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Cite this article as: Randerath W, Deleanu OC, Schiza S, et al. Central sleep apnoea and periodic breathing
in heart failure: prognostic significance and treatment options. Eur Respir Rev 2019; 28: 190084 [https://doi.
org/10.1183/16000617.0084-2019].

ABSTRACT Central sleep apnoea (CSA) including periodic breathing is prevalent in more than one-
third of patients with heart failure and is highly and independently associated with poor outcomes.
Optimal treatment is still debated and well-conducted studies regarding efficacy and impact on outcomes
of available treatment options are limited, particularly in cardiac failure with preserved ejection fraction.
While continuous positive airway pressure and oxygen reduce breathing disturbances by 50%, adaptive
servoventilation (ASV) normalises breathing disturbances by to controlling the underlying mechanism of
CSA. Results are contradictory regarding impact of ASV on hard outcomes. Cohorts and registry studies
show survival improvement under ASV, while secondary analyses of the large SERVE-HF randomised trial
showed an excess mortality in cardiac failure with reduced ejection fraction. The current priority is to
understand which phenotypes of cardiac failure patients may benefit from treatment guiding
individualised and personalised management.

Introduction
Breathing disturbances during sleep are characterised by three main pathophysiological components:
obstruction of the upper airways, disturbances of respiratory drive and reduction of tidal volume. Although
these components are most clearly represented in the protagonist diseases of obstructive sleep apnoea
(OSA), central sleep apnoea (CSA) and hyperventilation, they can variably contribute to the specific
clinical situation of individual patients. The analysis of the underlying pathophysiology may guide the
therapeutic approach (figure 1). Diagnosis and optimal treatment of the central component is a major
challenge due to the complexity of comorbid diseases and the prognostic impact of therapeutic options.

CSA and periodic breathing: definition and characterisation
Chronic heart failure (CHF) with reduced (HFrEF) and preserved (HFpEF) left ventricular ejection
fraction (LVEF) is a major public health problem. Its prevalence is estimated to be 1–2% of the adult

Copyright ©ERS 2019. This article is open access and distributed under the terms of the Creative Commons Attribution
Non-Commercial Licence 4.0.

Provenance: Commissioned article, peer reviewed

Received: 09 July 2019 | Accepted after revision: 30 Aug 2019

https://doi.org/10.1183/16000617.0084-2019 Eur Respir Rev 2019; 28: 190084

SLEEP AND BREATHING CONFERENCE REVIEW
CENTRAL SLEEP APNOEA

mailto:randerath@klinik-bethanien.de
http://bit.ly/2kvTepX
http://bit.ly/2kvTepX
https://doi.org/10.1183/16000617.0084-2019
https://doi.org/10.1183/16000617.0084-2019
https://crossmark.crossref.org/dialog/?doi=10.1183/16000617.0084-2019&domain=pdf&date_stamp=


population in Western countries and increases with age [1]. Studies consistently demonstrated that ⩾50%
of CHF patients present with OSA and/or CSA, including its subtype labelled “periodic breathing”. Data
show a prevalence of 25–40% of periodic breathing in patients with HFrEF, increasing with male sex, the
severity of left ventricular impairment and the presence of atrial fibrillation. The European Respiratory
Society (ERS) task force on CSA recommends replacing the historical term “Cheyne–Stokes respiration”
with “periodic breathing in heart failure” [2].

The SchlaHF registry including >6500 HFrEF patients reported a strong association between sleep
disordered breathing (SDB), either OSA or CSA and body mass index. Age >60 years, atrial fibrillation,
reduced LVEF and resting arterial carbon dioxide tension (PaCO2

) <38 mmHg during wakefulness were the
most important risk factors for CSA/periodic breathing as compared to OSA [3, 4]. CSA has been
demonstrated to be independently associated with worse outcomes in patients with HFrEF [2, 5, 6] and
has a higher socioeconomic burden. The higher mortality rate in CHF with periodic breathing may be
related to intermittent hypoxia, arousals, increased sympathetic activity and mechanical impact on the
heart of intrathoracic pressure swings. As improvement of prognosis in CHF was plateauing, there was a
growing interest to include SDB as an actionable risk factor to be targeted by positive airway pressure
therapies. A prerequisite was the understanding of the pathophysiology of CSA/periodic breathing to
anticipate the effects of currently available therapies [7, 8].

Pathophysiology
Heart failure is differentiated based on the LVEF. Current guidelines separate HFrEF (<40%) from ejection
fraction in the midrange (40–49%) and HFpEF (⩾50%). Previous studies used a dichotomous separation
of reduced and preserved ejection fraction. HFpEF patients generally do not present with dilated left
ventricle, but increased wall sickness and increased left atrial size as a sign of increased filling pressure.
Impaired left ventricular filling or suction capacity is a likely cause of heart failure in these patients
(diastolic heart failure). HFrEF presents with dilation of the left ventricle. All phenotypes are characterised
by symptoms of breathlessness, peripheral oedema and fatigue due to pulmonary congestion and reduced
output. There is a bidirectional relationship between heart failure and SDB. SDB may exaggerate
myocardial remodelling and function due to repetitive hypoxia, arousals and sympathetic activation [1].
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FIGURE 1 Illustration of the pathophysiological approach to treatment of sleep disordered breathing.
Continuous positive airway pressure or expiratory positive airway pressure stabilise the obstructive component
of the upper airways; variable pressure support or mandatory breaths counterbalance the overshoot and
undershoot of ventilation due to brainstem disturbances; and reduction in tidal volume and minute ventilation
require mechanical ventilation.
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Dysregulation of control of breathing plays the major role in the pathophysiology of CSA, with
well-established differences compared to healthy individuals and heart failure patients free of SDB
(figure 2). The term “loop gain” is used to describe the adaptation of ventilation to any disturbance
reflecting the reactivity of the ventilatory system including the lungs (plant gain), the peripheral
chemoreceptors (feedback gain) and the central chemoreceptors at the brainstem (controller gain). A high
loop gain producing overshoot and undershoot of ventilation in responses to disturbances indicates
instability of the system associated with overresponsiveness of the chemoreceptors and increased brainstem
activity. While a high loop gain is typical in periodic breathing, a lower loop gain represents a dampening
of the ventilatory system in hypoventilation disorders. A typical polysomnographic pattern of a high loop
gain is represented by long-lasting apnoeic episodes followed by abrupt and sharp hyperventilation. SDB
in the context of a low loop gain depicts prominent hypopnoeas or short apnoeas with limited
hyperventilation ending the events [7].

A majority of CSA patients presents with chronic hyperventilation characterised by normocapnia or
hypocapnia (increased plant gain). Pulmonary congestion in CHF activates vagal J-receptors in lung
parenchyma, which in turn stimulate brainstem activity and generate hyperventilation [7]. The
hypercapnic ventilatory responses, i.e. changes in minute ventilation to variations of carbon dioxide (CO2)
are elevated (increased feedback gain). Such an excessive chemosensitivity triggers ventilation instability
with exaggerated hyperventilation in reaction to mild increases in CO2 and hypoventilation or apnoeas in
response to hypercapnia. These mechanisms are summarised by the typical polysomnographic pattern of
overshoot and undershoot of ventilation, the crescendo–decrescendo variations in tidal volume and
respiratory effort. The instability and increased reactivity of the control of ventilation is perpetuating a
vicious circle: hyperventilation (overshoot) reduces the actual CO2 tension below the apnoeic threshold,
which dampens the neural drive and induces central apnoeas. Central apnoeas are associated with a rise in
PaCO2

and a decrease in arterial oxygen tension, stimulating ventilation and creating the next overshoot.
Experimental data from animal studies and in clinical setting demonstrated that a prolonged circulation
time between the alveoli and the brainstem amplifies this vicious circle. However, there is insufficient
evidence to translate these data to humans [9].
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FIGURE 2 The respiratory system is composed of three components, which have been described as a loop
gain. Imbalance of the loop gain may lead to a vicious circle of overshoot and undershoot of the ventilation:
any inadequate increase of the ventilation induces hypocapnia; hypocapnia dampens the carbon
dioxide-sensitive chemoreceptors, leading to a dampening of the inspiratory impulses of the brain stem. As a
consequence, minute ventilation (generated from the plant gain) is reduced, leading to hypoxia; hypoxia
stimulates the chemoreceptors and consecutively respiratory drive.
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At the end stages of the disease, periodic breathing is not limited to sleep, but can also appear at rest or
during exercise in advanced CHF [10–15]. Recently, it has been discussed that periodic breathing
(although a marker of severity and poor prognosis) may represent a compensatory mechanism to limit the
deleterious effects of heart failure. Periodic breathing-related large intrathoracic pressure swings, elevations
of end-expiratory lung volume (EELV) and increased vagal tone from intrinsic positive end-expiratory
airway pressure, improved ventilation/perfusion matching and reduced work of breathing might improve
heart mechanics and stabilise left ventricular function [16]. However, this hypothesis is mainly supported
by mathematical models and experimental studies in small sample size studies in healthy humans, making
the translation to CHF patients difficult [17–21]. Moreover, it can be argued that this hypothesis rather
supports the application of positive airway pressure therapies expected to have similar effects on lung
volumes, cardiac mechanics and intrathoracic pressures.

Challenges in managing CSA/periodic breathing in CHF with reduced ejection
fraction
The potential contribution of CSA/periodic breathing on decline in heart function and outcomes
motivated clinicians and researchers to delineate optimal treatment strategies. Therapeutic goals include
improvement in cardiac function, reduction of hospitalisations, morbidity and mortality and, if these are
not possible, enhancement of quality of life (QoL) [22].

The ERS task force on CSA discussed the various treatment options [2] (figure 3). The first step of current
practice is to optimise medical therapy of cardiac failure with diuretics to reduce pulmonary congestions
and cardiac filling pressures, with angiotensin-converting enzyme inhibitors to reduce ventricular afterload
[23] and with β-blockers to diminish excessive sympathetic activation [24, 25]. Physical activity,
compression stockings, salt restriction and dialysis can also reduce fluid overload and accumulation in the
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FIGURE 3 The figure shows the approaches of various treatment options on the loop gain. Oxygen (O2) supply
increases the alveolar O2 concentration and avoids hypoxic stimulation of the chemoreceptors. In addition, it
may influence myocardial function. Carbon dioxide (CO2) plays a major role in the pathophysiology of periodic
breathing. The application of CO2 by rebreathing or external supply elevates the arterial CO2 tension above the
apnoea threshold and impedes central apnoeas. Drugs may influence respiratory drive in the brainstem.
Some pharmaceutical influences on arousability, sleep stages and sleep efficiency can stabilise respiration or
shift sleep stages from non-rapid eye movement (REM) stages I and II to slow-wave or REM sleep. CPAP:
continuous positive airway pressure; BIPAP: bilevel positive airway pressure.
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lower body compartment during the day and diminish nocturnal fluid shift to lungs and upper airways
[26]. In addition, optimal cardiac treatment includes interventional or surgical therapies on cardiac vessels
or valves. Resynchronisation therapy has been shown to decrease breathing disturbances [27], improve
cardiac function, QoL and mortality in advanced heart failure.

In randomised controlled trials (RCTs) with small sample sizes, nocturnal oxygen therapy ameliorates
CSA in heart failure patients, essentially by reducing hypoxic ventilatory drive and sympathetic activation.
The apnoea–hypopnoea index (AHI) is reduced by 50% without significant change in the obstructive
component [28]. Oxygen may improve physical activity and QoL [29]. Evidence is limited and large RCTs
need to be conducted in this field.

Studies investigated the effect of added dead space and external CO2 application for increasing PaCO2
above

the apnoeic threshold and thus stabilising ventilation. Although this approach is highly effective in
experimental settings, the treatment cannot currently be recommended due to a lack of safety and
long-term data [2, 30–32].

Theophylline has shown modest efficacy on improvement of periodic breathing, AHI and intermittent
hypoxia. However, beneficial effects on cardiac function or sleep architecture were limited [33].

Most recently, unilateral phrenic nerve stimulation has been introduced in the treatment of CSA in CHF.
Comparable to oxygen and continuous positive airway pressure (CPAP), it may reduce central AHI by
50%, but long-term and large-scale data are missing. Data regarding hard outcomes are lacking. Therefore,
the treatment should be used very cautiously in selected populations participating in controlled trials [34, 35].

CPAP primarily re-opens and stabilises the upper airway, but may also influence left ventricular afterload
and filling of the right heart, improve ventilation/perfusion mismatch and slightly increase PaCO2

. Cohort
and RCT studies have suggested that CPAP improves oxygenation and LVEF [36]. CPAP reduces central
breathing disturbances by a mean of 50%. However, the CANPAP trial failed to show a survival benefit in
patients with CSA and CHF with reduced LVEF [36]. Bilevel positive airway pressure (BPAP) with
back-up mandatory breaths may abolish both obstructive and central SDB. However, data on the clinical
use in patients with CHF and CSA/periodic breathing are scarce. DELLWEG et al. [37] showed that
short-term beneficial effects of BPAP were lost over time. In addition, BPAP may even aggravate central
events by inducing hypocapnia and facilitating glottis closures. Therefore, the ERS task force on CSA did
not support the use of BPAP in CHF with CSA/periodic breathing outside clinical trials [2].

Adaptive servoventilation (ASV) adjusts the breath-after-breath level of inspiratory pressure support in
order to counterbalance the overshoot and undershoot of ventilation. ASV devices increase pressure
support during apnoeic/hypopnoeic periods and reduce it during hyperventilation. In addition, ASV
devices provide fixed or variable expiratory pressure to suppress obstructive events and apply mandatory
breaths to avoid central apnoeas [38]. Therefore, ASV normalises obstructive and central SDB and is
superior to CPAP, oxygen or other therapeutic approaches [15, 37, 39–44] for suppressing sleep
disturbances. However, the SERVE-HF trial, which compared optimum medical treatment for heart failure
alone (control group) or in combination with adaptive servoventilation in severe CHF with reduced LVEF
(<45%) and predominant CSA failed to show a prognostic benefit of ASV [45]. The primary end-point
was neutral and secondary end-points analysis showed that all-cause and cardiovascular mortality were
both increased [45]. To date, this is by far the largest RCT in the field and the results have led to
contraindication of ASV in cardiac failure with reduced ejection fraction below 45% according to the
SERVE-HF inclusion criteria.

However, the study results have been challenged owing to a high percentage (23%) of the study population
switching from control to ASV or vice versa, low ASV adherence (40% of patients used the ASV device
<3 h per day, 26.7% 0 h per day) and unbalanced use of antiarrhythmic drugs between the two arms
[45, 46]. Post hoc analyses showed that ASV negative impact was mainly restricted to patients with the
lowest LVEF (<30%) and those with the highest proportion of periodic breathing [22, 47]. Therefore, the
contraindications of ASV should not been extended to the CHF population with preserved ejection
fraction and/or to HFrEF >45%.

The unexpected results of SERVE-HF raised several questions on possible explanations for the higher
mortality burden. JAVAHERI et al. [48] hypothesised that cardiac instability rather than effects of the
treatment may be responsible for the mortality in SERVE-HF.

In fact, patients did not die from decompensation or progressive deterioration in heart failure, but from
sudden cardiac death. The following hypothesis has been proposed: 1) the highest risk of sudden cardiac
death occurred in the most severe patients (very low LVEF, <30%); 2) patients with poor outcomes were
significantly more often treated with drugs which themselves induce cardiac instability (antiarrhythmics);
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3) JAVAHERI et al. [48] discussed whether, against the background of these unfavourable preconditions,
unnecessary pressure support and hyperventilation might have facilitated malignant arrhythmias.

Physiological studies suggest that algorithm might play a role. However, we do not have data to
demonstrate that these acute physiological measurements translate into significant impact on outcomes
[49].

Although more recent studies (non-RCT) showed beneficial effects of ASV (table 1), the results of another
large, multicentre, multinational trial (ADVENT-HF) are required to truly evaluate the efficacy, benefits
and potential harms of ASV treatment in cardiac failure with reduced ejection fraction. Similar to
SERVE-HF, ADVENT-HF includes patients with CHF with an LVEF <45% under optimal medical
therapy and with AHI ⩾15 events·h−1. However, ADVENT-HF includes OSA patients and uses an ASV
device, which allows reduction of pressure support to zero. Most recently, preliminary results proved better
treatment adherence in ADVENT-HF compared to SERVE-HF [57].

Is periodic breathing in CHF a unique entity?
The heterogeneous and contradictory results on ASV ask for new concepts in our understanding of CSA.
The goal of tailoring of CSA/periodic breathing therapies in order to maximise the treatment response
requires more accurate patient’s phenomapping than reporting solely on AHI. CHF patients are
particularly heterogeneous in terms of clinical, imaging and biological characteristics, but also concerning
physiopathological traits underlying CSA/periodic breathing patterns during sleep. The overarching goal is
to combine both standard clinical/biological parameters of CHF and the following complex
polysomnographic patterns informing on mechanistic traits of SDB [58]. Recent studies indicate
parameters possibly explaining heterogeneous response to treatment and survival, as follows.

Loop gain
A post hoc analysis of the CANPAP study demonstrated significant survival benefit in those patients with
significant improvement of central breathing disturbances under CPAP (responders) [59]. On the one
hand, it can be discussed that optimal suppression of breathing disturbances improves survival. On the
other hand, treatment response and survival benefit can be a characteristic of a specific phenotype. SANDS
et al. [18] analysed loop gain in CHF patients according to their CPAP response. They found that low
loop gain was associated with better CPAP response, while high loop gain (high instability of the
respiration) was associated with poor CPAP efficacy.

Exercise oscillatory ventilation
KAZIMIERCZAK et al. [15] assessed exercise oscillatory ventilation, a common pattern in heart failure patients
characterised by significant variations in minute ventilation during increased workload. They studied 39
CHF patients with LVEF <45% and found that exercise oscillatory ventilation was associated with the
severity of heart failure and can be reversed with ASV therapy.

Hypoxic burden
WATANABE et al. [60] measured the hypoxic burden as defined by the time with oxygen desaturation >4%.
Survival was significantly impaired in those patients with higher total time with oxygen desaturation <4%,
but did not depend on the number of oxygen desaturations.

Pattern of oxygen desaturation
GRANITZA et al. [61] used mathematical methods to analyse the pattern of oxygen desaturation. They
differentiated a dynamic and a static desaturation pattern. Oxygen desaturation >8% was a strong predictor
of fatal events. CHF patients who died had shown a bimodal distribution of oxygen desaturation with two
peaks, one with a mean desaturation of 2% and one with a mean desaturation of 8%. In contrast, survivors
showed a Gauss-like distribution of the oxygen desaturation with a maximum at 4%.

EELV
Based on previous findings of BRACK et al. [17], PERGER et al. [62] focused on the EELV in periodic
breathing. They found two patterns, one with EELV higher than functional residual capacity (positive
pattern), and one with negative EELV. The negative pattern was associated with longer hypopnoea and
cycle time, higher N-terminal pro-brain natriuretic peptide and worse New York Heart Association classes.

Hypoxic and hypercapnic ventilator responses
GIANNONI et al. [63] measured the hypoxic and hypercapnic ventilatory responses in patients with HFrEF
with a LVEF of 31±7%. During the mean follow-up period of 29 months, survival was best in patients
with normal chemosensitivity, while it was reduced in patients with either increased hypoxic or
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TABLE 1 Adaptive servoventilation (ASV) studies with mortality as primary outcome after SERVE-HF

Study/authors,
year
[reference] Design Population Intervention Primary outcome

Median or
average
follow-up Results

FACE study,
2016 [50]

Prospective
multicentre

observational cohort
France

Up to January 31,
2013

CHF with reduced LVEF
(HFrEF <40%), mid-range

(HFmrEF 40–49%),
preserved (HFpEF >50%)

361 CHF patients with CSA
eligible for ASV therapy
(n=258) versus controls
(n=133) refused/not

compliant with ASV (<3 h per
night)

(ResMed, AutoSet CS) 66%
compliant to ASV therapy

All-cause death, hospitalisation for
worsening heart failure, heart
transplant or ventricular assist

device

21.6 months ASV improved prognosis in
HFmEF in non-ischaemic
heart failure; trend to

increase in event rate in
HFmrEF in ischaemic

heart disease; improved
prognosis in HFpEF CHF
with severe desaturations

CAT-HF study,
2017 [51]

Prospective,
randomised,
controlled,

multicentre clinical
trial

United States and
Germany
2013–2015

Hospitalised heart failure
(HFrEF >45% or HFpEF
⩾45%) and SDB (OSA or

CSA) with AHI
⩾15 events·h−1 via

polygraphy

126 out of 215 patients
assigned on ASV plus

optimised medical therapy
(n=65) versus optimised
medical therapy alone

(control) (n=61)

Composite global rank score (death,
CV hospitalisations, and percentage
changes in 6-min walk distance)

Secondary end-points: sleep apnoea
parameters, functional capacity,

cardiovascular and all-cause death,
days alive and out of the hospital,

biomarkers, QoL, sleep parameters,
imaging parameters and NYHA

functional class

6 months Neutral
No improvement in

6-month cardiovascular
outcomes; however, a
positive effect of ASV in
patients with HFpEF

Study was stopped after
publication of SERVE-HF

IMAMURA et al.,
2016 [52]

Case–control study
Tokyo, Japan
2008–2014

Heart failure NYHA III or IV
(71% NYHA IV, LVEF 33

±17%) with ASV irrespective
of SDB

85 patients receiving ASV
1 month versus

guideline-directed medical
therapies

(AutoSet-CS; ResMed,
Sydney, Australia) with full

face mask (ResMed)

All-cause mortality and cardiac
deaths

2-year
follow-up

Continued ASV
significantly lowered

all-cause mortality and
cardiac death rate

HETLAND et al.,
2016 [53]

Retrospective
observational study
Østfold, Norway

2007–2012

Heart failure NYHA class II–
IV, LVEF ⩽45%; CSR pattern
⩾25% of sleeping time and
dominant central sleeping
pattern via polygraphy

75 patients treated with ASV
(n=31 with ASV for >3–
18 months versus n=44

control)
(AutoSet-CS)

Mortality and hospital admission of
any cause and number of days in

hospital in total

18 months ASV did not significantly
affect CV death or

combined CV death or
hospital admissions after
18 months; trend toward
better CV event-free

survival for ASV usage
BORDIER and
LATASTE, 2019
[54]

Retrospective study
2006–2018

Patient from the sleep unit
of the CV department

treated with ASV for sleep
apnoea (C/M/O apnoeas via

PG)

32 patients with ASV
8 deaths

CV mortality Survival CV deaths not
predominant

No relationship between
sleep apnoea or ASV and

death
MANSUKHANI

et al., 2019
[55]

Population-based
study, using the

Rochester
Epidemiology

Project database

CSA (AHI 41.6
±26.5 events·h−1), with ASV
therapy (65% ⩾4 h per night
on ⩾70% nights in their first
month), and had ⩾1 month
of clinical data before and

after ASV initiation

309 CSA patients under ASV
versus healthcare utilisation

Rates of hospitalisations, emergency
department visits, outpatient visits

and medications prescribed per year
(mean±SD)

2 years pre-
and post-ASV

initiation

ASV did not change
healthcare utilisation

Continued
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TABLE 1 Continued

Study/authors,
year
[reference]

Design Population Intervention Primary outcome Median or
average
follow-up

Results

ADVENT-HF
trial,
recruiting
[56]

Multicentre,
multinational,
randomised,

parallel-group,
open-label trial

Canada

Chronic HFrEF (⩽45%) and
SDB (OSA or CSA) with AHI
⩾15 events·h−1 via PSG

Estimated n>800, still
recruiting 524 patients (31%
CSA, 69% OSA) randomised

until February 2018 on
medical therapy alone or

ASV (AutoSet-CS) with nasal
mask

All-cause mortality, first
hospitalisation for CV diseases,

new-onset atrial fibrillation/flutter
requiring anticoagulation but not
hospitalisation or implantable

cardioverter-defibrillator shock not
requiring hospitalisation

Every
6 months

Awaited

ASV studies with mortality as primary outcome. The table summarises the results of additional studies on ASV in heart failure and central sleep apnoea (CSA). Methodologies
incompletely describe the types of masks and ASV devices used, sleep study, algorithm of titration and compliance to the device. Only one study (FACE) stratified patients in relation to
the severity of heart failure with reduced ejection fraction (HFrEF). CHF: chronic heart failure; LVEF: left ventricular ejection fraction; HFmrEF: heart failure with mid-range ejection
fraction; HFpEF: heart failure with preserved ejection fraction; SDB: sleep disordered breathing; OSA: obstructive sleep apnoea; AHI: apnoea–hypopnoea index; CV: cardiovascular; QoL:
quality of life; NYHA: New York Heart Association; CSR: Cheyne–Stokes respiration.
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hypercapnic ventilatory response and it was worst in patients with both increased hypoxic and
hypercapnic ventilatory response.

Conclusion
These findings indicate that there are substantial differences within the group of heart failure patients with
periodic breathing in terms of outcome. It is not a homogenous population with unique prognosis.
Characteristics of potential phenotypes include the burden of hypoxaemia, variations of oxygen
desaturation, chemoresponsiveness, ventilatory instability during wakefulness and sleep and lung volumes.

It is obvious that this hypothesis requires better definition, discrimination and prospective evaluation.
However, it seems reasonable to include these parameters in the design and interpretation of future and, if
possible, in published studies, by sharing open data to better understand survival and efficacy, benefits and
harms under treatment. Including these parameters in future clinical routines will provide an appropriate
classification to identify the CHF subgroup the most likely to respond to PAP therapies or alternatives.
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