congestion, we normalize its value by dividing it by the xUE
i j . Consequently, we19

consider a single feature ξi j =
xUE

i j −xSO
i j

xUE
i j

in our link filtering procedure. In fact, ξi j shows the degree20

to which removal of a link brings the system closer to the SO principle. ξi j = 1 implies that link21
(i, j) is used under the UE principle but not under the SO.22

Moreover, we plot the value of λ for each network-demand scenario as presented in table23
2 in both networks. In Figure 5, the links in the global optimum solution are mostly at the top of24
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the boxplot (the red dots in the scatter plot), which confirms our previous conclusion on the feature1
selection process. In Figure 5b we observe some red dots i.e. links that are in the solution of the2
exact method in the bottom of the boxplot which means they have a very low value for the selected3
feature. This motivates us to evaluate the contribution of each link to the objective value of the4
optimal solution. In other words, how much these links further reduce the TTT compared to our5
solution.6

(a) Network 1 (b) Network 2

FIGURE 5: The value of the selected feature ξ for different scenarios. The red dots indicate the
links in the global optimum solution whereas the blue dots are all other links in the network.

The first experiment: Validation7
In order to prove the effectiveness of the selected feature, we compare the results of the obtained8
solution by both methods in the first experiment. Each solution method will return a set of links9
that must be closed to the traffic. While the exact method requires several days to converge, our10
method needs only a few minutes to deliver the results. Figure 6 show the results for network 111
and network 2 respectively. The red links are the ones found by both algorithms, while the yellow12
links are only found by the exact method. The blue links are the set of candidate links obtained13
from our filtering process. Clearly, the results are very similar. Regarding network 2, our method14
finds only one of the two links that must be closed. After a quick check, it turned out that the15
second link (the yellow link in Figures 6f-6h) does not carry any traffic. This problem arises due16
to the fact that in the solution algorithm 1 when two solutions have the same objective value, the17
last one is returned as the optimal solution. Regardless of that, the calculated TTT in both methods18
for all three demand scenarios of this network are identical. Figure 7 depicts the differences in the19
calculated TTT with both solution methods.20

Network 1 is twice as big as network 2, and therefore, it is more challenging to find a21
solution for it. As expected, the offset between the solutions found by the algorithms will increase22
as the size of the network grows. We can see in Figures 6a-6e that for lower demand scenarios in23
this network, our method finds the same solution as in the exact method. However, for the higher24
demand scenarios, one link with non-zero traffic flow is not found by our algorithm. The main25
reason is that these links are not in the set of candidate links. We argue that these links are trivial26



Amini et al. 16

(a) Network 1, Demand factor = 2.8 (b) Network 1, Demand factor = 3.0

(c) Network 1, Demand factor = 3.5 (d) Network 1, Demand factor = 4.0

(e) Network 1, Demand factor = 4.2 (f) Network 2, Demand factor = 8.9

(g) Network 2, Demand factor = 9.0 (h) Network 2, Demand factor = 9.1

FIGURE 6: Traffic banning strategy in each scenario for network 1 and network 2: Red links
are in both solutions, yellow links are only in the exact method solution, and blue links are the
candidate links considered by our method but eventually remain open.
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to the traffic banning strategy. We can clearly see this fact in Figure 7 that by adding the yellow1
links, only 0.04% improvements in the TTT can be achieved.2

FIGURE 7: Difference of the TTT between the solution obtained by the exact solution method
and the solution obtained by the proposed filtering approach.

The second experiment: Performance evaluation3
The results of the second experiment are also very promising. After three hours, which was set4
as a reasonable computation time limit, the exact method managed to analyze only 583 possible5
solutions, that is only a fraction of maximum number of feasible solutions i.e. 2136 it must explore.6
Interestingly, our method converged to the same solution in only 12 minutes, which implies that7
the exact method had found the near-global optimum solution but still had to test thousands of8
feasible solutions. Even though we cannot guarantee our solution is the global optimum solution,9
but we can be up to a certain level confident that this solution is very close to the global optimum10
solution, and it is not worth it to spend more time to find those trivial links that may reduce the11
TTT only by a negligible fraction. Figure 8 illustrates the solutions from both methods on the12
toy network. Similar to the previous results, red links represent the solution of the algorithm. We13
can see that these links are identical in both solutions. The blue links in Figure 8b are the set of14
candidate links.15

Remarks on the value of the traffic banning strategy16
Another crucial observation we can make is that the solution is relatively robust to small changes in17
demand. This is crucial to the real-world implementation of such an idea using traffic management18
measures. A sudden change of the location of the optimal links with slight changes in demand19
would have required a bang-bang controller, which is not efficient for such complex problems. Our20
results on the effectiveness of traffic banning as a management measure are also very encouraging.21
Figure 9a and 9b illustrate the TTT under both the UE and SO principle and Figure 9c depicts22
the improvements in the PoA after applying the traffic banning strategy for all network-demand23
scenarios. We looked into the PoA in the original network and the network obtained after banning24
the links. It turns out that implementing the proposed traffic banning strategy can reduce the PoA25
on average about 20% in network 1 and up to 40% in small and less congested scenarios in network26
2. This is a very motivating observation that should be indeed further investigated in more realistic27
settings.28



Amini et al. 18

(a) 582 iterations in 180 minutes. (b) Converged after 12 minutes.

FIGURE 8: Identical traffic banning found by both solution methods.

(a) TTT in network 1 in different scenarios. (b) TTT in network 2 in different scenarios.

(c) The PoA reduction for both networks.

FIGURE 9: The effectiveness of traffic banning strategy on reducing the PoA.
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CONCLUSION1
In this paper, we proposed a heuristic optimization framework based on network link features in2
order to find the links that cause the Braess paradox. The framework improves the network per-3
formance by imposing a traffic banning strategy. This improvement by banning link(s) is occurred4
because of the difference in link cost and flow distribution of the network status at the users op-5
timum (i.e., UE) and system optimum (SO). The methodology consists of three main steps: (i)6
Identify the feature of candidate links by selecting the link features on the UE and the SO prin-7
ciples for different demand profiles on a traffic network, (ii) Filter the candidate links which are8
the most potential link(s) to ban, and (iii) Find the optimal set of links to be banned by an exact9
solution method. The last step is essentially based on the SO-relaxation method first for discrete10
network design problem (DNDP). First, we performed a complete analysis on this solution method11
and fixed the original interdiction cut constraint in order to account for one change between the12
network designs when seeking the optimum solution. This correction guarantees the global opti-13
mum solution for DNDP. Second, we adapt the solution method to find the optimal network design14
from an existing network under the UE principle. Third, we added a link filtering procedure based15
on the first step of our methodology to reduce the solution space. The filtering procedure is based16
on a single feature ξ , which was found to be very effective. This feature, in essence, reflects the17
importance of a link during the UE in comparison to the SO assignment. The value of 1 basically18
means the link is only used in the UE and not SO, which is a sign for the Braess paradox.19

In order to examine the effectiveness of the proposed solution, we conducted a case study20
on the network of Chicago-Sketch. We designed two experiments, one without a computation time21
limit in order to let the exact method converge, and the second experiment in which we imposed22
a reasonable computation time limit to account for the trade-off between computation time and23
accuracy of the solution. The results of the first experiment confirmed our initial postulation re-24

garding the proposed feature for link filtering. ξi j =
xUE

i j −xSO
i j

xUE
i j

was the most influential feature to25

distinguish a link that may exhibit the Braess paradox among other features we investigated. Addi-26
tionally, the first experiment results proved that for low-demand scenarios, our method converges27
to the same solution as in the exact method. We also showed that for higher levels of demand our28
method returns a near-global solution. In other words, the difference between the global optimum29
and our solution is trivial, and we conclude that it is not worth the computation time required to30
find the global optimum solution. We used the second experiment to test this statement. After three31
hours, the exact method could only evaluate a fraction of the solution space, whereas our method32
converged in 12 minutes. The solutions were identical by both methods, which implies that the33
exact method found a good solution but had to explore the rest of the feasible solutions, which for34
real-world networks can take up days or weeks.35

Despite the promising results of the proposed method, we suggest some improvements36
for future work. First and foremost, it is essential to perform a sensitivity analysis on different37
demand levels in other realistic network settings. In this paper, we only scaled the demand by a38
factor on two networks. It would be interesting to see how stable the solution is in different OD39
relations, such as peak hours versus non-peak hours. This is very similar to the idea of defining40
demand breakpoints as discussed in (Ameli et al., 10). Another possibility to enrich our study is41
to add operational budget constraints. While closing a link may not need high monetary costs in42
comparison with building a new road, but there are other aspects in terms of easiness to implement43
a link closure, e.g., if the banning infrastructure exists.44
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