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Abstract  27 

Although it’s well known that the carbon intensity from passenger transport of 28 

cities varies widely, few studies assessed the disparities of that in city-level and its 29 

underlying factors due to the limited availability of data, and thus developed effective 30 

strategies for different types of cities. This study is the first to present a 31 

comprehensive inventory of emissions from passenger transport on road for 360 cities 32 

in mainland China for 2018, based on the data from 5 transport modes and evaluated 33 

by combining distance-based and top-down fuel-based methods. In 2018, passenger 34 

transport on road in China emitted 1076 MtC. A large portion of CO2 emissions was 35 

identified in the southern and eastern coastal areas and capital cities. GDP, population, 36 

and policy were the major factors determining the total CO2 emissions, but not carbon 37 

intensity. Clustering analysis of carbon intensity and 9 socio-economic predictors, 38 

using a tree-based regression model, clustered the 360 cities into 6 groups and showed 39 

that higher carbon intensities occurred in both affluent city groups with a high active 40 

population share and less affluent city groups with a low population density but high 41 

density of trip destinations. Forward-and-backward stepwise multiple regression 42 

analysis indicated that constructing a compact city is more effective for city groups 43 

with a high income and high active population share. Enhancing land-use mixed 44 

degree is more critical for city groups with a high income and low active population 45 

share, while shortening travel distance by intensifying infrastructure construction is 46 

more important for the less affluent city groups. 47 

 48 

Keywords: Carbon emissions; China; city-level; driving forces; passenger transport; 49 

tree-based method  50 

  51 
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1. Introduction 52 

Deteriorating global warming and the energy crisis present a huge challenge to 53 

sustainable human development in this century (Zhu et al., 2014; Wang et al., 2015). 54 

Low carbon development has become the worldwide priority (Cheng et al., 2015). 55 

Cities constitute the primary agglomerations of population and economic activity 56 

(Creutzig et al., 2015), consuming between 67% and 76% of global energy, and 57 

generate about three quarters of global carbon emissions according to the 58 

Intergovernmental Panel on Climate Change (IPCC) report (Seto et al., 2014; Climate 59 

Change 2014), thus significantly contributing to climate change. Transport, as the 60 

major supporter for energy flows in movements of passengers and freight in cities, has 61 

experienced dramatic growth which, in turn, has led to excessive demand for fossil 62 

fuel energy forms and is an important contributor to city carbon emissions. The 63 

world’s transport energy use and emissions are projected to rise by more than 50% by 64 

2030 (Fulton et al., 2009). This will not only pose great challenges but also means that 65 

the transport sector could play a significant role in ascertaining sustainability. 66 

Previous studies have identified significant factors that shape per capita CO2 67 

emissions (PCE) of road transport for the whole country (Hu et al., 2010; Zhang et al., 68 

2011; Loo & Li, 2012; Li et al., 2013; Liu et al., 2015; Chen et al., 2020; Liu et al., 69 

2020), or for provinces (Cai et al., 2012; Zhang et al., 2015; Peng et al., 2020). 70 

City-level studies have been generally applied to individual cities (Gielen & 71 

Changhong, 2001; Nejadkoorki et al., 2008; Ma et al., 2015), or small sets of cities 72 

(Xiao et al., 2010; Wang et al., 2015), given the less available and lower quality of 73 

city-level emissions inventories and data compared to national and provincial data (Su 74 

et al., 2015, 2020; Shan et al., 2018; Zheng et al., 2018; Li et al., 2019). Among these 75 

limited number of studies at city-level, some showed that higher population density, 76 

mixed land use, and pedestrian-friendly street design in cities correlate with fewer 77 

vehicles, shorter distance and less motorized travel (Krizek, 2003; Khattak & 78 

Rodriguez, 2005; Ewing & Cervero, 2010), and that the CO2 emissions in the 79 

transport sector are closely and positively associated with GDP (Cai et al., 2012). 80 
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Other studies also found that the urban pattern, especially the spatial mismatch 81 

between metropolitan-scale home and work locations, is the main factor that drives an 82 

increase in travel demand and transport CO2 emissions (Ma et al., 2015).  83 

Although these case studies have identified some significant factors for transport 84 

CO2 emissions, most conclusions have been drawn from individual cities or 85 

comparative cities with similar geographies (Xiao et al., 2010), or population sizes 86 

(Wang et al., 2015), which might overweigh the ‘causality’ relationships between 87 

socio-economic drivers and transport CO2 emissions. Very few studies aim to provide 88 

comprehensive analyses of drivers of urban transport CO2 emissions (Creutzig et al., 89 

2015) by including spatial structure drivers related to travel behaviors, such as road 90 

network structure, spatial distribution of travel destinations and urban structures, as 91 

well as socio-economic drivers. Equally important, much of the existing literature 92 

focuses on transport CO2 emissions from all various transportation means at the 93 

aggregate level (Dhakal, 2009), but does not distinguish different travel types (Ma et 94 

al., 2015). This failed to reveal the potential impacts of urban spatial pattern on daily 95 

travel behaviors of individuals and, in turn, the impacts of differentiated daily travel 96 

behaviors on CO2 emissions. Knowledge gaps in transport CO2 emissions related to 97 

urban spatial patterns and the daily travel behaviors of individuals need further 98 

in-depth studies for effective city-level mitigation strategies across different types of 99 

cities. 100 

Investigating sufficiently representative cities plays an important role to fill these 101 

scientific gaps. The transport demands of China, which boasts one of the largest 102 

economies in the world, has experienced unprecedented growth leading to the rapid 103 

increase of transport energy consumption and CO2 emissions (Hu et al., 2010; Zhang 104 

et al., 2011). The transport sector has now become the third largest source of CO2 105 

emissions in China (Peng et al., 2020; Lin & Benjamin, 2017; Liu et al., 2015; IEA, 106 

2018). Furthermore, in China, population and socioeconomic development varies 107 

tremendously among cities (National Bureau of Statistics, 2019) as do urban 108 

expansion and spatial restructuring, which dramatically diversify resident travel 109 

demand. This provides an interesting testbed for assessing how city characteristics are 110 
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related to road transport CO2 emissions and, in turn, influence climate mitigation 111 

strategies for different types of cities. 112 

To overcome the limits and uncertainties of past assessments in city-level 113 

transport CO2 emissions, we focused our work on the relationship of road transport 114 

CO2 emissions and multidimensional features of urban areas of 360 cities in China, 115 

including 354 prefecture-level divisions (i.e., 293 prefecture-level cities and 61 other 116 

prefecture-level divisions) and 4 province-level cities (Beijing, Tianjin, Shanghai, and 117 

Chongqing) (Details of data sources are available in Supplementary materials). 118 

The analysis is based on a novel city-level CO2 emissions database of different 119 

passenger road transport modes in China for the year 2018, evaluated by combining 120 

distance-based and top-down fuel-based methods. Subsequently, the 360 cities were 121 

clustered into groups according to the significant results of the Decision Tree Method 122 

(DTM); i.e., obeying separate linear regression models that minimize the discrepancy 123 

between the observed and predicted emissions intensity over all possible splits for all 124 

9 available predictors describing multidimensional features of urban areas, including 125 

resident characteristics, urban structure, road network structure, and traffic structure 126 

independent variables (Fig. 1 and Fig. 2). Finally, for each group, we evaluated the 127 

contributions of predictors to the spread of per capita emissions among cities in each 128 

group to reveal the leading drivers on PCE as well as targeted opportunities for 129 

decreasing the cities’ carbon intensities in the different groups of cities. The flowchart 130 

of this study is illustrated in Fig. 1. Details are available in the Methods section. The 131 

definitions and calculation methods of the 9 predictors are showed in Table. 1.  132 

Based on our analysis, we aimed to to answer two key questions: (1) If and how 133 

cities can be clustered into groups according to their carbon intensities and 134 

characteristics. In other words, what kinds of cities have contrasting CO2 emissions 135 

intensities and which have similar CO2 emissions intensities? And taking this a step 136 

further, (2) if cities can be clustered (i.e., split results in the DTM with P<0.05), what 137 

are the key underlying drivers causing the difference in CO2 emissions intensities 138 

within each city group, and whether the dominating factor of CO2 emissions varies for 139 

different city groups. Addressing these questions would help to put forward more 140 
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effective carbon mitigation strategies from the perspective of multidimensional urban 141 

features for cities with different socioeconomic properties, something not possible 142 

with individual case studies. 143 

 144 

Fig.1. Flowchart of the study. 145 

 146 

2. Methodologies 147 

2.1 Estimates of city-level carbon (CO2) emissions  148 

The total CO2 emissions of passenger transport on road can be calculated either 149 

by multiplying a distance or travel activity data by a CO2 emissions intensity per 150 

kilometers travelled (known as the distance-based methods), or by multiplying fuel 151 

consumption by a CO2 emissions factor for each fuel type (the fuel-based methods) 152 

(Protocol, 2005). Aggregate or disaggregate computational procedures are most 153 

commonly used for the distance-based method. The former method considers each 154 

passenger transport mode as a whole, while the latter distinguishes CO2 emissions 155 
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sources from different types of vehicles (e.g., highway buses, taxis, city buses, private 156 

cars, and motorcycles for road transport) (Cai et al., 2012; Loo & Li, 2012). 157 

Bottom-up or top-down computational procedures are most commonly used for the 158 

fuel-based method. The former one measures CO2 emissions by considering changing 159 

components of the transport system that affect CO2 emissions (e.g., transport activity, 160 

fuels, and vehicles) (Schipper et al., 2009), while the latter estimates CO2 emissions 161 

based on the total amount of fuel consumption and fuel sales in a given jurisdiction or 162 

system (Cai et al., 2012). 163 

In this study, we combined the disaggregate distance-based and top-down 164 

fuel-based methods, as given by Equation 1, to estimate city-level CO2 emissions 165 

from transport on road.  166 

rt hw cb tx pc mcC C C C C C= + + + +                              (1) 167 

where rtC  indicates total CO2 emissions of passenger transport on road , hwC
， cbC

，168 

txC
， pcC

，and mcC  represent CO2 emissions of passenger transport from highway buses, 169 

city buses, taxis, private cars, and motorcycles, respectively. 170 

The passenger turnover volumes of highway buses were recorded in the statistical 171 

yearbooks of cities. Thus, for the highway bus mode, the CO2 emissions were 172 

estimated by Equation A1 using highway bus emissions factors. For other sub-modes, 173 

i.e. taxis, city buses, private cars, and motorcycles, the CO2 emissions were calculated 174 

by multiplying the number of vehicles, average annual mileage, energy intensity, and 175 

emissions factors (Equations A2-A5). The details of Equations A1-A5 are given in 176 

Appendix A and Tables S1 and S2.  177 

 178 

2.2 Factor selection for per capita CO2 emissions (PCE)  179 

We used the decomposition analysis method to quantify the contribution of 180 

socio-economic drivers to per capita PCE (Guan et al., 2008; Feng et al., 2015; Peters 181 

et al., 2017). The city-level PCE was decomposed in Equation 2 as follows: 182 

2 2e =
CO COTimes Distances Energy

T D E C
P P Times Distances Energy

= × × × = × × ×        (2)  183 
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where e is the per capita CO2 emissions (CO2) from passenger transport on road; P is 184 

the permanent resident population; T is the average trip times (Times) per capita every 185 

day; D is the average distance (Distances) per trip time (Times); E represents the 186 

average energy consumption (Energy) per distances (Distances, unit: kilometer); and 187 

C is the emissions factor calculated as the CO2 emissions (CO2) per ton of fuel 188 

(Energy). 189 

Generally, the data for these four factors (T, D, E and C) were not all always 190 

available. We therefore translated the four factors into 9 predictors that could be 191 

obtained directly or indirectly (Fig. 2). The definitions and calculation methods of 192 

these 9 predictors are shown in Table S1 and Sections 2.2.1-2.2.5. 193 

 194 
Fig. 2. Illustrations of the potential driving factors impacting on average trip rate, travel distance, 195 

energy efficiency and emissions factor, and thereby on per capita CO2 emissions. 196 

 197 

Table 1. The definitions and calculation methods of the 9 predictors. 198 

Predictors Definitions Calculation methods and data 
sources 

Per capita income: i Per capita disposable income 
Obtained from the 2018 
statistics yearbook of each city 

Active population share: γ 
The share of population aged 
from 15 to 64  

The amount of population 
aged from 15 to 64; the total 

population was obtained from 
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the cities’ statistics books   

Population density: δ People per unit area 
Obtained from the 2018 
statistics yearbook of each city 

Density of trip destinations: N 
The number of points defined 
as trip destinations in per unit 
urban area 

Trip destinations were 
obtained from the dataset 
described in Supplementary 

data 1.3 (except the residential 
sites); the urban data were 
extracted using a method 
proposed by Su et al. (2015),  
based on the Visible Infrared 
Imaging Radiometer Suite 
(VIIRS)  

Land-use mixed degree: H 
The diversities of land uses 
within an urban area 

See 2.2.1 and Equations 3-4 

Spatial compactness: β 

The degree of urban areas 
concentrated or dispersed 
around the geometric mean 
center of each city 

See 2.2.2 and Equations 5-8 

Most likely weighted-average 
travel distance: Dwa 

The distance between a 
population’s gathering area to 
the buffer zone with the 
strongest economic and social 
activities, where land-use 
mixed degree first reached a 
peak 

See 2.2.3 

Congestion and delays 

indicator: η 

Delays in road traffic and in 

public transport during peak 

hours compared to off peak 

travel (private road traffic) and 

optimal public transport travel 

time (public transport) 

See 2.2.4 

The ratio between buses and 

cars: α 
Divisor between the number of 
buses and number of cars 

The number of buses and cars 

were obtained from the 2018 

statistics yearbook of each city 

2.2.1 Land-use mixed degree for each urban area 199 

A high degree of mixed use brings more diverse destinations together in an area 200 

(Owen et al., 2004), which may shorten average transportation distances. The entropy 201 

score was originally developed for the energy state of a system to quantify the 202 

uniformity of gaseous mixtures (Frank et al., 2004) and has now become a widely 203 

used approach to assess the equality of designated land-use distribution (Pushkarev & 204 

Zupan, 1976). Herein, we used a total of 22.54 million destination points with 205 

different functions in 2018 (except for residential sites which were considered as 206 
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departure), gathered from and geo-coded by the business cataloging website-Sina 207 

Weibo, as land-use data to provide a more accurate and detailed spatial relationship 208 

between departures and destinations within urban areas. We first aggregated 105 209 

sub-function points (Supplementary data 3.3) into 12 main function types (Table S3) 210 

and then computed the entropy score for each urban area using Equation 3. 211 

( )
1

ln

ln

n

i i

i

P P

H
K

=

−
=
∑

                                            (3) 212 

1

i
i n

i

i

P
λ

λ
=

=
∑

                                                 (4) 213 

where H is the entropy score; i is land use type (1,2,3....12); n  equals 12 and 214 

represents the number of land use types; K is the number of land use points 215 

considered in this study in each urban area; i
P  is the proportion of land use type i  216 

in each urban area, as shown in Equation4; i
λ represents the number of points of 217 

land use i  in each urban area. 218 

2.2.2 Spatial compactness between urban areas 219 

The compactness index is widely used to reflect urban spatial form, especially 220 

for representing the aggregation extent of urban space (Wang et al., 2017). The 221 

traditional compactness index is usually defined to characterize the degree of 222 

compactness of a given shape (Maceachren, 1985; Gustafson, 1998; Angel et al., 2010; 223 

Nikhil Kaza, 2020). The theory of compactness index is to compare the similarity of a 224 

given shape by referring to that of the circle. However, urban regions are composed of 225 

multiple types of land use patches. The compactness of the urban areas in one city is 226 

not only related to the general shape of the city but is also greatly influenced by 227 

locations and distances of all urban patches in the city. In this study we propose a 228 

meso-level compactness metric, which takes into account multiple distinct and 229 

discontinuous shapes at different distances, and is given as Equation 5. 230 

2c

c

PSD

D P
β = × ×                                                  (5) 231 
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2 2

1 1

( ) ( )
n n

i i

i i

x X y Y

SD
n n

= =

− −
= +
∑ ∑

                              (6) 232 

/
n

c i

i

D S π= ∑
                                             (7)

 233 

2
n

c i

i

P S π= ×∑
                                            (8)

 234 

where β represents the degree of urban areas concentrated or dispersed around the 235 

geometric mean center of each city; SD  is the average standard distance between 236 

the center of each urban area and geometric mean center of a city; SD is calculated 237 

using the spatial statistical ArcGIS software tool (Equation 6); 
c

D  is the radius of a 238 

circle with the sum areas of all urban areas; 
c

D  is calculated using Equation 7; 
i

x  239 

and 
i

y  are the center coordinates of urban area i ; { },X Y  represents the geometric 240 

mean center of a city; n  is the total number of gartering zones; 
c

P  is the perimeter 241 

of a circle with the sum areas of all urban areas (Equation 8); P  is the total 242 

perimeter of all urban areas; 
i

S  is the area of a given gartering zone i . The smaller 243 

the β , the more compact the city, and vice versa.  244 

2.2.3 Most likely weighted-average travel distance  245 

Given that the land-use mixed degree has a significant impact on travel distance 246 

(Krizek, 2003; Khattak & Rodriguez, 2005; Ewing & Cervero, 2010), this study 247 

hypothesized that the distance from a population’s gathering center to the points, 248 

where land-use mixed degree first reaches a peak, is the most likely travel distance for 249 

the residents in this population’s gathering area. Here, we used 
i

D  to represent this 250 

most likely travel distance of residents. The 
i

D  can be estimated in two steps: (1) by 251 

delineating (with ArcGIS software) around each population’s gathering center i  a 252 

series of buffer zones with a distance of 100 m; and (2) by aggregating the measures 253 

of the entropy score in each buffer zone using Equation 3 with 11 types of 254 
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destinations (except for residential sites, which were considered as departure). 255 

Thereafter, we detected the most active buffer zone where land-use mixed degree first 256 

reached a peak (Fig. 3a). Subsequently, we measured the shortest routes from the 257 

population’s gathering center i  to each destination point located in the most active 258 

buffer zone by using Network analyst tools in ArcGIS based on the road networks 259 

(Fig. 3b) and averaged them to obtain 
i

D . Finally, we calculated the 260 

population-weighted average distance 
wa

D  for one city by multiplying 
i

D  with the 261 

weight factor t
w  for the population’s gathering center i . 262 

 263 

Fig. 3. The key calculation process element for estimating the most likely weighted-average travel 264 

distance at city level. (a) Sketch map for finding the most active buffer zone where the entropy 265 

score first reaches a peak. (b) The original road networks of mainland China in 2018. 266 

2.2.4 Congestion and delays indicator  267 

The congestion and delays indicator is one of the most preferred and widely used 268 

methodologies in the assessment and evaluation of traffic conditions (Hanks & 269 

Lomax, 1990; Schrank et al., 1993; Vaziri, 2002). It is defined as delays in transport 270 

travel time that is spent in road traffic and in public transport during peak hours 271 

compared to off peak travel (private road traffic) and optimal public transport travel 272 

time (public transport) (Rodríguez-Sanz et al., 2019). Gaode company, one of the 273 

largest providers of digital map, navigation and location services in China, used the 274 

congestion and delays indicator to evaluate the degree of traffic congestion of 360 275 

cities in mainland China since 2015. In this study we used the congestion and delays 276 

indicators provided by the Gaode company covering all the 360 cities for 2018 277 

(www.tomtom.com/en_gb/traffic-index). The congestion and delays indicator is given 278 
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as Equation 9 279 

(https://ec.europa.eu/transport/themes/congestion-and-delays-indicator_en):  280 

1010

11

10 10

1 1

j ji i

j ji i

ij road PT

i j

i j

PT PTPHTCT PHT

PTOTFFT
MS MS

CT PT

η
==

= =

  ×  ×
       

      = × + ×
∑∑

∑ ∑
         (9) 281 

where 
ijη  is the congestion and delay index (percentage of delay during peak hours) [% 282 

of delay]; 
i

CT  is the number of car trips during peak hours on main road corridor i; 283 

i
PHT  is car travel time during peak hours on main road corridor i; 

i
FFT  is off-peak 284 

car travel time on main road corridor i; 
jPT  is the number of public transport trips 285 

during peak hours on transit corridor j; 
jPTPHT  is public transport travel time 286 

during peak hours on main road corridor i; 
jPTOT  is optimal public transport travel 287 

time on main road corridor i; 
road

MS  is modal share road; 
PT

MS  is modal share 288 

public transport. 289 

2.3 Cluster analysis for city classification using a tree-based method 290 

A tree-based regression model developed by Loh (2002, 2009), known as 291 

GUIDE (Generalized, Unbiased, Interaction Detection and Estimation), was used in 292 

this study to classify the 360 cities into homogeneous sub-groups. The Loh's GUIDE 293 

software is available at http://www.stat.wisc.edu/~loh/guide.html. The model was 294 

refined from the CART (classification and regression tree) methods (Breiman et al., 295 

1984), which can partition the data into increasingly homogeneous sub-groups by 296 

fitting a separate regression model at each node. The GUIDE and CART methods 297 

suited particularly well when a complex interaction structure was found among the 298 

explanatory predictors. Herein, we selected 9 explanatory predictors for the cluster 299 

analysis: Per capita income (i), Active population share (γ), Population density (δ), 300 

Density of trip destinations (N), Land-use mixed degree (H), Spatial compactness (β), 301 

Most likely weighted-average travel distance (Dwa), Congestion and delays indicator 302 

(η), and the ratio between buses and cars (α). To avoid overfitting, a large tree was 303 



 14

“grown” first and then reduced by a suitable recursive elimination procedure. Finally, 304 

the 360 cities in mainland China were classified into 6 groups. 305 

2.4 Forward-and-backward stepwise multiple regression analysis 306 

We transformed all predictors into log before performing the multiple regression 307 

analysis (Draper & Smith, 1998; Weisberg, 2005) and subsequently used the 308 

backward elimination statistical procedure (Draper & Smith, 1998; Weisberg, 2005) to 309 

select the significant predictors from the 9 possible predictors. Then, a standard 310 

multiple regression approach was used to estimate the relationship between predictors 311 

and PCE and to build a final regression model. Specifically, the procedure was begun 312 

by taking account of all 9 predictors. A criterion of P >0.2 was then set to select the 313 

predictors. If the P value of one predictor was above the chosen threshold P >0.2, the 314 

procedure would sequentially remove the least significant variable. The model was 315 

re-estimated each time with the remaining predictors. The procedure ended when all 316 

predictors were significant at 0.2. 317 

 318 

3. Results 319 

3.1 Spatial variation of city-level CO2 emissions  320 

The total vehicle CO2 emissions of 360 cities in mainland China for 2018 were 321 

1076 MtC (Fig. 4a). Private cars made up the largest share of emissions (872 MtC or 322 

81.03% of the cities’ total), followed by motorcycles (6.57%), highway buses (4.81%), 323 

taxis (4.42%), and city buses (3.16%). In general, private cars were the leading 324 

contributor of CO2 emissions, whereas city buses were the least. 325 

Fig. 4a indicates the substantial variability of CO2 emissions at city level: from 326 

0.01 MtC in Ali city, Xinjing Uygur Autonomous region, to 11.6 MtC in Beijing. In 327 

general, the Aihui-Tengchong line that divides the population distribution pattern in 328 

China could separate the higher level emitters from the lower emitters. Specifically, 329 

the eastern coastal cities had higher CO2 emissions in the transport sector than the 330 

western inland cities. In addition, the capital cities appeared to emit much more CO2 331 

than other cities in the same province, especially cities in Western, Central and 332 
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Northern China such as Chengdu, Haerbin and Wulumiqi. This spatial pattern 333 

indicated that GDP, population and policy might play an important role in CO2 334 

emissions from road passenger transport. This conclusion was further confirmed by 335 

the correlation analysis in Table 2. Specifically, Fig. 5 presented different spatial 336 

patterns of CO2 emissions for the five transport modes. Higher CO2 emissions from 337 

taxis were mainly found in Northeast China (Fig. 5c), from private cars (Fig. 5d), in 338 

eastern coastal areas, and from motorcycles in Southern China (Fig. 5e). On the 339 

contrary, emissions from highway and city buses, overall, were randomly distributed. 340 

It is worth noting that in Western China and Northeast China, public transport modes 341 

such as highway buses and city buses play less important roles in road passenger 342 

transportation compared with other personalized transport modes (Fig. 5). This might 343 

be the result of a poorer public transportation infrastructure limited by a weak 344 

economy and severe natural conditions in these areas. 345 

 346 

 347 

Fig. 4. Overview of CO2 emissions from road passenger transport in cities in China. The spatial 348 

pattern of China’s city-level CO2 emissions (a) and per capita CO2 emissions (PCEs) (b) from 349 

road passenger transport; the probability density functions of PCEs (c) and percentages of 350 

emissions from different sectors in city PCE bins (d).  351 

 352 
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Table 2.  353 

Correlation between carbon (CO2) emissions from each type of vehicle and population, GDP, road 354 

length, number of trip destinations across cities (Pearson's correlation coefficient).  355 

Dependent variable 

Independent variable 

Population GDP Road length  Number of trip 

destinations 

Highway bus CO2 0.202** 0.137** 0.119* 0.135* 

City bus CO2 0.657** 0.833** 0.634** 0.750** 

Taxi CO2 0.702** 0.823** 0.670** 0.847** 

Private car CO2 0.756** 0.831** 0.759** 0.694** 

Motor CO2 0.586** 0.274** 0.447** 0.24** 

Total CO2 0.669** 0.670** 0.653** 0.631** 

Significance levels：**P <0.01; *P <0.1. GDP=gross domestic product. 356 

 357 

In addition, our PCE estimates (Fig. 4b), calculated as total emissions divided by 358 

population, ranged from <0.1 to >1.21 tons of CO2 per capita, with a minimum of 359 

0.03 tons of CO2 per capita in Bijie (Guizhou province, west) and Daqinganling 360 

(Heilongjiang province, north), respectively; a maximum of 3.92 and 2.84 tons of CO2 361 

per capita in Xianyang (Shanxi province, northwest) and Beihai (Guangxi province, 362 

south), respectively; and a median of 0.244 tons of CO2 per capita (Fig. 4c). The 363 

detailed investigation of city emissions for each vehicle type increased our knowledge 364 

of the wide range of carbon intensity in cities (Fig. 4d). Fig. 4d shows the CO2 365 

emissions structure of different sources in different ranges. Specifically, highway 366 

buses and private cars comprised a larger portion of emissions than the national 367 

average, up to 90% of all emissions per capita in most carbon-intensive cities (PCE> 368 

4 tons) and a drop to 69% in most low-carbon cities (PCE<0.05 tons). Surprisingly, 369 

the largest share of PCE from private cars appeared in the medium PCE rank cities 370 

(PECs ranged from 0.7 to 0.9 ton), while the low-carbon cities and carbon-intensive 371 

cities exhibited the higher share of PCE from highway buses. 372 
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 373 

Fig. 5. The spatial patterns of national city-level CO2 emissions from different passenger vehicle 374 

types. (a) highway buses; (b) city buses; (c) taxis; (d) private cars; (e) motorcycles. The legend 375 

units are reported in tons. 376 

 377 

3.2 Typologies of city-level per capita CO2 emissions (PCE) 378 

Based on the decomposition of Equation 2, we related PCE to 9 predictors, 379 

including 4 socio-economic characteristic indexes (i.e., Per capita income i, Active 380 

population share γ, Population density δ, and Density of trip destinations N), 2 urban 381 

structure indexes (i.e., Land-use mixed degree H and Spatial compactness β), 2 road 382 

network structure indexes (i.e., Most likely weighted-average travel distance Dwa and 383 

Congestion and delays indicator η), and 1 traffic structure index (i.e., Ratio between 384 

buses and cars α). 385 
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 386 

Fig. 6. The average values and distribution of predictors for the 6 intensity classes. The black dots 387 

indicate average values of predictors for different carbon intensities. The bars indicate 388 

corresponding shares of cities at quartiles of the 9 predictors in the 6 carbon intensity classes. The 389 

light to dark colors in each bar indicate predictor values from less than a quarter (Q1) to more than 390 

three quarters (Q3). The specific quartile values for these 9 predictors are shown in Table S4. 391 

 392 

Fig. 6 shows the distribution of predictors (quartiles) for the six carbon intensity 393 

classes. T intensities were found mostly in cities with a higher (>Q3) income per 394 

capita, that are more densely populated and commercialized, have a larger active 395 

population share, less spatial compactness between urban areas, longer travel distance, 396 

or a higher bus penetration rate. However, we also found that cities with the lowest 397 

(<Q1) income per capita, lowest population density and density of trip destinations, 398 

minimum active population share, more spatial compactness between urban areas, 399 

shortest travel distance, or lowest bus penetration rate occupied the second largest 400 

share when PCE > 1 ton. This implies that China's city-level CO2 emissions densities 401 

from passenger transport on road are driven by a complex mechanism.   402 
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 403 

 404 

Fig.7. Classification of city groups based on threshold regression of per capita CO2 emissions 405 

(PCE) with 9 predictors. (a)Three-level threshold regresssion on PCE. The per capita income split 406 

cities at the top level (nodes 1 and 2), population density and active population share at the second 407 

level (nodes 3-6), and density of trip destinations at the third level (nodes 7-10). Six typologies of 408 

cities emerge as a result (nodes 5-10); key statistics are given for each type in each box. (b) Spatial 409 

distribution of six city groups. 410 

 411 

Having illustrated the differences in carbon intensity class, we built a tree-based 412 

regression model (Section 2.6) to classify the cities into distinct groups according to 413 
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the combination of their 9 emissions attributes using endogenous threshold estimation. 414 

Our analysis identified 6 types of city groups characterized by a combination of per 415 

capita income (i), active population share (γ), population density (δ), and density of 416 

trip destinations (N) (Fig. 7a). Specifically, per capita income was the most important 417 

threshold variable at the top level. At the second level, population density was the 418 

most important threshold variable to split the cities based on low per capita income 419 

(<$4135.25), while the city’s active population share divided the cities based on high 420 

per capita income (>$4135.25). At the third level, only the cities with low per capita 421 

income and low population density were further split into different types based on 422 

density of trip destinations (Fig. 7a). We named these 6 city groups as follows: 423 

LILPLD (city group with low income, low population density, and low destination 424 

density, n=28); LILPHD (city group with low income, low population density, and 425 

high destination density, n=40); LIHPLD (city group with low income, high 426 

population density and low destination density, n=176); LIHPHD (city group with low 427 

income, high population density and high destination density, n=44); HILV (city 428 

group with high income and low active population share , n=52); and HIHV (city 429 

group with high income and high active population share, n=20). Fig. 7b illustrates 430 

the geographical distribution of the cities in each group. Most HILV and HIHV cities 431 

(red and orange, respectively) were located in the East and South of China, with 50 of 432 

72 gathered into four city clusters (e.g., Pearl River Delta, Yangtze River Delta, 433 

Shandong Peninsula, and Jing-jin-tang). In contrast, the 68 LILPLD and LILPHD 434 

cities (light blue and dark blue) were congregated in the West and North of China. 435 

The first level in Fig. 7a shows that more affluent cities with a per capita income 436 

greater than $4135.25 accounted for 20% of all cities and had nearly a two-fold higher 437 

PCE than poorer cities under this threshold (node 1 and node 2). Among these affluent 438 

cities, those with an active population share above 0.795 showed the highest PCE 439 

with an average of 0.850 tons (node 6), which is almost two-fold greater than those 440 

with a lower active population share (<0.795, node 5). In contrast, among the 288 less 441 

affluent cities, the second split was based on population density. 78.57% of cities with 442 

a population of more than 80 per km2 had the lowest average PCE (0.252 tons, node 443 
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4). The affluent and lower active population share had a medium PCE (node 3), which 444 

was the same as the less affluent and lower population density cities (node 5). In 445 

addition, the third-level thresholds in this clustering analysis demonstrated a 446 

significant influence of density of trip destinations among the less affluent cities. For 447 

the low population density cities, the PCE differed two-fold from lower destination 448 

density (node 7) to higher destination density (node 8), whereas for the high 449 

population density cities the PCE varied 1.5 times against lower destination density 450 

(node 9) to higher destination density (node 10). It should be noted that the higher 451 

PCE associated with low population density could be compensated by low destination 452 

density (compare node 7 with node 10). Lastly, the average CO2 emissions intensity in 453 

the city groups was 0.269 tons in LILPLD, 0.615 tons in LILPHD, 0.227 tons in 454 

LIHPLD, 0.352 tons in LIHPHD, 0.484 tons in HILV, and 0.850 tons in HIHV. We 455 

found that among the 6 city groups, higher carbon intensities could occur in both 456 

affluent cities with high vitality and less affluent cities with low population density, 457 

but with high destination density. Less affluent cities were more diverse in terms of 458 

drivers associated to their per capita emissions intensities. 459 

 460 

3.3 Different driving mechanisms for CO2 emissions intensity among city groups 461 

The analysis described above showed that the main contributors of PCE 462 

discrepancies among the 6 city groups are socio-economic parameters (i.e., per capita 463 

income, population density, active population share, and density of trip destinations) 464 

rather than urban structure, road network structure, and traffic structure. Furthermore, 465 

we used a standard forward-and-backward stepwise multiple regression analysis with 466 

the 9 predictors log-transformed to identify the driving mechanisms of PCE 467 

differences among the cities in each city group.  468 

The significance and contributions of these 9 predictors are given in Fig. 8 and 469 

Table S5. Overall, for each city group per capita income, cities’ active population 470 

share, density of trip destinations, most likely weighted-average travel distance and 471 

congestion and delays indicator were five major positivite contributors that increased 472 
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the PCE among cities, whereas population density, land-use mixed degree, spatial 473 

compactness, and the rate between buses and cars tended to reduce the PCE. However, 474 

the relationship between PCE discrepancies and predictors varied across city groups. 475 

For cities in the HIHV group with the highest population density and business density, 476 

the increases in active population share were the dominant factor for raising the PCEs 477 

(coefficient=12.123), followed by the congestion and delays indicator 478 

(coefficient=1.39) and the most likely weighted-average travel distance 479 

(coefficient=0.90). In contrast, spatial compactness served as a dominant negative 480 

driver of PCE increase for cities in this group, contributing -0.126. These four factors 481 

could explain almost 80% of the difference in PCE among the cities in the HIHV city 482 

group. However, in comparison with the HIHV city group, the positive effect of active 483 

population share and most likely weighted-average travel distance on PCE became 484 

weaker for cities in the HILV city group (coefficient=6.142 and 0.192, respectively), 485 

while the positive driving effect of congestion and delays indicator became stronger 486 

(coefficient=1.248). Another inhibitor was land-use mixed degree inside each urban 487 

area in a city (coefficient=-2.106) for cities in the HILV group rather than spatial 488 

compactness between each urban area in a city, which was the suppressor of PCE for 489 

cities in the HIHV group. For cities in the less affluent groups, the driving force of 490 

vitality on PCE decreased or altogether disappeared, while most likely 491 

weighted-average travel distance was always one of the positive drivers for all groups 492 

besides income and density of trip destinations (except for the LILPLD city group). 493 

Of note, cities in the LILPLD group located in remote Western and Northern China 494 

showed a decrease in PCE with increasing land-use mixed degree and the rate of 495 

public buses. These predictors were able to explain a 32% to 80% difference of PCE 496 

among cities in each city group. 497 
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 498 

Fig. 8. Contributions of the nine (log-transformed) predictors for each city group based on the 499 

forward-and-backward stepwise multiple regression analysis. (a) LILPLD city group; (b) LILPHD 500 

city group; (c) LIHPLD city group; (d) LIHPHD city group; (e) HILV city group; and (f) HIHV 501 

city group. The letters in the x-axis are defined as Table 1. 502 

 503 

4. Discussion  504 

4.1 The transport CO2 emissions from highway buses were overlooked  505 

The CO2 emissions from passenger transport have substantially increased from 506 

1995 to 2017 in China (Lin et al., 2014; Li et al., 2019). Private car is unquestionably 507 

the leading and most rapidly growing contributor to transport CO2 emissions and has 508 

therefore been closely investigated. Our findings suggest that increased attention 509 

should also be given to highway buses, which held the second largest share in higher 510 

PCE bins (Fig. 4d). Therefore, the main challenges stemming from private cars and 511 

highway buses must be dealt with to reduce CO2 emissions from passenger transport 512 

in China. Furthermore, our results showed that cities’ PCEs have distinctive spatial 513 

patterns compared with total CO2 emissions – the higher PCEs were not only located 514 

in southern cities having higher total CO2 emissions but were also evident in western 515 

and northern cities with lower total CO2 emissions (Fig. 4). Based on the emissions 516 
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inventory, we also found that the national CO2 emissions from passenger transport 517 

estimated at city level is 15.9% higher than the amount at province level, a deviation 518 

(12.77%) to which highway buses contributed the most, followed by private cars 519 

(10.41%), motorcycles (9.33%), taxis (2.94%), and city buses (1.29%) (Fig. 9a). 520 

Furthermore, these discrepancies between provincial- and city-level emissions vary 521 

greatly in different areas (Fig. 9a). Cities with higher road intensity showed larger 522 

errors (Fig. 9b). This meant that the widely used transport emissions inventory built at 523 

the province level was underestimated and, in turn, overlooked the impact of traffic 524 

CO2 emissions on total CO2 emissions (Cai et al., 2012; Zhang et al., 2015). These 525 

findings emphasized that providing accurate city-level CO2 emissions data and PCE 526 

from passenger transport is the premise for establishing efficient low-carbon on road 527 

passenger transport policies. 528 

 529 

Fig. 9. Uncertainty analyses on the province-level- and city-level-based method (a) and the 530 

impacts of density of road network on errors of emissions at province-level (b). 531 

 532 

4.2 The effect of population intensity on PCE regulated by economic level  533 

Our study showed that economic level had a positive effect on PCE, which was 534 

more robust and significant in less affluent cities. This finding was evident at higher 535 

levels of income, where PCE decouples from income per capita, consistent with the 536 

finding of Creutzig et al. (2015). The result is also supported by the national level in 537 

OECD (Organization for Economic Co-operation and Development) countries 538 

(Millard-Ball & Schipper, 2011). Newman & Kenworthy (1989) studied this issue 539 

using a global sample of 32 developed cities with similar economic levels and found 540 
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that the proportion of a population living in the inner city was also strongly correlated 541 

with gasoline use. Our study based on different economic levels showed a substantial 542 

decline of PCE with increasing population density for non-affluent cities, whereas no 543 

significant relationship was noted among cities with high income in China. This 544 

indicated that the actual effect of population density on PCE was somewhat 545 

influenced by economic level.  546 

 547 

4.3 Active population share differentiates mitigation strategies among city groups 548 

During the last decade, China had proposed many relevant policies and plans to 549 

limit fuel consumption in the transport sector (Cai et al., 2012), such as Limits of fuel 550 

consumption for passenger cars GB19578-2004 [July 1st, 2005], Denatured 551 

fuel-ethanol GB18350-2001 [May 1 st 2001], Vehicle-based ethanol gasoline 552 

GB18351-2001 [August 5th 2001], Vehicles and Vessels Tax Law [January 1 st, 2012], 553 

and the Blue Paper on New Energy Vehicles 2019 [August 31th, 2019]. The official 554 

statistics on transportation energy use showed that the fuel consumption of passenger 555 

cars dropped 11.5% in 2006 compared with the 2002 level (National Technical 556 

Committee on Road Vehicles of Standardization Administration, 2008). In 2008, 557 

China issued more than 40 criteria on alternative vehicle fuels (Feng, 2009). Till now, 558 

at least 10 provinces have introduced and popularized alternative fuels (e.g. ethanol 559 

gasoline) for vehicles (Feng, 2009). However, the aggregate impacts of alternative 560 

fuels on the mitigation of carbon emissions are difficult to evaluate and remain 561 

uncertain (Cai et al., 2012; Li et al., 2013; Seto et al., 2014). This uncertainty has been 562 

partly due to the fact that these policy goals focused more on traffic development than 563 

on specifically reducing transport CO2 emissions (Hu et al., 2010; Cai et al., 2012; Bai 564 

et al., 2019). It is also a consequence of a lack of the most effective strategies at 565 

lowering emissions for a particular type of city in association with the shortage of a 566 

comprehensive city-level database (Creutzig et al., 2015; Li et al., 2019). For example, 567 

increasing the supply of city buses, constructing a compact city, enhancing land-use 568 

mixed degree in residential areas are all optional strategies which are currently highly 569 
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recommended by urban planners and scholars (Coutts et al., 2007; Sadorsky, 2014; 570 

Ma et al., 2015; Miao, 2017). However, by introducing cities’ active population shares 571 

in a comparative analysis of city groups for the first time, our findings successfully 572 

highlighted the important role of active population share on PCEs in high-income city 573 

groups where the effect of income and population density were no longer significant. 574 

This also suggests that constructing a compact city is a more effective method for 575 

higher active population share (HIHV) cities, whereas enhancing land-use mixed 576 

degree is a more urgent aspect for lower active population share (HILV) cities. 577 

 578 

4.4 Importance of travel distance on PCE  579 

 580 

Fig. 10. The effect of road network on most likely weighted-average travel distance (Dwa).  581 

Of notable interest was the positive impact of travel distance on PCE. Our 582 

proposal of the most likely weighted-average travel distance (Dwa) to substitute for 583 

actual travel distance in the mesoscale analyses of this study is the first of its kind. 584 

Dwa was an index influenced by the linear distance between residents and destination 585 

and the road network structure. Clearly, this index must not be equated with the actual 586 

travel distance; however, to some extent it is valuable in mesoscale comparative 587 

analyses. Fig. 10 showed that despite the shorter distances in low-income cities, the 588 

road network structure resulted in Dwa being 1.31 to 1.28 times longer than the linear 589 
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distances. In contrast, in high-income cities the road network structure rendered Dwa 590 

1.25 to 1.26 times longer than the linear distances, although linear distances were the 591 

longest. This indicated that urban planners should give particular importance to 592 

increasing connectivity and accessibility in less affluent cities and to shortening 593 

physical distances for affluent cities by creating compactness. However, the difference 594 

between groups was not statistically significant. Firm evidence for this will require 595 

further in-depth analysis. Overall, our findings provide support for developing 596 

different urban mitigation strategies that reflect the variation in key drivers of PCE 597 

from road passenger transport. 598 

4.5 The uncertainties of results  599 

The parameters used for estimating CO2 emissions from different types of 600 

vehicles were recorded from different statistics books released by more than one 601 

statistical department. Data uncertainties induced by inconsistency of the statistical 602 

and sampling methods among statistical departments may have introduced some 603 

errors in the CO2 emissions inventory of this study. Quantitatively, we estimated the 604 

uncertainties using the Monte Carlo framework, where all the inputs were assumed to 605 

be distributed normally and with different coefficients of variation (SD divided by the 606 

mean) ranging from 1% to 10%. The results show that 95% of uncertainties of the 360 607 

cities fell in the range of −2.36% to 2.36%.  608 

Other uncertainties for results might have given origin to the uncertainties of the 609 

9 predictors. Because the evaluation methods of the 9 predictors were uniform across 610 

the country, the uncertainties might have changed the magnitude of the 9 predictors; 611 

however, the underlying mechanism of the mitigation for different city groups remain. 612 

5. Conclusions   613 

Our analysis found that the total vehicle CO2 emissions of 360 cities in mainland 614 

China for 2018 were 1076 MtC. Private cars were the largest emitter, followed by 615 

motorcycles, highway buses, taxis, and city buses. A large portion of CO2 emissions 616 

was identified in the southern and eastern coastal areas and capital cities, while small 617 

portions were mainly located in southwestern inland areas. GDP, population, and 618 



 28

policy were the major factors determining total CO2 emissions, but not carbon 619 

intensity.  620 

Clustering analysis of carbon intensity and drivers based on a tree-based 621 

regression model shows that the 360 cities can be clustered into 6 groups by a 622 

combination of thresholds of per capita income (i), active population share (γ), 623 

population density (δ), and density of trip destinations (N). Higher carbon intensities 624 

occur in both affluent city groups with a high active population share and less affluent 625 

city groups with a low population density but high density of trip destinations.  626 

Further, forward-and-backward stepwise multiple regression analysis indicated 627 

that effective policies for reducing transport CO2 emissions differ among city group 628 

types. Constructing a compact city is more effective for city groups with a high 629 

income and high active population share. Also, enhancing land-use mixed degree is 630 

more critical for city groups with a high income and low active population share, 631 

while shortening travel distance by intensifying infrastructure construction is more 632 

important for less affluent city groups. Overall, our results provide new pathways and 633 

support for developing differentiated transport CO2 mitigation strategies at the city 634 

level based on the variations in key drivers of transport CO2 emissions. 635 

 636 

Appendix A 637 

Compared with the dominant use of gasoline in private cars and motorcycles, 638 

fuel used in city buses and taxis varies among cities and vehicle types (Table S1). 639 

Specifically, hwC
， cbC

， txC
， pcC

，and mcC  are given as  640 

, , , ,c hw c hw hw i hw i i

i

C PT EI Kη α= × × × ×∑
                             (A1) 641 

, , , ,c cb c cb j cb cb j j

j

C V M EI K= × × ×∑
                                 (A2) 642 

, , , ,c tx c tx k tx tx k k

k

C V M EI K= × × ×∑
                                  (A3) 643 

, , ,c pc c pc pc pc l lC V M EI K= × × ×                                     (A4) 644 

, , ,c mc c mc mc mc m mC V M EI K= × × ×                                    (A5) 645 
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where  , ,c cb j
V

 is the number of standard type j  city buses in each city; cbM  is the 646 

average annual mileage of city buses in each city; , ,c tx kV  is the number of type k  647 

taxis in each city; and txM  is the average annual mileage of taxis in each city. 648 

The formulas for calculating , ,c cb j
V

, cbM , , ,c tx kV , and txM  are given in 649 

Equations A6-9, respectively. The definitions, units, data sources of other predictors 650 

for Equations A1-A9 are shown in Tables S1 and S2. 651 

, , ,
, , , , , , ,
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= = p cb j p cb

c cb j c cb p cb j p cb c cb

p cb p cb
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