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Abstract

Objectives: In this paper, we aim to propose the efficient and interpretable
models to study and predict the evolution of COVID-19 pandemic, which is in
particular not limited to the setting the epidemic ends with one wave, and the public
intervention is varying. In this setting, we firstly propose a novel method to infer
the transmission rate on the top of the recently introduced SIRU model. Next, we
establish the link between the transmission rate and the public intervention. Lastly,
we propose a forecasting model for the cumulative daily reported cases, CR(?).

Methods: Firstly, we incorporate the nonparametric estimation into SIRU
system to obtain a precise reconstruction of the transmission rate dynamic. We
then rely on the logistic regression to set up a prediction model for this dynamic
given the variable public intervention. Lastly, we propose a regularized the poly-
nomial approximation which considers the SIRU structure and the future public
intervention to predict the cumulative daily reported cases.

Results: We demonstrated the proposed methods with the Chilean data. The
inferred transmission rate exhibits the consistent thus interpretable dynamic with
respect to the variable public intervention. To evaluate the performance of the
CR(1) predictor, we considered two time points after 9 months since the first break-
out of the epidemic, and obtain the one-month prediction starting from these time
points. The proposed predictor is able to give the accurate prediction, sometimes
even with imperfect regularization hyperparameter.

Conclusions: This work provides a methodology to combine the machine
learning methods with the compartmental models, to enhance the later with data.
Firstly, the novel inference method for the transmission rate has made the SIRU
model applicable to the setting with multiple waves and the varying public inter-
vention. Moreover, the proposed technique is transferable to other compartmental
models. Secondly, the proposed predictor of CR(f) can consider the varying public
intervention, and thus is able to provide valid prediction for one month long, which
is a great advantage compared with its competitor in literature.

Keywords: SIRU model, transmission rate, cumulative daily reported cases, non-
parametric estimation



Introduction

The mathematical systems modelling epidemiological phenomena have played a pro-
tagonist role in making decisions and controlling the current coronavirus epidemic
around the world. The mathematical perspective can help to understand the under-
lying pattern of epidemic dynamic as well as the potential roles of government mea-
sures in the disease propagation. In this spirit, a timely epidemic model which can
predict the development of the epidemic is favored by the public health authorities.
Many approaches have been proposed to predict the COVID-19 epidemic evolution,
see the overview paper [17]. In addition to the compartmental models, some works
have considered the machine learning-based methods to leverage the information in
the data, see [3, 9, 7]. In this paper, we combine the two points of views. We rely on
the methods from the machine learning domain to exploit efficiently the information
in the data set. Then we transfer this data knowledge to a compartmental model, so
as to benefit the expert knowledge. We would like especially to consider the existence
of unreported cases, which is a significant issue in the epidemiological analysis due to
the low testing capacity of a country and the asymptomatic patients. Among several
related models in literature, the recently introduced SIRU model [4] has been success-
fully used to describe the evolution of the epidemic during the first wave in various
countries, such as China, South Korea, Italy and France. Therefore, in this paper, we
rely on the SIRU model to explain the epidemic structure of COVID-19. On the other
hand, we aim to analyse the dynamic of epidemic with respect to the varying public
intervention. Nevertheless, the reference papers [4, 5, 16] on the SIRU model propose
to add an additional equation on the dynamic of the transmission rate, with respect
to the public intervention to consider its effects. This presumed parametric model is
a strong hypothesis for real data of the various dynamics, which considers only one
wave and the fixed public intervention intensity. Additionally the increased number of
hyper-parameters in the system makes the follow-up estimation complicated and costly.
Thus, our primary objective is to propose an initiative inference method which incor-
porates the nonparametric estimation in machine learning into the SIRU model, which
can make the typical compartmental model fully benefit the data to therefore give a
precise reconstruction of transmission rate dynamic. We then aim to link transmission
rate dynamic to the public intervention changes to study the effects, which serve for the
ultimate goal of this work, that is to propose a forecasting approach for CR(?) taking
into account the intervention plans for the future. Such forecasting models are of great
interest for the decision makers.

In the rest of this section, we recall the readers the principles of SIRU model in the
following. In Section , we propose a nonparametric method to estimate the transmis-
sion rate 7(¢) as well as (), R(¢), S (t) and the unreported daily case U(¢). In Section ,
we rely on the logistic regression to predict the moment to appear an extreme value of
7(¢) from the temporal variable public intervention Q(7). In Section , we consider the
prediction of the cumulative daily new cases. we propose the regularized polynomial
approximation as the predictor for cumulative daily reported cases CR(f). It is de-
fined as a minimizer of an optimization problem which considers the historical data of
CR(t), meanwhile the predicted 7(¢) dynamic which comes from the future information
of Q(?). Finally, in Section , we present our numeric results.



The SIRU model describes the dynamic of a pandemic situation by considering a
system of ordinary differential equations (ODEs) involving four different states, which
are denoted by S, I, R and U, and represent the susceptible individuals, infected indi-
viduals who do not yet have symptoms, reported infected individuals, and unreported
infected individuals, respectively. This model can be presented by considering the fol-
lowing diagram flux [16, 4]:
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Figure 1: Diagram flux associated with the SIRU model.

The set of ODEs associated with the diagram flux read as:

S = -1(OS (U @) + U(1))
I'(1) = 7S (U (@) + U@®) — vI(1)

, 0.1
R'(1) = vi (1) ~ 7R() O
U'(1) = vaI(1) = nU (1)
SIRU model (0.1) is supplemented by initial data
S () =80>0,1(ty) =1y >0,R(tp) =0and U (tp) = Uy = 0. 0.2)

The parameters attached with the model are listed in the table 1. In particular, note
that v = v| + v,. In addition, all the parameters that are considered 7, v, v, v,,n are
positive.

Methodology

Nonparametric estimation of the transmission rate

To help to predict the epidemic evolution, we would like to have a better understanding
of the dynamic of transmission rate 7(z). More specifically, we wish to infer the values
of transmission rate given the CR(¢) records. We require the inferred values to be re-
liable, in the sense that they are able to recover the historical CR(f) records with good
accuracy, when plugging them into the SIRU model. Specific to the Chile case, we



Symbol Interpretation

to Time at which the epidemic started.

So Number of individuals susceptible to the disease at time 7.

Iy Number of infected individuals without symptoms at time #;.

Ry Number of reported infected individuals at time .

Uy Number of unreported infected individuals at time #;.

7(1) Transmission rate of the disease.

1/v Average time during which the infectious asymptomatic individuals re-
main in asymptomatic.

f Fraction of asymptomatic infected individuals that become reported in-
fected individuals.

vi=fv Rate at which asymptomatic infected cases become reported symp-
tomatic.

va=0-fyw Rate at which asymptomatic infected become unreported infected indi-
viduals.

1/n Average time during which an infected individual presents symptoms.

Table 1: Parameters and initial conditions of the model.

are additionally interested in inferring the dynamic of transmission rate during a long
period, where there appears several epidemic waves and possibly changing public inter-
vention policies. To cope with the gradually implemented public intervention case [6]
adopts the piece-wise parametric functional design of 7(#) with multiple periods. Even
though the large number of parameters are able to capture the complicated dynamic of
transmission rate, they still pose the difficulty in estimation. Including [4, 5, 16], all
of these cited work tune the parameter values by grid search. When it comes to longer
period, the piece-wise parametric model of 7(f) will result in tremendous work of pa-
rameter tuning, when the high accuracy of reconstruction of CR(¢) is required. Thus
for long term modelling of the transmission rate, we propose to employ non-parametric
estimation.

Given the historical data of CR(f) over the period 71, ..., ty, we propose to make 7(7)
an unknown function, in return, to turn /(¢) to a known in SIRU (0.1). The resolution
of this transformed SIRU model gives the inferred transmission rate, together with the
precise reconstruction of S (¢), R(f) and U(?), in the sense they can precisely recover the
CR(?) data.

To get a function, which is highly close to the “true" I(¢) under the SIRU model
assumption, we first apply an admissible nonlinear approximation on the CR(#) data to
obtain the estimated curve a?(t). Then the relationship between I(¢) and CR():

CR(t) =v; f I(s)ds, 0.3)

)



implies the estimators for /(¢) and I’(¢) write as
(0 = CR 0/v1. T(0) = IV (1). (0.4)

Therefore, we can plug the estimated functions T T in the SIRU model, and consider
the resulting ODE system as the system of S (¢), R(¢), U(¢), 7(¢), which reads as

S'(H) = —t (S ()T + U()),

R (1) = viT - nR(),

— 0.5)
U' (1) = val —nU),
T =10 + U®)S(t) - vI.
The above system is equivalent to:
S'(t) = -1 —vl,
R/(t) = w1 = nR(),
0.6)

U'(1) = val = nU(1),

T(t) - — I'+vl .
+U@)S ()

System (0.6) is easy to solve given the initial values S, Ry, Uy and #y. The initial data
is obtained in the same manner as [4]. It is worth to mention that, to be consistent
with the initial values, before applying the nonlinear approximation, we fill the data
points of CR(f) generated by its exponential estimation used in the calculation of initial
values, for interval #y, ...,0. Notably, the proposed inference method is valid for any
length of period N.

The key point in the above estimation is to choose an admissible nonlinear method.
Common nonlinear methods to reconstruct a data curve by a function are polynomial
approximation, spline, and kernel smoother, see for example [1]. For Model (0.6),
we propose to use the kernel smoother. On one hand, the polynomial approximation
will usually introduce oscillation, which will furthermore be amplified after taking
derivative, thus the final estimated 7(¢) will exhibit multiple local extreme points which
will misleading the interpretation of true dynamic contained in raw data. On the other
hand, the I’(¢) expression given by the SIRU model (0.1) implies that /(¢) is likely to
be a C* function. Thus compared to spline function which is piece-wise polynomials
of low order, the kernel smoother with Guassian kernel is preferable.

Logistic regression with the public intervention policies

In this section, we consider the case of the variable public intervention measure. We
wish to study its impact on the evolution of epidemic and develop the analysis, given
the transmission rate data, and additionally the historical measure data. To this end,
we first introduce a new temporal function which is able to represent the intervention



measure. Then we propose a mathematical model which describes the relationship be-
tween the introduced measure function and the transmission rate. The resulting model
is furthermore expected to help the prediction of future CR(%).

In Chile, a significant varying public measure is the percentage of national popu-
lation in quarantine. Such data is used in the work of [6] to motivate the design the
epidemic model, and leads to a good fit of CR(f). We therefore consider the same mea-
surement as the representative of overall public intervention. In Figure 2, we show the
evolution of national quarantine percentage. The data is obtained from official informa-
tion about quarantines provided by the Ministry of Health of the Chilean Government
via the web page [13] . We especially smooth the data points of quarantine percentage
to facilitate the observation. We can see that generally, the dynamic of the measurement
is complicated. There exists several accelerations and decelerations of the implemen-
tation of quarantine. On the left of Figure 2 is the the inferred transmission rate 7(f)
obtained from the preceding section. We can observe that, from the aspect of the curve

18720 60 ;
7
“ 7/ e
- \
| -
© = .Bﬁs‘%
! L
q
30 # '
i i
20 ‘
i &
‘d‘ 1
or g/ Mo
-
A - X o
3/2/2020 4/30/‘2020 6/29/‘2020 5/28/‘2020 10/27‘/2020 12/26/2020

02l L L L L L L
3212020 4130/2020  6/29/2020  B/28/2020  10/27/2020  12/26/2020  2/24/2021

Figure 2: Inferred transmission rate (left) from the Chilean COVID data, Percentages
of the Chilean population in quarantine (right). The red curve in the right subfigure
shows the smoothing curve of the discrete data points.

shapes, the extreme points of the transmission rate and the inflection points of the quar-
antine percentage coincide approximately in time, for example around 5/10/2020 and
6/29/2020. In order to furthermore study this potential link of dynamics, we introduce
function Q(#) to represent the quarantine percentage at time points ¢, whose values are
located in [0, 100]. We require Q(f) € C%(R). We also need to assume 7(r) € C'(R),
notice that the inferred 7(f) by the proposed method belongs to C*°(R). Thus, the ob-
servation indicates that, when the absolute value of Q(f) is small, it is very likely for
the one of 7 to become small.

Recall that we aim to construct a model in terms of T and Q, so that the fitted
model can be used to predict the future behaviors of 7 given the public intervention
plans. More importantly, the predicted dynamic of 7 can then help the forecasting of
CR(t), through the SIRU model. Thus, we propose to adopt the logistic regression [1],
to predict the probability of the occurrence of event 7(¢) = 0 for every moment. The



proposed model is given in Model (0.7).
P(+() = 010(), Q1)) = Sig(B"[1, O(1), (O(1))*, Q(0), (Q))*), 0.7)

where Sig(-) is the Sigmoid function. In practice, we smooth the data points to obtain
the approximating function of Q(¢) (the red curve in Figure 2), so that we can calculate
the derivatives. The details on smoothing and the model training is given in Appendix
. Thus, the time instants 7, with high predicted probabilities P(+(iz) = 0|Q(ir), Q(fx))
(for example higher than 0.9) can be considered as the predicted moments for the trans-
mission rate to reach local extreme values.

Model (0.7) assumes that the likelihood of 7(¢) to reach its local extreme values
at time ¢ depends on whether the government is changing the public intervention poli-
cies at that moment. To distinguish the impacts of changes between different public
intervention policies, for example:

o from decelerating (accelerating) to accelerating (decelerating) the reinforcement
of intervention,

e from accelerating (decelerating) to decelerating (accelerating) the relaxation of
intervention,

we consider O(f), O(1), and (Q(#))* as dependent variables as well in the model. Note
that we intentionally avoid quantitative models of 7(¢), such as ordinary equation of
7(t), or regression model. Indeed, we have tested these ways of modelling '. How-
ever, the testing results imply that the quantitative dependency of 7 and Q can be very
complicated. This brings to inevitable prediction errors. These errors will moreover be
amplified in the retrieved CR(f), when passing the predicted 7 through the SIRU model.

Prediction of cumulative daily new cases

Recently, many works have considered the forecasting of cumulative new cases, for
example [3][11][18][10]. However, most of them only study the phase before the ap-
pearance of second wave. By contrast, in this paper, we would like to propose the
prediction method, which is suitable for any epidemic period. We also notice, many
works only justify their methods in terms of fitting performance on the training data.
Thus, in additional to the goodness of fitting, we will especially focus on reporting the
prediction performance of the proposed method on the test set.

Instead of proposing specific quantitative models as in for example [11], [15][8]
adopt the exponential smoothing models with errors and trends [2, Chapter 7] to ex-
trapolate the CR(?) trend to obtain the prediction. Exponential smoothing methods can
be performed indifferently for the forecasting starting from any time instant. Never-
theless, since their predicted curves, namely the extrapolated trends, have the simple
forms with little parametrization, exponential in [15] for EST(M,M,N) model, linear in
[8] for EST(A,A,N) model, the performant prediction interval is very limited. Starting

'We fit the models with 80% of the historical data, and evaluate the prediction performance with the rest
20%.



from this point, we propose to use nonlinear function with adequate number of param-
eters to first fit the trend, and then extrapolate it with additional control. We consider
polynomials, because its analytic facility enables us to relate the predicted behavior of
7 to the predicted CR(t) through the SIRU model. To avoid the Runge’s phenomenon
related to the polynomial approximation, especially the oscillation at the end of fitting
interval. We sample the Chebyshev nodes in practice to fit the polynomial, which can
reduce the oscillation. Moreover, we consider the shape control of the polynomial,
especially in the trend extrapolation part. We propose to fit the polynomial under the
constraint given by the predicted 7(¢) behavior. Namely, we require the optimal polyno-
mial to have the consistent characteristics so that its deduced transmission rate reaches
the extreme values around the previously predicted moments for 7(f). Meanwhile we
would like the optimal polynomial to be as similar as possible as CR(¢) in the fitting
interval. The performance of the resulting predictor polynomial has been significantly
improved, where it recovers the CR(f) values precisely for an ongoing month, as shown
in Section . We formalize the proposed method in the following optimization problem.

CR = 2 N(CR4) - P12 ©
argmin Z( (1) - P(t; ©))?, 08)

subject to: (7,(7g; ©))* < Ao.

In the above problem, P, is the family of polynomials of order m, CR(#;), i = 1,...,N
are the data points of fitting interval, A is a pre-given positive hyperparameter, 7,(t; ©)
is the deduced transmission rate defined by the SIRU model (0.6) where 57?(!) is given
as P(t;®), fg is the predicted moment after ¢y for the extreme value of transmission
rate. The constraint on the one hand addresses the oscillation problem of polynomial
approximation, on the other hand, transfers the future information of transmission rate
to the CR(r) predictor. Note that, we propose to control the magnitude of 7,(r; ®) at 7g
instead of the equality constraint 7,(7g; ®) = 0, so as to reduce the impact of prediction
error in the preceding logistic regression.
It is equivalent to Problem (0.9), when A in Problem (0.8) is tunable.

CR =arg min — Z(CR(tl) = P(1;;©))” + A(7)(ig; ©))%, (0.9)
P(-;0)€eP,,

where 4 > 0 is the hyperparameter. Problem (0.8) is a classical composition of op-
timization problem for learning models, with a data term and a regularization term
which aims to address the ill-posedness of the original problem or\and to endow the
additional characteristics of the optimizer. A controls the influence of regularization
term. The greater A is, T;,(fE; ®*) will be smaller.

Recall the comments at the end of Section , compared to forecasting 7(¢) and use
its deduced CR(¢) values as future prediction, forecasting CR(#) directly as in Problem
(0.8) with more accurate 7(¢) information will avoid the error accumulation in the SIRU
model, hence lead to a more performant CR(t) forecasting.

We now provide the explicit formula of 7/,(r) in Problem (0.8). When CR(?) is given
as the polynomial P(#; ®) € P, solving directly the SIRU model gives the correspond-



ing transmission rate:

I+vi d+vDS (+vDU + 1)

= - - , 0.10
PTUrOS  U+U)SE T A+ URS ©.10)
where
1. . 1.
I=—P, [=—P
141 Vi
v . .
S=-1-—P+c¢;,S =-1-vl,
Vi
m—1
-1k 0.11
v=2 Z %I(k) + ¢, exp(—nt), ©1h
nie= n
m—1
. —1)
U= 3 k) ™ — e, exp(-n);
r=r|
Thus, ‘r;} can be essentially expressed in terms of P(¢; ®). Note that, to determine the

constant c;, usually we only need one function value S (¢;). However, we would like
to fully use the training data, and make the estimated model S as general as possible.
Thus, we employ the least square estimation to evaluate constant ¢, as:

. R v ’
¢, 1= argmin Z (S(t,-) - (—I(Zi; 0) - V—lp(li; 0)+ C)) ,

i=1

where S(#;), i = 1,...,N, are the solutions of System (0.6) evaluating at the time ¢;.
Thus

A pa— 1 N . v .
Cy = v IZZI (S(t,-) + 1(t;; ©) + v—|P(t,<,®)) 0.12)

is also a function of ®. Similarly, the least square estimation of ¢, is

N m—1

L 1 v (=1

tu= 5 D |V expm) = = 3 — =11 ©) explysy . (0.13)
i=1 n k=0 m

We use Equations (0.12) and (0.13) in Formula (0.11). In Section , we illustrate the
performance of proposed predictor CR using the data of Chile.

Numeric results

In this numeric study, we study the epidemic evolution in Chile for the period from
March 2020 to December 2020, due to the availability of quarantine percentage infor-
mation. We obtain the CR data from the daily reported new cases as its cumulative sum,
and the quarantine percentage from [12, 13, 14] . We fix f = 0.3, v = 1/7,n = 1/7,
and S = 19458310 (population of Chile) throughout the experiments. We use the first
20 CR observations to fit the exponential growing and calculate the initial data, which
are typ = —0.6951, Iy = 7.1934, and Uy = 1.5945. We first show the estimation results
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Figure 3: Nonlinear approximation of CR(¢) data. The kernel smoother used here writes
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Figure 4: Estimation of /(¢) data based Equation (0.4.) from the estimation of CR(¢) in
Figure 3.

from the methods proposed in Section . The CR data and its approximation by kernel

smoother E:Te(t) is given in Figure 3, with the corresponding I(z) is given in Figure 4.
The estimation of R(#), U(¢) and S () as the solution of System (0.6) are given in

Figures 5 and 6. Using these estimations, the inferred transmission rate has been shown
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in Figure 2, which has a consistent interpretation with respect to the quarantine percent-
age data.
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Figure 5: Estimation of S (¢) data based System (0.6).
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Figure 6: Estimation of S (f) data based System (0.6).

Next, we show the result of Logistic regression. We use the inferred 7 data and the
quarantine percentage data until 9/02/2020 to train the logistic model (0.7). Then the
fitted model is used to forecast the probability of occurrence of T = 0 during September

11



to December with the corresponding quarantine percentage data. We compare the pre-
diction result with the true T data in Figure 7, where the blue curve is the predicted
probability. We can see that for the training data, the model successfully predicts
its extreme points such as the one in the beginning of May 2020, and the one at the
end of June 2020. For the test data, the model forecasts that around 11/01/2020 and
12/18/2020, there will likely appear extreme points of 7, while it predicts in October, it
will be almost impossible to appear extreme points.

0.8

0.7

0.6

Probability
o o
= (4,

o
w

0.2

0.1

3/2/2020 4/30/2020 6/29/2020 8/28/2020 10/27/2020 12/26/2020

Figure 7: Prediction of the probability of 7(f) = 0 based on Q(¢) and Q(f). The model
is fitted using the data until 9/02/2020. The two red points are the predicted future time
instants 7, with the high predicted probabilities P(+(fg) = 0|0(fr), O(f)). They are on
the date 11/01/2020 and 12/18/2020.

We now use these predicted moments 7 to derive the predictor of CR as proposed
in Equation (0.9), and compare their values with the true data values. To evaluate the
performance of predictor, especially to examine the improvement brought by the in-
formation of future T which is well predicted from quarantine percentage, in Equation
(0.9), we set the fitting interval 71, ..., ty at least half a month further than the predicted
extreme point of 7, and fit it with a polynomial without shape control as well as a
polynomial with the proposed shape control given by the 7z prediction in order to com-
pare the prediction improvement. For fg = 11/01/2020, we set the fitting interval as
t1 = 8/13/2020 to ty = 10/12/2020 in Equation (0.9). While for 7z = 12/08/2020,
we test two fitting intervals, one spanning from #; = 9/02/2020 to ty = 11/01/2020,
the other from #; = 9/22/2020 to ty = 11/21/2020. The order for all polynomials are
fixed as m = 4. We try 3 A values for each fitting intervals: 10%6,50%°, and 10%7. The
numeric results are given in Figures 8 - 16. The blue curve is the true CR values, the
red line is the predictions from the proposed predictor, where its thin part corresponds
to the fitting interval, and the thick part is the forecasting of a month. The green line is
the forecasting from the polynomial without shape control, which is fitted on the same

12



interval.
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Figure 8: CR predictor with fitting interval #; = 9/02/2020to ty = 11/01/2020, m = 4,
A =10%, and fz = 12/08/2020.
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Figure 9: CR predictor with fitting interval #; = 9/02/2020to ty = 11/01/2020, m = 4,
A =50%, and i = 12/08/2020.
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Figure 10: CR predictor with fitting interval #; = 9/02/2020 to ty = 11/01/2020,
m=4,2=10", and fr = 12/08/2020.

Figures 8 to 10 show the one-month forecasting of CR from the proposed method
incorporating the information of the forecasted extreme point 7z = 12/08/2020, with
different weights 1. We can see that in general, by incorporating the 7 information, the
forecasted values have been improved in all three A cases, especially when A1 = 10%7,
the proposed method gives the perfect forecasting as shown in Figure 10.

Figures 11 to 13 show the one-month forecasting of CR from 7y = 12/08/2020
with the other fitting and predicting intervals. We can see that in this case, the best
forecasting result is given by 1 = 50%. We would also like to report the result in
Figure 13, where the A value is set too large for this fitting interval. In this case, since
the weight of regularization loss in the total loss is greater, the optimization problem
(0.9) needs to search the polynomials of smaller regularization loss T’p(fE)2 which may
however have relatively larger data term loss, to decrease the total loss. Thus, the
optimal polynomial has a worse fitting performance.

Lastly, Figures 14 to 16 show the forecasting performance of the CR predictor with
fr = 11/01/2020. We can see that, in this case, the regularization terms have very
little influence on the polynomial shapes, with all the forecasting from the proposed
predictors overlapping the forecasting of the polynomial without shape control. The
possible reason can be that, the polynomial without shape control has already a good
prediction performance, namely, a low data term loss, meanwhile the A values are
relatively low for this fitting interval.

14
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Figure 11: CR predictor with fitting interval #; = 9/22/2020 to ty = 11/21/2020,
m=4,1=10%, and 7 = 12/08/2020.
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Figure 12: CR predictor with fitting interval #; = 9/22/2020 to ty = 11/21/2020,
m=4,1=750%, and 7 = 12/08/2020.

Conclusion

In this paper, we firstly propose a novel way to infer the transmission rate based on
the nonparametric estimation. This proposed method has solved the problem that, in
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Figure 13: CR predictor with fitting interval #; = 9/22/2020 to ty = 11/21/2020,
m=4,1=10%, and fr = 12/08/2020.
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Figure 14: CR predictor with fitting interval #; = 8/13/2020 to #ty = 10/12/2020,
m=4,1=10%, and 7 = 11/01/2020.

long term with the multiple epidemic waves and the changing public intervention, it is
very difficult to find a good parametric functional design for transmission rate that can
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Figure 15: CR predictor with fitting interval #; = 8/13/2020 to ty = 10/12/2020,
m=4,1=50% and fz = 11/01/2020.
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Figure 16: CR predictor with fitting interval #; = 8/13/2020 to ty = 10/12/2020,
m=4,1=10%, and fxr = 11/01/2020.

recover the true CR data. It has also considerably increased the use efficiency of the
available data, instead of only using it in the hyperparameter tuning. The inferred trans-
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mission rate function enables us to furthermore establish more sophisticated model be-
tween the epidemic and the government control. Thus, the extra government control
information, which is the quarantine percentage in our case, can be used to improve the
prediction of CR. The numeric results have shown that the proposed CR predictor has a
promising performance in terms of both accuracy and the efficient prediction interval,
which can reach one month in our experiments.

Conflict of interest

The authors declare there is no conflict of interest.

Acknowledgment

The second author is supported by Science Foundation Ireland under Grant No. 12/RC-
PhD/3486 for MaREI, the SFI research centre for energy, climate and marine research
and innovation.

References

[1] Hastie, T., Tibshirani, R. and Friedman, J. 2009. The elements of statistical learn-
ing: data mining, inference, and prediction. 2" edition. Springer Series in Statis-
tics, New York, USA.

[2] Hyndman, R. J. and Athanasopoulos, G. 2018. Forecasting: principles and prac-
tice. 2 edition. OTexts: Melbourne, Australia.

[3] Hu, Z.,Ge, Q.,Li, S., Jin, L. and Xiong, M. 2020. Artificial intelligence forecasting
of COVID-19 in China. Preprint, ArXiV:2002.07112.

[4] Liu, Z., Magal, P., Seydi, O. and Webb, G, 2020. “Understanding unreported
cases in the COVID-19 epidemic outbreak in Wuhan, China, and the importance
of major public health interventions". Biology 9 (3): 50.

[5] Liu, Z, Magal, P. and Webb, G. 2021. “Predicting the number of reported and un-
reported cases for the COVID-19 epidemics in China, South Korea, Italy, France,
Germany and United Kingdom". Journal of theoretical biology 509: ¢110501.

[6] Navas, A. and Vergara-Hermosilla, G. 2020. On the dynamics of the Coro-
navirus epidemic and the unreported cases: the Chilean case.  Preprint,
ArXiV:2006.02632.

[7] Nikparvar, B., Rahman, M., Hatami, F. and Thill, J.C. 2021 “Spatio-temporal pre-
diction of the COVID-19 pandemic in US counties: modeling with a deep LSTM
neural network™. Scientific reports 11: 1-12.

18



[8] Rustam, F., Reshi, A., Mehmood, A., Ullah, S., On, B., Aslam, W. and Choi, G.S.
2020. “COVID-19 future forecasting using supervised machine learning models”.
IEEE access 8: 101489-101499.

[9] Shawagqfah, M. and Almomani, F. 2021. “Forecast of the outbreak of COVID-
19 using artificial neural network: Case study Qatar, Spain, and Italy” Results in
Physics 27: 104484.

[10] Suyel. N., Dhamodharavadhani, S. and Rathipriya, R. 2021. “Nonlinear neural
network based forecasting model for predicting COVID-19 cases”. Neural Pro-
cessing Letters 5: 1-21.

[11] Torrealba-Rodriguez, O., Conde-Gutiérrez, R. A. and Hernandez-Javier, A. L.
2020. “Modeling and prediction of COVID-19 in Mexico applying mathematical
and computational models". Chaos, Solitons & Fractals 138: 109946.

[12] Official data about COVID-19 from the Chilean government, (in Spanish), On-
line; , https://www.gob.cl/coronavirus/cifrasoficiales/ (accessed January 2, 2022).

[13] Official data about COVID-19 from the Ministry of Health, Chilean government,
(in Spanish), https://www.minsal.cl/nuevo-coronavirus-2019-ncov/ (accessed Jan-
uary 2, 2022).

[14] Official data about COVID-19 from the Ministry of Science, Tech-
nology, Knowledge, and Innovation, Chilean government, (in Spanish),
https://github.com/MinCiencia/Datos-COVID19/ (accessed January 2, 2022).

[15] Petropoulos, F. and Makridakis, S. 2020. “Forecasting the novel coronavirus
COVID-19". PloS one 15: ¢0231236.

[16] Webb, G., Magal, P. and Seydi, O. 2020. “Unreported cases for age dependent
COVID-19 outbreak in Japan". Biology 9 (6): 132.

[17] Xiang,Y., Jia, Y., Chen, L., Guo, L., Shu, B. and Long, E. 2021. “COVID-19
epidemic prediction and the impact of public health interventions: A review of
COVID-19 epidemic models". Infectious Disease Modelling 6: 324-342

[18] Yousaf, M., Zahir, S., Riaz, M., Hussain, S. and Shah, K. 2020. “Statistical anal-
ysis of forecasting COVID-19 for upcoming month in Pakistan". Chaos, Solitons
& Fractals 138: 109926

Appendix A

To approximate the data points of quarantine percentage with a function Q € C2(R).

To primarily filter out the intense fluctuations, we first subsample the data points by
2

a frequency of 25, then we use the kernel smoother with kernel exp(—(t 1%) ) on the

subsampled points to generate the smooth approximation of data, denoted as O, which
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is the red curve in Figure 2. To furthermore obtain the functions of Q and 0, we fit 0
with the cubic spline, and use the derivatives of the fitted spine as Q and Q. Similarly,
we fit the inferred transmission rate with cubic spline and use its derivative to obtain
function 7.

To train Logistic model (0.7), we need to provide the balanced set which con-
sists in the moments # whose (1Y) are extremas as well as the t} whose T(l}) are not
extremas. We also need the predictor quarantine percentage function values at these
points, namely Q(1?), O(1?), Q(t}), and Q(t}.). Given 7, we use the bisection method to
find its roots so as to determine the moments t?. The root finding results show there
are 4 extreme points before 9/02/2020, which are 4/11/2020, 5/07/2020, 6/30/2020,
and 8/30/2020. We also consider their six nearest neighbouring dates as t?, to increase
the training samples also to compensate any errors during the calculation. For the mo-
ments 7, we choose the dates 3/22/2020, 4/24/2020, 6/03/2020, 7/30/2020, and their
six nearest neighbouring dates.
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