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ABSTRACT

We consider flat differential control systems for which there exist flat outputs that are part of the state variables
and study them using Jacobi bound. We introduce a notion of saddle Jacobi bound for an ordinary differential
system of n equations in n+m variables. Systems with saddle Jacobi number equal to 0 generalize various
notions of chained and diagonal systems and form the widest class of systems admitting subsets of state variables
as flat output, for which flat parametrization may be computed without differentiating the initial equations. We
investigate apparent and intrinsic flat singularities of such systems. As an illustration, we consider the case of a
simplified aircraft model, providing new flat outputs and showing that it is flat at all points except possibly in
stalling conditions. Finally, we present numerical simulations showing that a feedback using those flat outputs is
robust to perturbations and can also compensate model errors, when using a more realistic aerodynamic model.

RÉSUMÉ

Nous considérons des systèmes différentiellement plats pour lesquels il existe des sorties plates qui font partie
des variables d’état et nous les étudions en utilisant la borne de Jacobi. Nous introduisons une notion de nombre-
selle de Jacobi pour un système pour n équations en n + m variables. Les systèmes avec un nombre-selle
de Jacobi égal à 0 généralisent diverses notions de systèmes chaînés et diagonaux et forment la classe la plus
large de systèmes admettant des sous-ensembles de variables d’état en tant que sortie plate, pour lesquels une
paramétrisation plate peut être calculée sans différencier les équations initiales. Nous étudions les singularités
plates apparentes et intrinsèques de ces systèmes. À titre d’illustration, nous considérons le cas d’un modèle
d’avion simplifié, en fournissant de nouvelles sorties plates et en montrant qu’il est plat en tout point, sauf
éventuellement en situation de décrochage. Enfin, nous présentons des simulations numériques montrant qu’un
bouclage utilisant ces sorties plates est robuste aux perturbations et peut également compenser les erreurs de
modèle, lors de l’utilisation d’un modèle aérodynamique plus réaliste.

AMS classifiaction: 93-10, 93B27, 93D15, 68W30, 12H05, 90C27

Key words: differentially flat systems, flat singularities, flat outputs, aircraft aerodynamics models, gravity-free flight,
engine failure, rudder jam, differential thrust, forward sleep landing, Jacobi’s bound, Hungarian method

1 Introduction

1.1 Mathematical context

Differentially flat systems, introduced by Fliess, Lévine, Martin and Rouchon [15, 16] are ordinary differential systems
Pi(x1, · · · , xn+m), 1 ≤ i ≤ n, the solutions of which can be parametrized in a simple way. Indeed, they admit
differential functions ζj(x), 1 ≤ i ≤ m, such that for all 1 ≤ i ≤ n + m, xi = Xi(ζ), where Xi is a differential
function, i.e. also depending on the derivatives of ζ up to some finite order. Examples of such systems where considered
by Monge [50], and Monge problem, studied by Hilbert [26] and Cartan [8, 9] is precisely to test if a differential system
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satisfies this property1. Flat systems, for which motion planning and feed-back stabilization are very easy have proven
their importance in nonlinear control. We use the theoretical framework of diffiety theory [38, 75], and extend to it
the notion of defect, introduced by Fliess et al. [15] in the setting of Ritt’s differential algebra [63]. The defect is a
nonnegative integer that express the distance of a system to flatness. It is 0 iff the system is flat.

Jacobi’s bound [29, 30] is an a priori bound on the order of a differential system Pi(x1, . . . , xn), 1 ≤ i ≤ n that is
expressed by the tropical determinant of the order matrix (ai,j), with ai,j := ordxjPi, which is given by the formula
OΣ := maxσ∈Sn

∑n
i=1 ai,σ(i). This bound is conjectural in the general case, but was proved by Kondrateva et al. [37]

for quasi-regular systems, a genericity hypothesis that stands when Jacobi’s truncated determinant does not vanish.
Then, the bound is precisely the order.

Quasi-regular systems include linear systems (Ritt [64]). Linear systems with constant coefficients were considered by
Chrystal [11] (see also Duffin [13]). Such a system is defined by M(d/dt)X = 0, where X = (x1, . . . , xn)

t and M is a
square matrix of linear operators mi,j(d/dt), that are polynomials of degree ai,j in the derivation d/dt. Chrystal shows
that the order of the system is the degree of the characteristic polynomial of the system, i.e. the determinant |M(λ)|.
This degree is at most the tropical determinant OA of the order matrix A = (ai,j), the basic idea of tropicalization being
to replace products by sums and sums by max. The truncated determinant is then the coefficient of λOA in |M(λ)|.
Harold Kuhn’s Hungarian method [39], discovered independently, is very close to Jacobi’s polynomial time algorithm
for computing the bound and is an important step in the history of combinatorial optimization (see Burkard et al. [7]).
One may notice that this result was much probably inspired to Jacobi by isoperimetrical systems, satisfied by functions
xi(t) such that

∫ t2
t1

L(x)dt is extremal.

1.2 Aims of this paper

We continue the investigation of intrinsic and apparent singularities of flat control system [18, 19, 41, 42], initiated in
our previous papers [32, 33], with a study of block triangular systems that generalizes extended chained form [24] and
an application to aircraft control. We recall that flat systems are systems for which the trajectory can be parametrized
using a finite set of state functions, called flat outputs, and a finite number of their derivatives. This important notion of
nonlinear control simplifies motion planning, feed-back design and also optimization [52, 65, 20, 14, 3].

The class of block triangular system is important in practice as it includes various notions of “chained systems” or
triangular systems [43, 44, 45, 36, 69], containing many classical examples such as robot arms [21, 73], cars with many
trailers [66] or discretizations of PDE flat systems [60, 71]. For them, testing flatness reduces to computing the rank of
Jacobian matrices and finding the flat outputs to a combinatorial problem.

Our goal is to investigate if it is possible to choose flat outputs among the state functions, and to describe the associated
regularity conditions. This is a main difference with preceding papers on chained systems that investigated the existence
of a change of variables and a static feedback allowing to reduce to some more restricted class of chained or triangular
form.

We try to enlarge as much as possible the class of systems for which flatness can be tested by polynomial time
combinatorics and computations of rank of Jacobian matrices. For such systems, that we call regular oudephippical2
systems, some lazy flat parametrization may be computed without differentiating the initial equations, meaning that
we have a block decomposition of variables Ξ =

⋃r
i=1 Ξi, such that Ξ1 = F1(Z), where F1 is a differential function

of the flat outputs Z, then Ξ2 = F2(Z,Ξ1), where F2 is a differential function of Z and the first block Ξ1, . . . ,
Ξi+1 = Fi+1(Z,Ξ1, . . . ,Ξi), . . . On the other hand, we do not require those systems to be in normal form: they
can be implicit systems and, if we impose that some kind of flat parametrization can be computed without further
differentiation, we can nevertheless consider from a theoretical standpoint a much larger class of systems than the usual
state space representation, that may require to be computed a great number of derivation, again bounded by some Jacobi
number.

1.3 Main theoretical results

Considering underdetermined systems Pi(x1, . . . , xn+m), we define the saddle Jacobi bound ÔΣ as being the minimal
Jacobi bound O(Y,Σ), for all Y ⊂ Ξ with ♯Y = n. If ÔΣ = O(Ŷ ,Σ) and the corresponding truncated determinant
∇Ŷ ,Σ does not vanish, then the defect of the system, as defined in [15] is at most ÔΣ. This implies that if the saddle

1Allowing change of independent variable, i.e. in control change of time, so that Monge problem is more precisely to test orbital
flatness [16]

2From the Greek οὐδέν, “nothing”, or “zero” for Iamblichus, and ἐφίππιος, “saddle”.
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Jacobi bound is equal to 0 and the associated truncated determinant does not identically vanish, the system is flat, which
defines regular oudephippical systems.

We give a sufficient condition of flat singularity for some classes of chained systems, that is enough to prove that the
aircraft simplified model admits an intrinsic flat singularity in some stalling condition and some sufficient condition of
regularity for block diagonal systems that are enough to show that the simplified aircraft is flat when not in stalling
condition.

We show that previously known classes of chained and diagonal systems enter the wider class of oudephippical systems.
We further prove that a system Σ, such that a subset Z ⊂ Ξ of the state variable is a flat output and a lazy flat
parametrization can be computed without using any strict derivative of Σ is oudephippical.

1.4 Flat outputs for the aircraft and regularity conditions

These theoretical results are illustrated with a study of a simplified aircraft model. With 12 states, 4 controls and about
50 parameters, this model is already more complicated than most flat models in the literature, although it is among the
first to have been considered.

Martin [47, 48] has shown that a simplified aircraft model where the thrusts related to the actuators and angular
velocities are neglected is flat and given the flat outputs x, y, z, β, where (x, y, z) are the coordinates of the center of
gravity and β the sideslip angle. We show that the bank angle µ, the angle of attack α and the engine thrust F can also
be used instead of β.

We explicit regularity conditions for those choices of flat outputs and show that the regularity condition for µ is related
to some kind of stalling condition. The discovery of 3 new sets of flat outputs just by a systematic application of our
theoretical results on chained systems illustrate their usefulness.

1.5 Numerical simulations, models and implementations

In our simulations, we used the aircraft model and sets of parameters provided by Grauer and Morelli [23] for various
types of aircrafts: fighter F16C, STOL utility aircraft DHC-6 Twin Otter and NASA Generic Transport Model (GTM), a
subscale airliner model. Such aerodynamics models are not known to be flat, unless one neglects some terms, as Martin
did, such as the thrusts created by the control surfaces (ailerons, elevators, rudder) or related to angular speeds.

We illustrate in two ways the importance of the block decomposition by providing two implementations, using two
different kinds of feedbacks: a first one in Python is able to reject perturbations and relies on the difference of dynamics
speeds between the blocks, the second in Maple uses fast computations allowed by the lazy parametrization to work out
a feed-back able to reject model errors, keeping the values of the flat outputs close to the planed trajectory, with an
acceptable computational complexity.

We investigated first the robustness of the flat control with respect to some failures and some perturbations, for the
simplified model, using simulations performed in Python. In a second stage, a Maple implementation was used to test
the ability of a suitable feed-back to keep the trajectories of the full model close to the theoretical trajectories computed
with the simplified flat one.

We investigate flight situations that are intrinsic singularities for β, such as gravity-free flight, for which we use
alternative flat outputs, including bank angle µ. A set of flat outputs including the thrust F may also be used when
β ̸= 0 and is suitable to control a slip-forward maneuver for dead-stick emergency landing [4, 5]. See simulations
in [57].

The spirit of this study is not at this stage to provide realistic simulations, but to show that our mathematical methodology
is able to consider models of some complexity, like the GNA, and so to be adapted to more realistic settings.

1.6 Plan of the paper

We present flat systems in sec. 2, giving first definitions and main properties sec. 2, considering examples sec. 2.2 and
providing characterization of flat singularities sec. 2.3 and generalizing the notion of defect sec. 2.4.

We then present Jacobi’s bound sec. 3, starting with combinatorial definition sec. 3.2 with some emphasis on Kőnig’s
theorem sec. 3.3 before coming to evaluation of the order and computations of normal forms sec. 3.4. We then introduce
the saddle Jacobi number sec. 3.5.

We can then define ō-system sec. 4 and provide an algorithmic criterion sec. 4.1 with a sufficient condition of regularity
sec. 4.2 followed by an algorithmic criterion for an ō-system to be regular at a given point sec. 4.3. We review examples
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of chained or triangular systems sec. 4.4 that enter our category of ō-systems and conclude with special sufficient
conditions of regularity or singularity for block triangular systems sec. 4.5.

We then consider applications to an aircraft model sec. 5, first describing the equations sec. 5.1 and the GNA aerodynamic
model sec. 5.2. We show that the model is block triangular under some simplification sec. 5.3. We then investigate the
four main choices of flat outputs sec. 5.4 and consider stalling conditions and their relation to flat singularity sec. 5.5.

The last sections are devoted to simulations using first the simplified model sec. 6, then using the full model sec. 7.

1.7 Notations

This paper mixes theoretical results from various fields, with different habits for notations, and an aircraft model coming
with classical notations from aircraft engineering. We tried to use uniform notations, as long as it did not become an
obstacle to readability or made the access to references too difficult. Regarding diffieties in some abstract setting, it is
convenient to denote the derivation operators by different symbols, such as δ, d or even dt in the case of jet space.

When we start considering control systems, we prefer to use the more comfortable notations x′, x′′, . . . , x(k). We will
also use ∂x for the derivation ∂/∂x.

Considering control systems, it is natural to denote by n̄ the number of state variables, which is also the number of state
equations and by m̄ the number of control. When considering abstract systems, it is easier to denote by n(= n̄+ m̄)
the total number of variables and by s(= n̄) the number of equations.

Considering the aircraft equations, we need use then notations that are common to most textbooks and technical papers :
so x, y, z are space coordinates, X , Y , Z are the coordinates of the thrust in the wind referential and not sets of state
variables, δℓ is not a derivation but the rudder control etc. To avoid conflicts, we managed to restrict the notations of
previous sections used in section 5 to the sets of variables Ξh.

2 Flatness

For more details on flat systems, we refer to Fliess et al. [18, 19] or Lévine [41, 42]. Roughly speaking, the solutions of
flat systems are parametrized by m differentially independent functions, called flat outputs, and a finite number of their
derivatives. This property, which characterize them, is specially important for motion planning. We present here flat
systems in the framework of diffiety theory [38, 75].

2.1 Definitions and properties

We will be concerned here with systems of the following shape:

x′
i = fi(x, u, t), for 1 ≤ i ≤ n̄, (1)

where x1, . . . , xn̄ are the state variables and u1, . . . , um̄ the controls.

In the sequel, we may sometimes denote ∂/∂x by ∂x, for short.
Definition 1. A diffiety is a C∞ manifold V of denumerable dimension equipped with a global derivation δ (that is a
vector field), the Cartan derivation of the diffiety. The ring of functions O(V ) is the ring of C∞ function on V depending
on a finite number of coordinates. The topology on the diffiety is the coarsest topology that makes coordinate functions
continuous, i.e. the topology defined by open sets on submanifolds of finite dimensions.

We can give a few example as an illustration.
Example 2. The point 0 with derivation δ := 0 is considered as a diffiety.

Example 3. The trivial diffiety Tm is
(
RN)m equipped with the derivation

δ :=

m∑
i=1

∑
k∈N

u
(k+1)
i ∂/∂

u
(k+1)
i

.

Example 4. The time diffiety R∂t
is R equipped with the derivation δt := ∂/∂t.

Definition 5. A morphism of diffiety3 ϕ : V1 7→ V2 is a smooth map between manifolds such that ϕ∗ ◦ δ2 = δ1 ◦ ϕ∗,
where ϕ∗ : O(V2) 7→ O(V1) is the dual application, defined by ϕ∗(f) = f ◦ ϕ for f ∈ O(V2).

3Or Lie-Bäcklund transform.
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We may illustrate this definition with the next example.
Example 6. The product diffiety R∂t

×Tm is isomorphic to the jet space J(R,Rm). Indeed, points of this jet space
can be seen as couples (t, S) ∈ R× R[[τ ]], with

Si :=
∑
k∈N

u
(k)
i (t)

k!
τk. (2)

There is a natural action of the derivation dt on the ring of function on the jet space O(J(R,Rm)) that defines a diffiety
structure on it. Using (t, u1, u

′
1, . . . , um, u′

m, . . .), as coordinates, there is a natural bijection ϕ between R∂t
×Tm

and J(R,Rm), given by: ϕ(t, u) = (t, S), with Si defined by (2). The derivation dt on the jet space is defined by

dt := ∂t +

m∑
i=1

∑
k∈N

u
(k+1)
i

∂

∂u
(k)
i

,

so that ϕ is compatible with the derivations on both diffieties and is a diffiety morphism. Moreover, we have

dtS = (∂t + ∂τ )S. (3)

We can now define flat diffieties.
Definition 7. A point η of a diffiety V is called flat, if it admits a neighborhood O that is diffeomorphic by ϕ to an
open set of J(R,Rm). Let the generators of Tm be ui, their images by the dual automorphism zi := ϕ∗(ui) are called
linearizing outputs or flat outputs. A diffiety V is flat if there exists a dense open set W ⊂ V of flat points.

A set of such flat outputs defines a Lie-Backlünd atlas, as defined in [32].

For a given set of flat outputs Z, a point η is called singular related to this set if it is outside the domain of definition
of the local diffiety diffeomorphism that defines it. Such a point in called an intrinsic flat singularity if none of its
neighborhood is isomorphic to an open subspace of J(R,Rm). Otherwise it is called an apparent singularity.

2.2 Examples

We illustrate this definition by associating a diffiety to the system (1) considered above.

Example 8. Any system (1) defines a diffiety U ×
(
RN)m̄, where U ⊂ Rn̄+m̄+1 is the domain of definition of the

functions fi, equipped with the Cartan derivation

dt := ∂t +

n̄∑
i=1

fi(x, u, t)∂xi
+

m̄∑
j=1

∑
k∈N

u
(k+1)
j ∂

u
(k)
j

(4)

Such a system is a normal form defining the diffiety.

Remark 9. Making the abstract terminology of def. 7 more concrete, flatness means that both the state and input
variables xi, ui are functions of the flat outputs zi and a finite number of their derivatives on one hand. On the
other hand, this also means that the zi are functions of the state and input variables and a finite number of their
derivatives, and that the differential dzi and all their derivatives are linearly independent and generate the vector space
of differentials ⟨dxi, 1 ≤ i ≤ n; du

(k)
j , 1 ≤ j ≤ m, k ∈ N⟩.

Flatness may be illustrated by the classical car example.
Example 10. A very simplified car model is the following, where θ is defined modulo 2π:

θ′ =
cos(θ)y′ − sin(θ)x′

ℓ
(5)

The state vector is made of the coordinates (x, y) of a point at distance ℓ of the rear axle’s center and of the angle θ
between the car’s axis and the x-axis. The controls may be taken to be u = x′ and v = y′.

One can define different sets of flat outputs depending on the actual open set, where they are defined, as follows.

1. Over U1 = {ζ ′1 ̸= 0}, we take Z(1) = {ζ1 := x− ℓ cos(θ), ζ2 := y − ℓ sin(θ)} and the inverse Lie-Bäcklund
transforms given by: θ = tan−1(ζ ′2/ζ

′
1) or θ = π + tan−1(ζ ′2/ζ

′
1), x = ζ1 + ℓ cos(θ) and y = ζ2 + ℓ sin(θ).

5
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2. Over U2 = {ζ ′2 ̸= 0}, we take again Z(1) = {ζ1 := x − ℓ cos(θ), ζ2 := y − ℓ sin(θ)} and the inverse
Lie-Bäcklund transforms given by: θ = cotan−1(ζ ′1/ζ

′
2) or θ = π + cotan−1(ζ ′1/ζ

′
2), x = ζ1 + ℓ cos(θ) and

y = ζ2 + ℓ sin(θ).

3. Over U3 = {θ′ ̸= 0}, we take Z(3) = {ζ1 = θ, ζ2 = cos(θ)y − sin(θ)x}. Here, the inverse Lie-Bäcklund
transform is given by: x = − sin(ζ1)ζ2 − cos(ζ1)(ζ

′
2 − ℓζ ′1)/ζ

′
1, y = cos(ζ1)ζ2 − sin(ζ1)(ζ

′
2 − ℓζ ′1)/ζ

′
1 and

θ = ζ1.

See [32] for details, using a more realistic model.

2.3 Characterization of intrinsic singularities

The linearized tangent system of (1) at a point (x0, u0) is classically defined as:

˙δx =
∂f

∂x
(x0, u0, t)δx+

∂f

∂u
(x0, u0, t)δu. (6)

We use here a slightly different definition, that allows a more precise local study.

Definition 11. Let η be a point of a diffiety V . For any function g ∈ O(V ), we denote by jη(g) the power series∑
k∈N g(k)(η)τk ∈ R[[τ ]].

For any system Σ defined by (1), we define the linearized system at the point η, denoted by dηΣ, to be

dẋi =

n∑
i=1

jη

(
∂fi(x, u, t)

∂xi

)
dxi +

m∑
j=1

jη

(
∂fi(x, u, t)

∂uj

)
duj . (7)

There exists a whole algebraic approach to flat systems and their linear tangent systems. For details, we refer to [17].
We will limit ourselves here to mention that for a flat system, the module generated by the differentials of the flat
outputs is free, as stated by the following theorem, which provides a necessary condition for local flatness. One may
notice that for a linear system, controllable means flat: from the algebraic standpoint, the associated module (that is the
module generated by the differentials of the flat outputs) is free, which just means that it is generated by a basis.

Theorem 12. At any flat regular point η, the linearized system defines a free module.

Proof. If z is a flat output, then at any flat point η, dηz is a basis of the module defined by the linearized system. Indeed,
for any function H(z) depending on z and its derivatives up to order r, we have

dH(z) =

m∑
i=1

r∑
k=0

∂H

∂z
(k)
i

dz
(k)
i ,

so that it is a linear combination of derivatives of the dzi.

This criterion may be illustrated by the car example.

Example 13. The system defined at ex. 10 is nonflat at all trajectories such that x′ = y′ = θ′ = 0. In [44], the authors
have shown that no flat output depending only on x, y, z and not on their derivatives can be regular on such points.

The linearized system is

dθ′ =
cos(θ)dy′ − sin(θ)dx+ (x′ cos(θ)− y′ sin(θ))dθ

ℓ
. (8)

This implies that (ℓdθ − sin(θ)dx+ cos(θ)dy)′ = 0, so the associated module contains a torsion element and is not
flat, according to th. 12. (See also [32].)

A general criterion of freeness for modules other power-series would allow a wider use of the theorem.

2.4 Defect

We propose the following definition to extend the notion of defect [15], first introduced in differential algebra, to the
framework of diffiety theory.

6
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Definition 14. Any diffiety V defined by a finite set of equations, as a subdiffiety of the jet space J(R,Rr), may locally
be described, in the neighborhood of some point η, as an open subset of Rn ×Tm, for suitable integers n and m, with
coordinate functions xi, 1 ≤ i ≤ n, for Rn and ui,k, (i, k) ∈ N × [1,m], for

(
RN)m, with a derivation defined by

x′
i = fi(x, u) with fi of order 0 in the xj and of arbitrary order in the uh. This is called a representation of V at η, and

n is the order of the representation. (See [59] for more details.)

The defect of V at η is the smallest integer n such that V admits a representation of order n in a neighborhood of η.
Remark 15. If the diffiety is defined by an explicit normal form

x
(ri)
i = fi(x), 1 ≤ i ≤ s, (9)

where the fi do no depend of derivatives of the xi, 1 ≤ i ≤ s with order greater or equal to ri, then, reducing to an
order 1 system by adding new variables xi,k standing to x

(k)
i , for 0 ≤ k < ri, and new equations x′

i,k = xi,k+1, for
0 ≤ k < ri − 1, we see that the order of the representation is

∑s
i=1 ri. See [58, 4.2] for more details.

It is obvious that if the defect of V at η is 0, then η is a flat point of V .

3 Jacobi’s bound

Jacobi’s bound was introduced by Jacobi in posthumous manuscripts [55, 56]. It is a bound on the order of a differential
system, that is still conjectural in the general case, but was proved by Kondratieva et al. [37] under regularity hypotheses
in the framework of differential algebra. A proof in the framework of diffiety theory is available in [59] and one may
find complete proofs of all main results of Jacobi in [57], in the setting of differential algebra. We will refer to this
paper for combinatorial aspects which are the same for differential algebra and diffiety theory.

If Pi is a function of the xj and their derivatives, we denote by ordxj0
Pi the order of Pi considered as a function of xj0

and its derivatives, which is the maximal order of derivation at which xj0 appears in Pi.

Warning. From now on, all functions will be assumed to be analytic on their definition domain, so that the order does
not depend on the considered point.

3.1 Jacobi’s bound and Smith normal forms

It may be usefull to illustrate the tropical nature of Jacobi’s bound in the simple case of linear differential systems, with
constant coefficients. The basic idea of tropical geometry is to reduce the study of the algebraic equations that define
an algebraic variety to the study of the set of degrees or multidegrees of polynomials in the associated ideal. We may
consider a system M(d/dt)X = 0, with X = (x1, . . . , xn)

t and M a square matrix of linear operators mi,j(d/dt), i.e.
polynomials of degree ai,j in the derivation d/dt.

Assume that BMC = diag(e1, . . . , en), with B and C inversible, is a Smith normal form of M , with all ei nonzero.
The order of the linear system MX = 0 is the sum of orders of the operators ei(d/dt), that is the sum of the degrees of
the polynomials ei or the degree of the characteristic polynomial |diag(e1(λ), . . . , en(λ))|. This is also the degree of
the characteristic polynomial |M(λ)|4. This idea appears explicitely in the proof schetched by Jacobi [29].

We may write

|M(λ)| =
∑
σ∈Sn

ϵ(σ)

n∏
i=1

mi,σ(i)(λ).

The degree of
∏n

i=1 mi,σ(i)(λ) is equal to
∑n

i=1 ai,j := degmi,j . So, the order of the system is a most

max
σ∈Sn

n∑
i=1

ai,σ(i).

This expression is a tropical determinant, obtained from the order matrix A = (ai,j) by replacing in the determinant
formula sums by max and products by sums.5

4In the case of a system X ′ = AX , the characteristic polynomial of A is the determinant of M − λId.
5The general case is more complicated, already for time-varying linear systems (see Ritt [64]). Then, there exists an analog of

Smith normal form, due to Jacobson [31], but no suitable notion of divisors, as factorization in R(t)[d/dt] is not unique. Indeed,

7
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3.2 Combinatorial definitions

We recall briefly a few basic definitions and properties.

Definition 16. We denote by Ss,n the set of injections from {1, . . . , s} to {1, . . . , n}.

Let Pi, 1 ≤ i ≤ s be a differential system in n ≥ s variables xj . By convention, if Pi is free from xj and its derivatives,
i.e. if Pi does not depend on xj and its derivatives, we define ordxj

Pi = −∞6.

With this convention we define the order matrix of Σ, denoted AΣ := (ai,j), where ai,j := ordxj
Pi. The Jacobi number

of the system Σ is:

OΣ := OAΣ := max
σ∈Ss,n

s∑
i=1

ai,σ(i),

which, when s = n, is the tropical determinant of AΣ.

Let Y ⊂ X := {x1, . . . , xn} be a subset of s variables, then OY,Σ denotes the Jacobi number of Σ, considered as a
system in the variables of Y alone.

The tropical determinant may be computed in polynomial time using Jacobi’s algorithm [58, 2.2] that relies on the
notion of canon, and is equivalent to Kuhn’s Hungarian method [39] that relies on the notion of minimal cover. We
shall now detail these notions.

Definition 17. For a s × n matrix of integers A, denoting by Ss,n the set of injections of integer sets [1, s] 7→
[1, n], a canon is a vector of integers (ℓ1, . . . , ℓs), such that there exists σ0 ∈ Ss,n that satisfies, for all j ∈ imσ0,
aσ−1

0 (j),j + ℓσ−1
0 (j) = maxni=1(ai,j + ℓi). The ai,σ(i), for 1 ≤ i ≤ s, are a maximal family of transversal maxima.

The following proposition is easy and yet important.

Proposition 18. When s = n, if ℓ is a canon with a maximal family of transversal maxima described by the permutation
σ0, then the tropical determinant of A is

∑n
i=1 ai,σ0(i).

Example 19. In order to compute a maximal transversal sum in the left matrix below, one may add the integers
(1, 0, 4, 2, 3) to its rows, so that we get the right matrix, which is a canon: one may find a transversal family of maximal
elements (in their column), the sum of which is maximal.

1 2 7 3 4
10 4 9 3 5
2 3 2 3 0
8 7 5 4 1
1 6 2 4 2


1
0
4
2
3


2 3 8 4 5∗

10 4 9∗ 3 5
6 7 6 7∗ 4
10∗ 9 7 6 3
4 9∗ 5 7 5


Remark 20. This proposition is the first of the two main reasons to introduce the concept of canon. Indeed computing
such a canon can be performed in polynomial time, while computing directly the Jacobi number has exponential
complexity. The other main justification for using canons will appear below in the context of application to flatness in
proposition 45.

Definition 21. Assuming s = n, a cover is a couple of integer vectors µ, ν, such that ai,j ≤ µi + νj . A minimal cover
is a cover such that the tropical determinant of A satisfies: OA =

∑n
i=1(µi + νi).

The next proposition describes the equivalence between minimal covers and canons.

Proposition 22. Assuming s = n, to any canon ℓ, one may associate a minimal cover µi := maxnκ=1 ℓκ − ℓi and
νj := maxni=1(ai,j − µi).

Reciprocally, to any minimal cover µ, ν, one may associate a canon ℓi = maxnh=1 µh − µi.

Proof. See [58, prop. 20].

(d/dt)2 is equal to (d/dt+1/(x+α))(d/dt−1/(x+α)), for any α ∈ R [12]. One must also notice that diag(d/dt, (d/dt)(d/dt+
1))(x1, x2)

t is a Smith normal form with R[d/dt] as the base ring, but not a Jacobson normal form with base ring R(t)[d/dt], as
then the quotient module may be generated by a single element x1 + tx2.

6This convention, introduced by Ritt (See [58, § 4] for details), is known as the strong bound. The convention ordxjPi = 0 is the
weak bound.
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Example 23. Considering the canon of the matrix defined in ex. 19, the minimal cover associated to it is α =
(3, 4, 0, 2, 1), β = (6, 5, 5, 3, 1). The starred terms in the matrix below are entries ai,j such that ai,j = αi + βj and
provide a maximal transversal sum. For all entries, one has ai,j ≤ αi + βj:

6 5 5 3 1
1 2 7 3 4∗

10 4 9∗ 3 5
2 3 2 3∗ 0
8∗ 7 5 4 1
1 6∗ 2 4 2


3
4
0
2
1.

The following theorem shows the existence of a unique minimal canon, that is computed in polynomial time by Jacobi’s
algorithm [58, alg. 9].
Theorem 24. Using the partial order defined by ℓ ≤ ℓ′ if ℓi ≤ ℓ′i for all 1 ≤ i ≤ s, there exists a unique minimal canon
λ, that satisfies λ ≤ ℓ for any canon ℓ.

Proof. See [58, th. 13] for more details.

The minimal cover associated to the minimal canon will be used for prop. 29.
Definition 25. Assuming s = n, to this minimal canon, we associate the minimal cover α, β that we call Jacobi’s cover.

The canon of ex. 19 is the minimal canon and so the cover of ex. 23 is Jacobi’s cover.

3.3 Kőnig’s theorem

Matrices of 0 and 1 are a case of special interest that has been considered by Frobenius [22] and Kőnig [40, 72], to
whom is due the following theorem.
Theorem 26. Let A = (ai,j) be a s× n matrix such that ai,j ∈ {0, 1}, (i, j) ∈ [1, s]× [1, n], then OA is the smallest
integer r such that all nonzero elements in A belong to the union of p rows and r − p columns.

Proof. See [57, th. 17].

Example 27. For the matrix A =

(
1 1 1
1 0 0
1 0 0

)
, we have p = 1 and r = 2, since all nonzero entries appear

in the union of the first row and the first column. It is also cleat that the tropical determinant of A is OA = 2 =
a1,2 + a2,1 + a3,3.

In sec. 4.1, we will be concerned with order matrices A containing 0 and −∞ entries. According to Kőnig theorem 26
and changing 0 to 1 and −∞ to 0, if one may find at most r entries equal 0 located in all different rows and columns of
A, then one may find p rows R and r − p columns C such that all entries 0 belong to a row in R or a column in C.
Definition 28. We call such 0 or any family of elements placed in all mutually different rows and columns transversal
elements and r the maximum number of transversal 0.

We can even be more precise with the following result.
Proposition 29. Considering a matrix A the entries of which are either 0 or −∞, there exists a unique set R0, maximal
for inclusion and a unique set C0, minimal for inclusion, such that ♯R0 + ♯C0 = r, where r is the maximal number of
transversal 0, and all entries 0 belong to rows in R0 or columns in C0

7.

Proof. The basic idea is to transform the matrix of 0 and −∞ to a matrix of 1 and 0 entries. So r is now the number of
nonzero entries.

We refer to [58, prop. 58] for details. First, if a matrix A is a matrix of 0 and 1, we may restricts to covers µ, ν that are
vectors of 0 and 1, as well as the associated canon ℓ (see [58, prop. 26].

Then, we can make the matrix A a n× n square matrix by adding rows or columns of 0, which does not change the
value of r. Then, let λ be the minimal canon of A. Provided that some λi0 is equal to 1, the rows in R0 are the rows

7Here ♯A denotes the number of elements of a set A.

9



A PREPRINT - MARCH 27, 2024

of index i, with λi = 0, which is equivalent to αi = 1 for the Jacobi cover (def. 25). Without loss of generality, as
there exist r transversal 1, we may assume that ai,i = 1, for 1 ≤ i ≤ r. The column j belongs to C iff j /∈ R, so the
minimality of λ imply that R0 is maximal for inclusion and implies the minimality of C0.

The result is straightforward when r = s. When r < s and all λi are 0, we only have to add a row of n ones and a
column of n+ 1 zeros to reduce to the previous case.

Example 30. In the following matrix of zeros and ones, the maximal sum is 4 (starred entries), so that all ones belong
to the union of p rows and 4− p colums. The maximal set of such rows contains the first, second and third rows, that
must be completed with the first column. They correspond to the rows with λi = 0 in the minimal canon. All ones are
also included in the union of the first two rows and the first two columns.

1 0 1 1∗ 1
1 0 1∗ 1 0
1 1∗ 0 0 0
1∗ 0 0 0 0
1 0 0 0 0∗


0
0
0
1
1


1 0 1 1∗ 1
1 0 1∗ 1 0
1 1∗ 0 0 0
2∗ 1 1 1 1
2 1 1 1 1∗


We will also need to use the path relation associated to the minimal canon, which is the key ingredient of Jacobi’s
algorithm to compute a minimal canon and OA in polynomial time [29].
Definition 31. Let ℓ be a canon associated to a square s × s matrix A with OA ̸= −∞. Let σ : [1, s] 7→ [1, s]
be permutation such that OA =

∑s
i=1 ai,σ(i). We say that there is an elementary path from row i1 to row i2 if

ai1,σ(i1) = ai2,σ(i1) (which just expresses the fact the maximal element ai1,σ(i1) in column σ(i1) also appears in row
i2). We define the path relation defined by ℓ as being the reflexive and transitive closure of the elementary path relation.

The path relation does not depend on the choice of a permutation σ, provided that OA =
∑s

i=1 ai,σ(i) [58, prop. 54].
We have the following characterization of the minimal canon [58, lem. 51 i)].
Lemma 32. A canon ℓ is the minimal canon iff for any row i1, there is a path from it to a row i2 with ℓi2 = 0.
Example 33. We illustrate the path relation with example 19. Entries in the maximal sums are starred, and entries
in other rows equal to an starred term in the same column are italicized. The starred term in row 3 is equal to the
italicized term in row 5, so that there is a path from row 3 to row 5. In the same way, there is a path from row 5 to row 4,
row 4 to row 2 and row 1 to row 2, with λ2 = 0, so that the canon is minimal.

1 2 7 3 4
10 4 9 3 5
2 3 2 3 0
8 7 5 4 1
1 6 2 4 2


1
0
4
2
3


2 3 8 4 5∗

10 4 9∗ 3 5
6 7 6 7∗ 4
10∗ 9 7 6 3
4 9∗ 5 7 5


We can now conclude these combinatorial preliminaries by stating the following algorithmic result.
Theorem 34. Let A be a s× n matrix of 0 and 1, with OA = r, there exists an algorithm to construct the sets of rows
R0 and columns C0 of prop. 29 in O(r1/2sn) elementary operations.

Proof. See [58, algo. 60].

We sketch here the idea of the proof. Using Hopcroft and Karp [27] algorithm, we may build a maximal set of transversal
1 in O(r1/2sn) operations (see also [58, § 3]). This algorithm does not compute the minimal canon. Using Jacobi’s
algorithm [58, § 2.2], we need to compute third class rows [58, § 2.2], and increase them by 1, which is to be done only
once, as the minimal canon only contains 0 and 1 entries, as already stated in the proof of prop. 29. The computation of
third class row can be done in O(sn) operations. See [58, algo. 9 e)] for more details.

Remark 35. We assume that this process is implemented in the procedure HK.
Example 36. We go back to ex. 30 In the following matrix, Hopcroft and Karp algorithm provides a maximal set of
transversal ones (starred). Row 5 belongs to the third class, as it contains no starred elements, and row 4 as there is a
path from it to row 5. This is just the third class definition: rows containing no starred elements and all the rows from
which there is a path to a row in the third class. We then obtain the canon by increasing third class rows by 1.

1 0 1 1∗ 1
1 0 1∗ 1 0
1 1∗ 0 0 0
1∗ 0 0 0 0
1 0 0 0 0∗


0
0
0
1
1

10



A PREPRINT - MARCH 27, 2024

3.4 Order and normal forms

Definition 37. Let Σ = {Pi, 1 ≤ i ≤ n} be a square system in n differential indeterminates x1, . . . , xn. The system
determinant or truncated determinant8 is

∇Σ :=

∣∣∣∣∣ ∂Pi

∂x
αi+βj

j

∣∣∣∣∣ ,
where (αi)i and (βj)j define the Jacobi cover.

With this definition, we may state the following result, due to Jacobi.

Theorem 38. Let Pi, 1 ≤ i ≤ n be a system in n differential indeterminates x1, . . . , xn that defines a diffiety V in a
neighborhood of a point η ∈ J(R,Rm).

If ∇P does not vanish at η, there exists σ ∈ Sn and an open set W ∋ η such that the diffiety admits in W a normal form

x
(ασ−1(j)+βj)

j = fj(x),

so that the order of the diffiety is OΣ.

This normal form may be computed using derivatives of Pi of order at most λi.

Proof. The results relies on Jacobi’s bound and Jacobi’s shortest reduction method [30, § 1 and § 3]. See also [58, 7.3
or 9.2] in the algebraic case. We give a sketch of the proof in the framework of diffieties. See [59, th. 0.3 (ii)] for more
details.

First, let {P1, . . . , Pn} =
⋃q

k=1 Σk be a partition of the set P of equations such that λi1 = λi2 , where λ is the minimal
canon, iff Pi1 and Pi2 belong to the same subset Σk of the partition. One may find a permutation σ ∈ Sn such that, for
all 1 ≤ h ≤ q,

Dh :=

∣∣∣∣∣∂P∂x ; (P, x) ∈
h⋃

k=1

Σk × σ(

h⋃
k=1

Σk)

∣∣∣∣∣
does not vanish at point η.

We recall that αi = Λ(:= maxnk=1 λi)− λi and that λi = maxnk=1 αi(= Λ)− αi by def. 25. We may then consider
the set of equations E := {P (k)

i |1 ≤ i ≤ n, 0 ≤ k ≤ λi} and the set of derivatives U := {x(k+βj)
j |ασ−1(j) ≤ k ≤ Λ}.

Easy computations show that

∆ :=

∣∣∣∣∂Q∂υ ; (Q, υ) ∈ E × U

∣∣∣∣ = q∏
h=1

DΛ−λ̂h

h ,

where λ̂h = λi for Pi ∈ Σh. So ∆ does not vanish in a neighborhood W of η, where we may define a local

parametrization of the variety defined by the system E, using the implicit function theorem: x
(ασ−1(j)+k+βj)

j = fk,j(x),
for 1 ≤ j ≤ n and 0 ≤ k ≤ λσ−1(j), where fk,j only depends on derivatives of xj′ of order smaller than ασ−1(j′)+βj′ ,
for 1 ≤ j′ ≤ n.

It is then easily seen that the equations x
(ασ−1(j)+βj)

j − fk,j(x) = 0, for 1 ≤ j ≤ n, and and their derivatives locally

define W ∩ V , so that x
(ασ−1(j)+βj)

j = fk,j(x) is a normal form of the diffiety W ∩ V .

We may check then that the order of the diffiety is the sum
∑n

j=1(ασ−1(j) + βj) =
∑n

i=1 αi + βi = OP .

When the system determinant vanishes, Jacobi’s number provides a majoration of the order, under genericity hypotheses.

Considering algebraic systems, one may also refer to [58, 6 and 7.1]. The basic idea is to use a new ordering on
derivatives, compatible with Jacobi’s cover: ordJxj

P := ordxj
P − βj . The nonvanishing of the system determinant is

then precisely the condition required to get a normal formal by applying the implicit function theorem. We illustrate the
result with a linear example to make computations easier.

8Jacobi named it determinans mancum sive determinans mutilatum because only the terms ∂Pi/∂x
(ai,j)

j such that ai,j = αi+βj
appear in it.
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Example 39. Assume that one wants to minimize or maximize the integral∫ b

a

U(x1(t), . . . , xn(t))dt. (10)

Here we have used a shortened notation, the function U actually also depends on the derivatives of the functions
x1, · · ·xn up to certain orders.

The functions xj such that this integral is extremal are solutions of the isoperimetrical system Σ defined by the equations

Pi(x) :=

ei∑
k=0

(−1)k
dk ∂U

∂x
(k)
i

dtk
= 0, (11)

with ei := ordxi
U . We have ai,j := ordxj

Pi = ei + ej , so that the minimal canon is λi = maxnk=1 ek − ei and the
Jacobi cover is αi = ei −minnk=1 ek, βj = ej +minnk=1 ek. The order is equal to Jacobi’s bound OΣ = 2

∑n
i=1 ei

when the system determinant ∇Σ, which is equal to the Hessian determinant |∂2U/∂xi∂xj | does not vanish. See [58,
§ 1.2] for details.
Example 40. Consider the system P1 := x1 + x′

2, P2 := x′
1 − x′′

2 + x3, P3 := x′′′
2 + x′

3. We have OP = 3,
α = (0, 1, 2) and β = (0, 1,−1). The normal forms compatible with Jacobi’s ordering are x1 = −x′

2, x′′
2 = x3/2,

x′
3 = 0; x1 = −x′

2, x3 = 2x2, x′′′
2 = 0; x′

2 = x1, x′
1 = −x3/2, x′

3 = 0 and x′
2 = x1, x3 = 2x′

1, x′′
1 = 0.

One may use th. 38 for systems Σ of s equations in n > s variables, by choosing, when it is possible, a subset Y ⊂ X ,
with ∇Y,Σ ̸= 0.

3.5 The saddle Jacobi number

For systems with less equations than variables, one may define the saddle Jacobi number.
Definition 41. Using the same notations as in def. 16, we define the saddle Jacobi number of the system Σ as being

ÔΣ := min
Y⊂X,♯Y=s,O(Y,Σ)̸=−∞

OY,Σ.

Recall that OY,Σ is the tropical determinant of the square system obtained by restricting our attention to the variables
in Y .

By convention if OY,Σ = −∞ for all Y , or if s > n, we set ÔΣ = −∞. If A is a matrix with entries in N ∪ {−∞}, we
define ÔA accordingly.

Systems Σ such that ÔΣ = 0 are called oudephippical systems or ō-systems. A ō-system is called regular if there exists
Y ⊂ X such that ÔΣ = OY,Σ and ∇Y,Σ does not identically vanish. It is said to be regular at point η if there exists
Y ⊂ X such that ÔΣ = OY,Σ and ∇Y,Σ does not vanish at η.

Proposition 42. If ÔΣ = OY,Σ = d and ∇Y,Σ(η) ̸= 0, then the defect of Σ at η is at most d.

Proof. This is a straightforward consequence of th. 38.

We do not know an algorithm to compute the saddle Jacobi number faster than by testing all possible subsets Y ⊂ X ,
but we will see that it is possible to test in polynomial time if it is 0.
Definition 43. We say that a system Σ ⊂ O(J(R,Rn)) of s differential equations in n variables x1, . . . , xn admits a
lazy flat parametrization at η ∈ J(R,Rn) with flat output Z if there exists a partition X = {x1, . . . , xn} =

⋃r
h=0 Ξh,

with Ξ0 = Z, and an open neighborhood V of η, such that for all 0 < h ≤ r and all xi0 ∈ Ξh, there exists an
equation xi0 −Hi0(Ξ0, . . . ,Ξr−1), where Hi0 is a differential function defined on V that belongs to the algebraic
ideal9 generated by Σ in O(V ).
Remark 44. It is easily checked that a system Σ admitting a lazy flat parametrization with flat output Z = Ξ0 is flat.

We may indeed rewrite the parametrization Ξh = H̃h(Ξ0, . . . ,Ξh−1), for 1 ≤ h ≤ r. So, for h = 1 we have an
expression Ξ1 = Ĥ1(Z) := H̃1(Z). We may then recursively define Ĥh, for 2 ≤ h ≤ r by setting Ξh = Ĥh(Z) :=

H̃h(Z, Ĥ1(Z), . . . , Ĥh−1(Z)).

9The algebraic ideal is a proper subset of the differential ideal.
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Using th. 38, one is able to bound the order of the computations required to get a full parametrization.
Proposition 45. In order to compute explicitly the full flat parametrization, we need to differentiate equation Pi at
most λi times, if λ is the minimal canon of the order matrix A⋃r

h=1 Ξh,Σ. Then for a flat output ζ ∈ Z = Ξ0, assuming
that ordζHi = ei, the maximal order of ζ in the full flat parametrization is at most maxPi∈

⋃r
h=1 Σh

λi + ei.

Proof. This is a straightforward consequence of th. 38.

Remark 46. This result exhibits the second main reason for which the use of a canon in our context has a very
important impact.

The next example will help to understand the situation.

Example 47. Consider the system P1 := x5−(x′
4+x′′

3) = 0, P2 := x6−(x′′
4+x′

3+x
(4)
1 ) = 0, P3 := x3−(x′

1+x2) = 0,
P4 := x4 − (x′

2 + x′
1) = 0. We have then a full flat parametrization, with flat outputs Z = {x1, x2}, x3 = x′

1 + x2,
x4 = x′

2 + x′
1, x5 = x′′′

1 + x′′
2 + x′′

1 + 2x′′
2 and x6 = x

(4)
1 + x′′′

1 + x′′′
2 + x′′

1 + x
(3)
2 + x′

2, that may be computed using
derivatives of P3 up to order 2 and P4 up to order 2. The vector (0, 0, 2, 2) is indeed the minimal canon of the order
matrix

A{x3,x4,x5,x6},Σ =

 2 1 0 −∞
1 2 −∞ 0
0 −∞ −∞ −∞

−∞ 0 −∞ −∞


One may remark that such expressions may be much bigger and much harder to compute, as shown by the next example,
so that we have advantage to achieve numerical computations with lazy parametrizations.

Example 48. Consider the system x3 = x1x2, x4 =
(
x
(k)
3

)d
. It is a lazy flat parametrization with flat outputs x1 and

x2. If we develop
(
(x1x2)

(k)
)d

, we get a expression with
(
d+k
k

)
monomials.

Instead of computing the flat parametrization itself, one can first choose for all flat outputs zj a function of the time ζj(t).
If the function Ĥr is of order ej in zj , then, the best is to substitute to zi in Z the sum jζi(t) =

∑ei
k=0 ζ

(k)
i (t)τk/k!

before achieving the substitutions of rem. 44. On may then use (3) to compute any differential expression.

So, the size of intermediate results is only proportional to max ei, allowing much faster computations. In fact, as we will
see is subsec. 7.1, it is enough to have a nonvanishing system determinant to work with series, e.g. by using Newton’s
method, without actually computing the lazy flat parametrization.

We can now conclude this section with the following theorem that characterizes flat ō-systems. As a lazy flat
parametrization is a special kind of regular ō-system, systems that admit a lazy flat parametrization are equivalent to
a regular ō-system using simple elimination tools, such as Gröbner bases or characteristic set computations, without
differentiation and without solving PDE systems.
Theorem 49. With the notations of def. 43, we have the following propositions.

i) A ō-system Σ, which is regular at point η, admits a lazy flat parametrization at point η.

ii) A system Σ that admits a lazy flat parametrization at point η with flat output Z and such that ∇X\Z,Σ(η) ̸= 0 is a
regular ō-system at point η.

iii) If the system Σ is a ō-system, which is regular at point η, it is flat at η.

Proof. i) Let Y be such that OY,Σ = 0 and ∇Y,Σ(η) ̸= 0 and λ be the minimal canon of the order matrix AΣ restricted
to the columns of Y . Then, there is a partition Σ =

⋃r
h=1 Σh, such that λi = λi′ iff Pi and Pi′ belong to the same

subset Σh. We further assume that the sets Σh are indexed so that the corresponding λi for Pi ∈ Ξh are decreasing. Let
σ ∈ Ss,n be such that its values are the columns defined by Y and such that

∑s
i=1 ai,σ(i) = 0. Then we define Ξ0 to be

X \ Y and Ξh to be the variables with indexes σ(i), where i runs over the indexes of the equations in Σh.

As ai,σ(i)+λi ≥ ai′,σ(i)+λi′ by the definition of a canon (def. 17), the equations of Σh do not depend on the variables
in Ξh′ if h < h′, so that the system is block triangular10 and ∇Y,Σ(η) =

∏r
h=1 Dh(η), where Dh is the Jacobian

determinant of Σh with respect to variables in Ξh, so that for all 1 ≤ h ≤ r Dh(η) ̸= 0. We only have to use the
implicit function theorem to get the requested lazy flat parametrization, with flat output Z := Ξ0.

10Considering the system as a system in the variables of Y only, and the remaining variables as parametric variables, we reduce to
a system of differential dimension 0 that is indeed block triangular, according to the definition in [58, 4.3].
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ii) As ∇X\Z,Σ(η) ̸= 0, the order of Σ considered as a system in the subset of variables X \ Z is equal to OX\Z,Σ by
th. 38. If a lazy flat parametrization exists with flat output Z, then this order must be 0.

iii) This is a consequence of i) and also a special case of th. 38.

This is particularly important for the complexity as the size of a nonlinear expression grows exponentially with the
order of derivation, as shown by ex. 48. This result provides a fast flat parametrization.
Remark 50. Any flat parametrization is a ō-system, which shows that flat parametrization can be very far from the
usual state space representation of control theory. It is known that a flat parametrization may be sometimes easier to
compute from the physical equations.

E.g. the system x1 = x4, x2 = x′
5/x

′
4, x3 = x′

4x
′′
5/x

′′
4 − x5 is a flat parametrization, and so a ō-system, that

corresponds to the system of Rouchon x′
3 = x′

1x
′
2 with flat outputs x5 = x1 and x6 = x′

1x2 − x3. See [53, 54] for
more details on this classical example.

4 Ō-systems and flatness

In this section, we give efficient criteria to test if a system is a ō-system or a regular ō-system.
Remark 51. In this section, we consider a submatrix B of a matrix A = (ai,j) to be defined by a set R of rows and a
set C of columns, together with the values ai,j , for (i, j) ∈ R× C. The empty submatrix corresponds to R = C = ∅.

By abuse of notation, we identify subsets of equations Pi or of variables xj with the corresponding subsets of indices.

4.1 An algorithmic criterion for ō-systems

In this section, we consider a matrix A of positive integers and −∞ elements and provide an algorithm to test if Ô = 0.

We may first make some obvious simplification to spare useless computations.

Remark 52. If s > n or if A contains a row of −∞ elements, then ÔA = −∞. One may remove from A all columns
that contain only −∞ elements.

The basic idea of the algorithm relies then on the following lemma.

Lemma 53. Assume that A is a s× n matrix with s ≤ n such that ÔA = 0.

i) All the row of A contain at least one element equal to 0.

Let B denote the submatrix formed of the columns C of A that contain only 0 or −∞ entries, R0 its maximal set of
rows and C0 its corresponding minimal set of columns, according to prop. 29. With these hypotheses, we have the
following propositions.

ii) For any subset of columns Y such that OY,A = 0, let λ be the minimal canon of A restricted to the columns of Y .
The set R0 contains the rows i with λi = 0, so that it is nonempty.

iii) The matrix A2 formed of rows R2 not in R0 and columns C2 not in C \ C0 is such that there exists a set of columns
Y2 that satisfies ÔA2

= OY2,A2
= 0.

iv) The matrix B′ formed of rows of B in R0 and columns not in C0 is such that there exists Y1 with OY1,B′ = 0, which
implies OY2∪Y1,A = 0.

Proof. i) By definition, ÔA = OY,A = 0 and there exists an injection [1, s] 7→ Y such that ai,σ(i) = 0, for 1 ≤ i ≤ s.
ii) With σ as in the proof of i), if λi = 0, as ai,σ(i) +λi ≥ ai′,σ(i) +λi′ according to the canon definition, we need have

ai′,σ(i) = −∞ if λi′ > 0 and ai′,σ(i) = 0 if λi′ = 0. (12)

So, if λi = 0 the column σ(i) belongs to the columns of B.

Let R′
0 := {i|λi = 0 and i /∈ R0}. Then, by (12), the columns of σ(R′

0) cannot contain elements equal to 0 in rows i
with λi > 0, so not in R0 ∪R′

0. This means that all 0 elements are located in rows R0 ∪R′
0 and columns C0 \ σ(R′

0),
which contradicts the maximality of R0 unless R′

0 = ∅, so that all rows with λi = 0 belong to R0.

iii) With the same notations as in the proof of ii), as the columns of C \ C0 contain no element equal to 0 outside the
rows of R0, Y2 := σ(R2) ⊂ C2 and ÔA2

= OY2,A2
= 0.
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iv) By the definition of the sets R0 and C0, one may find a family of r transversal elements of B aik,jk = 0, for
1 ≤ k ≤ r. Let Y1 := {jk|jk /∈ C0}, we have ♯Y1 = ♯R0, so that OY1,B′ = 0.

This provides the following recursive algorithm 1, denoted Ō-TEST. We use here the subroutine HK of rem. 35 that
implements the algorithm described in th. 34. We assume moreover that it also returns the set Y1, with the notations of
the above lemma.

If B contains only −∞ entries, R0 and Y1 are defined to be ∅ by convention. We denote by A \R the matrix A where
the rows in the set R have been suppressed.

Algorithm 1 Ō-TEST

Input: A s× n matrix A with entries ai,j ∈ N ∪ {−∞}.
Output: “failed” or a set Y of rows such that OY,A = 0.

function Ō-TEST(A)
ifs > n or ∃1 ≤ i ≤ s ∀1 ≤ j ≤ n > ai,j ̸= 0 then return “failed”fi;
Suppress from A all columns of −∞;
Build B the submatrix of A of columns containing only −∞ or 0 elements.
(R0, C0, Y1) :=HK((B));
ifR0 = ∅ then return “failed”fi;
Y2 :=Ō-TEST((A \R0));
ifY2 = “failed” then return “failed”fi;
return Y2 ∪ Y1;

end function

Example 54. We illustrate algo. 1 with the following example.

A1 =


5 2 7 3 −∞ 0 0∗

9 0 0 0 0∗ −∞ −∞
7 0 0 0 0 −∞ −∞
0 −∞ −∞ −∞ −∞ −∞ −∞

−∞ 0 −∞ −∞ −∞ −∞ −∞

 A2 =


9 0 0 0 0∗

7 0 0 0∗ 0

0 −∞ −∞ −∞ −∞
−∞ 0 −∞ −∞ −∞

 A3 =

(
0∗ −∞

−∞ 0∗

)

In order to compute Ō-TEST(A1), we need first to apply HK to (B1), which is the submatrix matrix defined by the last
3 columns. The zeros in B1 belong to the union of column 5 of A1 and row 1. A maximal set of transversal zeros in B
corresponds to the starred 0. So, HK(B1) returns the triplet of sets (R0, C0, Y1) = ({1}, {5}, {7})11.

So, we call Ō-TEST again on the matrix A1 \R0, from which we can supress the two last columns of −∞ elements,
which produces A2. The matrix B2 contains the last four columns and its zeros are contained in its two first rows and its
first column, the element in a maximal set of transversal zeros being again starred. So, HK(B2) = ({1, 2}, {3}, {4, 5}).
To conclude, we apply Ō-TEST on the matrix A2 \ {1, 2}, from which we remove columns of −∞, producing A3. Then,
the matrix is square with two (starred) transversal zeros. So HK(B3) = ({1, 2}, ∅, {1, 2}).
Then Ō-TEST(A3) = {1, 2}, Ō-TEST(A2) = {1, 2} ∪ {4, 5} = {1, 2, 4, 5} and Ō-TEST(A1) = {1, 2, 4, 5} ∪ {7} =
{1, 2, 4, 5, 7}.

If we had set a4,1 = −∞, A3 would have contained a full row of −∞, so that Ō-TEST(A3) = Ō-TEST(A2) =
Ō-TEST(A1) = “failed”.

In the previous algorithm, finding the columns of B can be made faster using balanced trees.
Remark 55. We may sort the elements in the columns of a s× n matrix A and store the results in balanced (or AVL)
trees (Adel’son-Vel’skii and Landis [1] or Knuth [34, sec. 6.2.3]), with complexity ns ln(s), which allows to delete an
element in a column with cost ln(s), preserving the order, and to get the greatest element or a column with cost ln(s).

The following theorem provides an evaluation of the complexity.

Theorem 56. i) This algorithm tests if ÔA = 0 and if yes returns Y such that ÔA = OY,A.

ii) It works in O(d1/2psn) elementary operations, where d is the maximal number of transversal 0 in the sets B built at
each call of the algorithm HK and p the number of recursive calls of the main algorithm Ō-TEST.

iii) If at each step C0 = ∅, then the algorithm works in O((d1/2 + ln(s))sn) operations, using balanced trees as in
rem. 55.

11We denote for brevity sets of rows or columns by the sets of corresponding indices.
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Proof. i) The algorithms produces the correct result as a consequence of lem. 53. Indeed, by lem. 53 ii) if HK(B)

returns R0 = ∅, we know that ÔA ̸= 0. In the same way if Ō-TEST(A\R0) returns “failed”, ÔA is not 0 by lem. 53 iii).
Furthermore, except in those two cases, we know that OY2∪Y ′

1 ,A
is 0 by lem. 53 iv).

ii) For the complexity, at each call the computation of the set B requires O(sn) operations, which is proportional to the
size of the matrix. Then, computing a maximal set of diagonal 0 requires at most O(d1/2sn) operations, using Hopcroft
and Karp [27] algorithm, by th. 34. So the total cost is O(d1/2psn), where p is the number of recursive call to Ō-TEST.

iii) Using balanced trees, the cost of the first inspection of the matrix becomes O(ln(s)sn). Let bi and ci respectively
denote the cardinal of R0 and the number of columns in B at step i and let p be the total number of steps. At step
i, we just have to remove at most bin elements from the AVL trees with cost O(ln(s)bin) and from the matrix with
cost O(bin). The detection of columns in B at each step can be made with cost O(ln(s)n). This provides a total cost
O(ln(s)sn).

The remaining costs lie in the HK routine, for which the cost is O(b
1/2
i bici) at step i by th. 34. So, the remaining total

cost is O(
∑p

i=1 b
1/2
i bici) ≤ O(d1/2sn), as d = maxpi=1 bi and s =

∑p
i bi, which concludes the proof.

More examples will be given in the section 4.4.

4.2 Sufficient condition for regularity

The next theorem is an easy sufficient criterion for the regularity of ō-systems.
Theorem 57. Let Σ be a ō-system defining a diffiety V in some neighborhood of a point η. Using algo. 1, one may
assume that we have a partition of the equations Σ =

⋃p
h=1 Σh, where Σp−h corresponds to rows in R0 at step h of

the algorithm, and a partition of the variables X =
⋃p

h=1 Ξh, where Ξh corresponds to columns in B and not in C0 at
step h.

With these notations, if for all 1 ≤ h ≤ p,

rank
(
∂Pi

∂x
(η) | Pi ∈ Σh, x ∈ Ξh

)
= ♯Σi, (13)

then Ξ is ō-regular at point η.

Proof. Eq. 13 implies that for all 1 ≤ i ≤ p there exists a subset Yh ⊂ Ξh such that ∇Yh,Σh
(η) ̸= 0. By construction,

setting Y :=
⋃p

h=1 Yh, we have then
OYh,Σh

= 0,

so that

OY,Σ(η) =

p∑
h=1

OYh,Σh
= 0,

as the equations in Σh do not depend on the variables in Ξℓ for ℓ > h. Furthermore, we have

∇Y,Σ(η) =

p∏
h=1

∇Yh,Σh
(η) ̸= 0,

so that Σ is ō-regular at point η.

So, possible sets of flat outputs in this setting are built by choosing Yh ⊂ Ξi with ♯Yh = ♯Σh, for 1 ≤ h ≤ p, so that
∇Yh,Σh

does not vanish. This is what will be done on the aircraft example at subsec. 5.3 and subsec. 5.6.

This condition is not necessary, as shown by the next example.
Example 58. Let be the system Σ := {P1, . . . , P4} with P1 := x1 + x′

3 + x2
6, P2 = x1 + x′

4 + x3
5, P3 := x′

1 + x3,
P4 := x′

2 + x4. The order matrix of Σ is A1 below. The matrix B1 of rows containing only 0 and −∞ elements
correspond to the two right columns. It contains two zeros, that are transversal and belong to the two upper rows, so
that HK(B1) = ({1, 2}, ∅, {5, 6}). Then, Ō-TEST is called on the matrix A2.

A1 =


0 −∞ 1 −∞ −∞ 0∗

0 −∞ −∞ 1 0∗ −∞
1 −∞ 0 −∞ −∞ −∞

−∞ 1 −∞ 0 −∞ −∞

A2 =

(
1 −∞ 0∗ −∞

−∞ 1 −∞ 0∗

)
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The matrix B2 contains the two right columns and we have HK(B2) = ({1, 2}, ∅, {3, 4}), so that Ō-TEST(A1) =
{3, 4, 5, 6}. We have thus Ξ1 = {x5, x6}, Ξ2 = {x3, x4} and Σ1 = {P1, P2}, Σ2 = {P3, P4}. The only set Yi that
may be extracted from the Ξi are the Ξi themselves, as ♯Ξi = ♯Σi, for i = 1, 2. The corresponding flat outputs are then
x1 and x2. With this choice, ∇Y,P = ∇Ξ1,Σ1

∇Ξ2,Σ2
= ∇Ξ1,Σ1

= 3x2
5, which vanishes when x5 = 0.

But at such a point, we can use the alternative values Y = {x1, x3, x4, x6}, with ∇Y,Σ = 2x6, when x6 ̸= 0.

So we need a more precise criterion of ō-regularity, that will be described below.

4.3 Characterization of regular ō-systems

In this subsection, we will use ex. 58 and the following example 59 as a running examples to illustrate all the algorithms.
Example 59. We will consider the system defined by P = 0, with P1 := x2

1 + x6 + x′
7, P2 := x1 + x2

2 + x5 + x′
6 and

P3 := x2 + x2
3 + x4 + x′

5 at a point where x1 = x2 = x3 = 0.

We work at a point η of the diffiety. We assume that the coordinates of this point belong to some effective subfield K of
R and that at the point η of the diffiety, for all P ∈ Σ and all x ∈ Ξ, (∂P/∂x)(η) can be computed. We neglect the cost
of this computation, the Jacobian matrix being assumed to be given.

If the equations of Σ are algebraic, K can be Q or an algebraic extension of Q. We do not consider here the size of
the elements of K and bit complexity and only evaluate the number of elementary operations in K, counting in them
operations in N and all other faster elementary operations.

The basic principle looks much like that of sec. 4.1. We will need the following easy technical lemma.
Lemma 60. Let vi ∈ Rn with vi = (ci,1, . . . , ci,n), for 1 ≤ i ≤ s. Let K be the vector space generated by the linear
relations between the vectors vi. Let ek =

∑s
i=1 bk,ivi, for 1 ≤ k ≤ r, be a basis of K and R[K] := {i | ∃k, 1 ≤ k ≤

r , bk,i ̸= 0}.

The set R[K] does not depend on the choice of the basis e.

Proof. Let ē, with ēk =
∑r

ℓ=1 γk,ℓeℓ be another basis, defining another set of rows R̄[K]. If b̄k,i =
∑r

ℓ=1 γk,ℓbℓ,i
is nonzero, then bℓ,i is nonzero for some 1 ≤ ℓ ≤ r. So R̄[K] ⊂ R[K]. We prove in the same way the reciprocal
inclusion.

The following lemma will allow us to design a recursive process.
Lemma 61. Assume that a system Σ of s equations in the variables X := {x1, . . . , xn} is ō-regular at point η, with
∇Y,Σ(η) ̸= 0. We use the same notations and hypotheses as in lemma 53, with A := AΣ, the order matrix of Σ.

We consider the minimal canon λ of the order matrix AY,Σ restricted to the columns in Y and a bijection σ : [1, s] 7→ Y
such that

∑s
i=1 ai,σ(i) = 0.

Let B be defined as in lem. 53 and B′ be a submatrix of B restricted to a set of rows R that contains R̄ := {i | λi = 0}
and a set of columns C that contains σ(R̄).

i) Let R0 and C0 be respectively sets of rows and columns that contain all entries of B′ equal to 0, with ♯R0+♯C0 = OB′

and R0 maximal (as in th. 26), then R̄ ⊂ R0 and σ(R̄) ⊂ C \ C0.

ii) Let J be the value of the Jacobian matrix (∂Pi/∂xj | ai,j ∈ B′) at point η and R[K] be the set of rows associated to
a basis of linear relations between the rows of J as in lem. 60. We also define the set of columns C[K] := {j | ∃i ∈
R[K] ai,j = 0. Then, R̄ ⊂ R \R[K] and σ(R̄) ⊂ C \ C[K].

Proof. i) We proceed as in the proof of lem. 53 ii). Let R′
0 := {i|λi = 0 and i /∈ R0}. Then, by (12), the columns of

σ(R′
0) cannot contain elements equal to 0 in rows i with λi > 0, which means that all 0 elements are located in rows

R0 ∪R′
0 and columns C0 \ σ(R0), which contradicts the maximality of R0 unless R′

0 = ∅, so that all rows with λi = 0
belong to R0.

ii) Assume that R̄ ∩R[K] is nonempty and contains row i. Then, by (12), the columns of σ(R̄) cannot contain entries
equal to 0 and not located in the rows of R̄. So, ∇σ(R̄),Σ̄, where Σ̄ is the subset of equations that corresponds to the
rows of R̄, is a factor of ∇Y,Σ. As the rows of R̄ ∩KK in J are involved in a nontrivial linear relation, their restrictions
to the columns of σ(R̄) are linearly dependent and ∇σ(R̄),Σ̄ must vanish at η, which contradicts ∇Y,Σ(η) ̸= 0. So
R̄ ∩R0 = ∅.
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Using again (12), the columns of σ(R̄) can only contain entries equal to −∞ in the rows of R[K], so that σ(R̄) ∩ C[K]

is equal to ∅.

Definition 62. With the notations of lem. 61, we define the row kernel support of B′ at point η to be R[K] and column
kernel support of B′ at point η to be C[K]. Nontrivial rows of B′ are those that contain entries equal to 0.

We assume that a function KERNEL-SUPPORT implements the computation of the row and column kernel support of the
Jacobian matrix J at point η and returns B′′ retricted to columns not in C[K] and rows not in R[K], with the notations of
lem. 61.
Remark 63. It is easily seen that the complexity of this algorithm is O(s2n) elementary operations in K, using
Gaussian elimination. In fact, we may only consider nontrivial rows of B′ (containing elements different from −∞)
and the corresponding rows of J ′. If their number is q, the complexity is O(q2n+ sn).

Algorithm 2 KERNEL-SUPPORT

Input: A matrix B′ of 0 and −∞ elements and a matrix J of real elements with equal numbers of rows and columns.
Output: The submatrices B′′ of B′ and J ′ of J where rows in R[K] and columns in C[K] have been suppressed.

function KERNEL-SUPPORT(A, J)
Compute the kernel K of the linear mapping L defined by the rows of J ′.
Compute the row support R[K] and column support C[K] of K.
return (B′′ := B′ \R[K] \ C[K], J

′ := J \R[K] \ C[K]).
end function

Example 64. We start with ex. 58 at a point where x5 = 0 and x6 ̸= 0. We have

B′ =

(
−∞ 0∗

0∗ −∞

)
and J =

(
−∞ 1
0 −∞

)
,

so that R[K] is reduced to the last row of B′ and C[K] to its first column. The function KERNEL-SUPPORT returns
(B′′, J ′) = ((0), (1)).

When x5 = x6 = 0, R[K] contains the two rows and B′′ = ∅.

We continue with ex. 59.
Example 65. We have:

B′ =

(
0 −∞ −∞ −∞
0 0 −∞ −∞

−∞ 0 0 0

)
and J =

(
0 0 0 0
1 0 0 0
0 1 0 1

)
,

so that R[K] is reduced to the first row of B′ and C[K] to its first column. The function KERNEL-SUPPORT returns

B′′ =

(
0 −∞ −∞
0 0 0

)
and J ′ =

(
0 0 0
1 0 1

)
.

We may now iterate HK and KERNEL-SUPPORT until the returned matrix B′′ is equal to B′. We call the process SEQ.
We do not need any more to assume that HK returns a set Y1 of columns, but only the sets R0 and C0.

Algorithm 3 SEQ

Input: A matrix B′ of 0 and −∞ elements and a matrix J of real elements with the same number of rows and columns.
Output: Submatrices (B′′, J ′) of B′ and J such that HK(B′′) = (R0, C0) with C0 = ∅ and KERNEL-
SUPPORT(B′′, J ′) = (B′′, J ′).

function SEQ(B, J ′)
(R0, C0) :=HK(B′);
(B′′, J ′) :=KERNEL-SUPPORT((B′ \ C0) ∩R0, (J \ C0) ∩R0)
if B′′ = B′ then return (B′′, J ′) else return SEQ(B′′, J ′) fi

end function

To alleviate the presentation, we avoid going too deeply in computational details. The following remark should be
enough for our purpose.
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Remark 66. As the number of rows of B′ decreases at each recursive call, the number of iterations is bounded by s, so
that the complexity is O(s3n). We can obviously neglect the trivial rows of B′ and the corresponding rows of J ′ that
are rows of 0 elements. If d is the number of nontrivial rows in B′ and q the number of iterations, then the computations
only require O(qd2n′) operations, where n′ is the number of columns of B.

Example 67. The matrix J ′ computed at ex. 64 has full rank, so that the next call to HK and KERNEL-SUPPORT will
return again (B′′, J ′) and the iterations in SEQ will stop.

Example 68. Applying KERNEL-SUPPORT to the matrices (B′, J) in ex. 65, we get the sequence of results (B′′, J ′),
B′′′ := (0 0), J ′′ := (0 1), and then (B′′′, J ′′) again, as J ′′ has full rank, so that the process stops.

In the following lemma, ii) and iii) are analogs of lem. 53 iii) and iv).

Lemma 69. i) a) With the hypotheses and notations of lem. 61, the process SEQ returns (B′′, J ′), where B′′ is
a submatrix of B containing at least one entry equal to 0 and such that HK(B′′) = (R0, C0) with C0 = ∅ and
KERNEL-SUPPORT(B′′, J ′) = (B′′, J ′). b) It contains the intersection of the rows of R̄ and the columns of σ(R̄).
c) The only elements different from −∞ in the columns of B′′ are contained in the rows of B′′.

ii) Let R1 denote the rows of B′′ and C1 its columns. The matrix A2 formed of rows R2 not in R1 and columns C2 not
in C1 is such that there exists a set of columns Y2 that satisfies ÔA2

= OY2,A2
= 0 and ∇Y2,Σ2

(η) ̸= 0, where Σ2 is
the subset of Σ Σ2 := {Pi | i ∈ R2}.

iii) The matrix B′′ is such that there exists Y1 with OY1,B′′ = 0 and ∇Y1,B′′(η) ̸= 0, which implies OY2∪Y1,Σ = 0 and
∇Y2∪Y1,Σ(η) ̸= 0.

Proof. i) a) It is straightforward as when the process SEQ stops, it must return a B′′ such that HK(B) = (R0, C0) with
C0 = ∅ and KERNEL-SUPPORT(B′′, J ′) = (B′′, J ′). b) By lem. 61 i) and ii), the intersection of the rows of R̄ and
the columns of σ(R̄) belong to B′′ and J ′′ at each iteration of algo. 3, so that they are contained in the matrices of the
output. c) In the same way, at each iteration, the only elements different from −∞ in the columns of B′′ are contained
in the set of rows R1, so that this property also stands for the output.

ii) and iii) We know that there exists Y such that OY,Σ = 0 and ∇Y,Σ(η) ̸= 0. So, one may find Y2 ⊂ Y , such that
∇Y2,Σ2(η) ̸= 0 and OY2,Σ2 = 0. As J ′ has full rank at η, there exists Y1 such that ∇Y1,Σ1(η) ̸= 0 and OY1,Σ1 = 0,
where Σ1 corresponds to rows in R1. Then, i) c) implies that

OY1∪Y2,Σ = OY1,Σ1
+OY2,Σ2

= 0,

and
∇Y ∪Y2,Σ(η) = ∇Y1,Σ1

(η)∇Y2,Σ2
(η) ̸= 0.

It is then easy to design an algorithm Ō-REG to test ō-regularity at point η. The routine SEQ2 is assumed to be a variant
that returns the set of columns Y1 and the set of equations Σ2 of lem. 69 iii) or “failed” if B′′ is empty.

Algorithm 4 Ō-REG

Input: A differential system Σ of s equations in n variables x1, . . . , xn, defining a diffiety in the neighborhood of
η ∈ J(R,Rn).
Output: “failed” or a set Y of rows such that OY,Σ = 0 and ∇Y,Σ(η) ̸= 0.

function Ō-REG(Σ, η)
A := AΣ;
if s > n or A contains a full row of −∞ then return “failed”;
Suppress from A all columns of −∞;
Build B the submatrix of A of columns C containing only −∞ or 0 elements and J := (∂Pi/∂xj | 1 ≤ i ≤

s, j ∈ C)
if SEQ2(B, J) = “failed” then return “failed” else (Y1,Σ2) :=SEQ2(B, J) fi
if Ō-REG(Σ2, η) = “failed” return “failed” else Y2 :=Ō-REG(Σ2, η) fi
return Y1 ∪ Y2

end function

The following theorem provides an evaluation of the complexity.
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Theorem 70. i) The algorithm Ō-REG 4 tests if Σ is ō-regular at point η and then returns Y such that OY,Σ = 0 and
∇Y,Σ(η) ̸= 0.

ii) It works in O(p(qd2 + s)n) elementary operations in K, where

— p is the number of recursive calls of Ō-REG;

— q and d are respectively the maximal number of iterations of SEQ and the maximal number of nontrivial rows in B at
each recursive call of Ō-REG.

iii) If q is equal to 1 and C0 = ∅ at each recursive call of Ō-REG, then using balanced trees (rem. 55) as in algo. 1, we
can achieve a complexity of O((d2 + ln(s)s)n.

Proof. i) Proceeding as in the proof of th. 56, it is a straightforward consequence of lem. 69.

ii) The construction of B at each recursive call requires O(sn) operations and SEQ O(qd2n) operations, using rem. 66.

iii) Using balanced trees, the first construction of B requires O(ln(s)sn) operations and further constructions only
O(ln(s)n). Let nh be the number of columns in B at recursive call h of Ō-REG. By rem. 66, SEQ requires then
O(d2nh) operations, so that the total cost is O(ln(s)sn) +

∑p
h=1 O(d2nh) = O((ln(s)s+ d2)n) operations. Indeed,

if C0 = ∅, all columns of B only contain −∞ elements in A2 and can be removed.

Example 71. Going back to ex. 58 in the case x5 = 0 and x6 ̸= 0, the computations in ex. 67 show that SEQ2 will
return Y1 = {x6} and Σ2 that corresponds to {P2, P3, P4}. In the following recursive call, all Jacobian matrices
have full rank, so that the first iteration in SEQ returns the good result. The successive values returned by Ō-REG
are Ō-REG(Σ2) = {x1, x3, x4}, Ō-REG(Σ3 := {P2, P4}) = {x1, x4} and Ō-REG(Σ4 := {P4}) = {x4}, so that
Ō-REG(Σ2) = {x1, x3, x4, x6}.

When x5 = x6 = 0, B′′ = ∅ and SEQ2 and Ō-REG returns “failed”.

The following example shows that p and q can both be equal to s.
Example 72. We consider the system Σs defined by P1 := x2

1+x2s+x′
2s+1 and Pi := xi−1+x2

i +x2s−i+1+x′
2s−i+2,

for 1 < i ≤ s in 2s+ 1 variables xj at a point η = 0 where xi = 0, for 1 ≤ i ≤ s. Ex. 59 corresponds to s = 3. Again
in the general case, the first row and the first column are removed at each iteration of KERNEL-SUPPORT, until the last,
for which the final value of the Jacobian matrix has full rank and the sequence stops.

Starting with Σs, the system considered at the hth recursive call is Σs−h(x1, . . . , xs−h, xs+h+1, . . . , x2s+1). So, we
have then p = s and at iteration h of Ō-REG, we have q = s− h iterations in SEQ with columns of B′ reducing from
{1, . . . , h, 2s− h+ 1} to {h, 2s− h+ 1}.

4.4 Examples

We will consider here some examples of classes of “chained” or “triangular” flat systems in the literature. We stress
on the fact that in the papers quoted here, the main issue is to test the existence of a change of variables that may
reduce a given system to such a form, whereas our problem here is to test if a system is already in such a form, up to a
permutation of indices.

4.4.1 Goursat normal form

It is known that all driftless systems with two controls of the general form
x′
i = fi(x)u+ gi(x)v, for 1 ≤ i ≤ n (14)

can be reduced to the Goursat normal form
z′0 = v0;
z′i = zi+1v0 for 1 ≤ i ≤ n− 2;
z′n−1 = v1,

(15)

iff it is flat and we may use the following flatness criterion.
Theorem 73. A driftless systems with two controls (14) is flat iff the vector spaces Ei, 0 ≤ i ≤ n − 2 defined by
E0 := {f, g} and Ei+1 = Ei + {[Ei, Ei]} satisfy dimEi = i+ 2 for all 0 ≤ i ≤ n− 2.

This result goes back to the work of Cartan [8, 9] and has been adapted to control by Martin and Rouchon [68]. See
also Li et al. [44].

The system (15) is obviously a ō-system, with a single set of possible flat outputs; {z0, z1}, which is regular iff v0 ̸= 0.
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4.4.2 Complexity issues

Without going into useless details, for which we refer to the references quoted above, we need to give some idea of the
complexity of computations involved to work out a flat parametrization after having proved the existence of a suitable
change of variables. We assume here for simplicity that the fields f , g, . . . are defined by rational functions of the
state variables and that vector spaces are R(x)-vector spaces. For simplicity, we identify the fields f , g, . . . with the
associated derivations.

The next theorem is the basis of a step by step reduction of a two inputs driftless system in Goursat normal form.
Proposition 74. Assume that a two inputs driftless system (14), with n > 3 states, admits a change of variable
yi = Yi(x) such that the system becomes

y′i = (f̄i(y1, . . . , yn−1) + ḡ(y1, . . . , yn−1)yn)ū; for 1 ≤ i ≤ n− 1;
y′n = w̄,

(16)

with [f̄ , ḡ] /∈ ⟨f̄ , ḡ⟩. Then dimE1 = 3 and dimE2 = 4.

Proof. Using the new coordinates, we have have E3 = ⟨∂yn
, f̄ , ḡ⟩ and E4 = ⟨∂yn

, f̄ , ḡ, [f̄ , ḡ]⟩, that must have
respective dimensions 3 and 4, according to our independence hypothesis.

Easy computations imply the following corollary.
Corollary 75. Under the hypotheses of the proposition, there exists a couple of functions of the state variables x
(a, b) ̸= (0, 0) such that a[f, [f, g]] + b[g, [f, g]] = 0 modulo E3. Then, af + bg = c∂yn

and the yi, 1 ≤ i ≤ n− 1 are
functionally independent first integrals common to the field af + bg.

Using this lemma, we are reduced to a new two inputs system

y′i = (f̄i(y1, . . . , yn−1) + ḡ(y1, . . . , yn−1)yn)ū; for 1 ≤ i ≤ n− 1;
= f̄i(y1, . . . , yn−1)ū+ ḡ(y1, . . . , yn−1)v̄,

(17)

with v̄ = ynū.

Successive applications of this process reduces the state dimension and produces a Goursat normal form and a flat
parametrization. One may notice that for n = 3, all combinations a(x)f + b(x)g work.

The main issue then is to look for first integrals. There can exist no rational solutions and there is no general method to
test if a rational solution exists, even when looking for first integrals of a field in the affine plane. Already looking for
the existence of such an integral up to to a given degree is computationally difficult. See e.g. Chèze and Combot [10]
and the references therein for more details.

One may also look for closed forms solutions as did Rouchon for the car with one trailer in the general case [67], but
again there might not exist any. This does not mean that the task is hopeless, but justifies some special interest to
situations where the computations are much easier, although not completely trivial, mostly when the size of initial
equations is already appreciable. Such situations are obviously nongeneric, but may often be encountered in practice
with the help of some simplifications. This is not uncommon with flat systems, that are themselves nongeneric but quite
ubiquitous in engineering practice.
Example 76. An affine generalization with two inputs has been considered by Silveira [70] and Silveira et al. [69]:

z′0 = v0;
z′i = fi(z0, z1, . . . , zi+1) + zi+1v0 for 1 ≤ i ≤ n− 2;
z′n−1 = v1.

(18)

They provide necessary and sufficient conditions to reduce a system of the form x′ = f(x) + g1(x)u1 + g2(x)u2 to the
form (18).

Such a system is oudephippical. Using algo. 1, one can conclude that all matrices B are such that C0 = ∅. The sets Ξh

of th. 57 are Ξ1 = {v0, v1} and Ξh = {zh}, for 1 < h < n− 1. For best efficiency, a sparse version of the algorithm
should be designed for such sparse systems. The only possible flat outputs set in the setting of th. 57 is {z0, z1} and the
regularity condition is v0 + ∂fi/∂zi+1 ̸= 0, for all 1 ≤ i ≤ n− 2.

21



A PREPRINT - MARCH 27, 2024

4.4.3 Multi input chained forms

Some notions of chained forms may be found in the literature for systems with many inputs.
Example 77. A multi-input generalization, the “m-chained form”, has been proposed by Li et al. [45]:

z′0 = v0;
z′i,ℓ = fi,ℓ(z0, z̄ℓ) + zi,ℓ+1,v0 for 1 ≤ i ≤ m and 1 ≤ ℓ < k;
z′i,k = vi, for 1 ≤ i ≤ m

(19)

where z̄ℓ := (z1,1, . . . , z1,ℓ, . . . , zm,1, . . . , zm,ℓ).

This system is also oudephippical. All matrices B of algo. 1 are again such that C0 = ∅. The sets Ξh of th. 57 are
Ξ1 = {v0, . . . , vm} and Ξh = {z1,h, . . . , zm,h}, for 1 < h ≤ k. The only possible flat outputs set in the setting of
th. 57 is {z0, z1,1, . . . , zm,1} and the regularity condition is v0 ̸= 0.

The authors consider the case of a rolling coin on a moving table. x′

y′

θ′

ϕ′

 =

 cos θ(α cos θ + β sin θ)
sin θ(α cos θ + β sin θ)

0
0

+

 0
0
1
0

u1 +

 R cos θ
R sin θ

0
1

u2

where α and β are known functions of the time, that describe the motion of the table and R is a constant. They show
that it can be reduced to the form (77) only in the case of a constant speed rotation of the table. Nevertheless, one may
choose θ as a flat output. The system becomes linear in the remaining variables and is flat when θ′ ̸= 0, with flat output
Rϕ− cos(θ)x− sin(θ)y.

This is very close to the example x′ = cos(θ)ϕ′, y′ = sin(θ)ϕ′, which may be traced back to Monge [50] under the
form dϕ2 = dx2 + dy2. It has been rediscovered independently by Petitot [61].

We see that it is not obvious to design meaningful examples for which the changes of coordinates described by PDE
remain tractable. Working with such functions, when they cannot be expressed by closed form formulas remains a
challenge.

All these examples enter in more general notions of block diagonal or chained systems.

4.4.4 Block diagonal and chained systems

“Almost chained systems”, as described in [57],
(Z ′

h, X
′
h) = Gh(Z1, . . . Zh+1, X1, . . . , Xh+1) +Hh(Xh+2, . . . , Xh+ℓh), 1 ≤ h ≤ r, (20)

are chained when the extra functions Hh are 0. We propose here some more precise definition.
Definition 78. An order 1 block triangular systems is a system Σ in the variables Ξ, for which there exist partitions
Σ =

⋃p
h=1 Σh and Ξ =

⋃p
h=0 Ξh such that all equations in Σi depend only in variables in

⋃i
k=0 Ξk and are of order 1

in variables of Ξi−1 and 0 at most in the other variables, with

i) ♯Ξh−1 = ♯Σh;

ii) OΞh−1,Σh
= ♯Ξh−1;

iii) OΞh,Σh
= 0.

It is said to be dense if moreover we have

iv) ai,j = 0 in AΣh
for all 1 ≤ h ≤ p and all (i, j) ∈ Σh × Ξh.

An order 1 block triangular system is said to be chained at level h > 0 if all equations in Σh depend only in variables
in Ξh ∩ Ξh−1. It is said to be stricly chained if is chained at level h and the equation in Σh depend only on derivatives
of order 1 of the variables in Ξh−1 and not of those variables themselves.
Remark 79. Condition iii) means that there is an injection σ : Σh 7→ Ξh with

∑
P∈Σh

ordσ(P )P = 0. Then, considered
as a system in the variables of

⋃p
h=1 σ(Σh), the system Σ is block triangular according to the definition of [58, 4.3].

We have the following proposition, of which the easy proof is left to the reader.
Proposition 80. Order 1 block triangular systems are ō-systems such that C0 = ∅ at each step of algo. 1.

With the notations of this algorithm and of the previous definition, the set Ξp−h+1 (resp. Σp−h+1), for 1 ≤ h ≤ p
corresponds to the columns (resp. the rows) of B at step h of the algorithm.

The next subsection will provide some sufficient conditions of regularity and singularity in the block diagonal case.
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4.5 Some special results for block triangular systems

4.5.1 A sufficient condition for ō-regularity

We have seen with th. 57 a sufficient condition for regularity. Example 58 shows that it is not a necessary solution for
ō-regularity for all ō-systems. The following corollary shows that the condition of th. 57 is indeed a necessary and
sufficient condition of ō-regularity in the case of generic block diagonal systems.

Corollary 81. With the hypotheses of th. 57, assume that

a) Ξ is a dense order 1 block triangular system or that

b) for all 1 ≤ h ≤ p and all Σ′ ⊂ Σh with ♯Σ′ = ♯Σh − 1, the Jacobian matrix (∂P/∂x | (P, x) ∈ Σ′ × Ξh) has rank
equal to ♯Σh − 1.

Then, it is ō-regular at point η iff for all 1 ≤ h ≤ p, we have eq. 13, i.e.

rank
(
∂P

∂x
(η) | P ∈ Σh, x ∈ Ξh

)
= ♯Σh. (21)

Proof. The sufficient part is th. 57.

The necessary part is a consequence of the correctness of algo. 4 th. 70 i). If a), then if the rank of (21) is not ♯Σh at
level h, then at stage p− h of the algorithm, all columns of B are suppressed, so that the system is not regular. The
same applies using hypothesis b), as then relations between the rows of the Jacobian matrix must imply all ♯Σh rows,
so that again we need to suppress all columns of B.

4.5.2 A sufficient condition for singularity

We will need some technical lemma about linear systems.

Lemma 82. If a block diagonal linear system Σ, chained at level i0 is flat, then, using the notations of def. 78, for all
1 ≤ i0 < i1 ≤ p, the block diagonal system Σ̄ :=

⋃i1
i=i0

Σi in the variables Ξ̄ :=
⋃i1

i=i0−1 Ξi is flat.

Proof. By the structure theorem, the linear system Σ is flat iff the module[∑
x∈Ξ

R(t)[d/dt]x

]
/R(t)[d/dt]Σ

contains no torsion element, which implies that the module
[∑

x∈Ξ̄ R(t)[d/dt]x
]
/R(t)[d/dt]Σ̄ contains no torsion

element.

We can now state the following sufficient condition of singularity.

Theorem 83. Let Σ =
⋃p

i=1 Σh be a block diagonal system in the variables
⋃p

h=0 Ξh, chained at level h0 and strictly
chained at level h0−1, and such that all variables in Ξh0−1∪Ξh0 appearing nonlinearly in Σh0−1∪Σh0 are constants
along a given trajectory. Let η denote a point of this trajectory.

Assume moreover that the Jacobian matrix (
∂P

∂x
| (P, x) ∈ Σh0

× Ξh0

)
(22)

has rank m0 < n0 := ♯Ξh0−1 and that the Jacobian determinants∣∣∣∣∂P∂x′ | (P, x) ∈ Σh0
× Ξh0−1

∣∣∣∣ (23)

do not vanish at η for all 1 ≤ h ≤ p.

With these hypotheses, Σ is not flat at η.

Proof. The nonvanishing of the determinants (23) implies the existence of explicit differential equations

x′ = fx(Ξ0, . . . ,Ξh), x ∈ Ξh for 1 ≤ h ≤ p. (24)
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We will consider the linearized system (as defined in def. 11)

dηx
′ = dηfx(dΞ0, . . . ,dΞh−1), x ∈ Ξh for 0 ≤ h < p. (25)

As the system is chained at level h0, for x ∈ Ξh0−1, fx and dfx only depend respectively on Ξh0 ∪ Ξh0−1 and
d(Ξh ∪ Ξh0−1). In the same way, as the system is strictly chained at level h0 − 1, for x ∈ Ξh0−2, fx and dfx only
depend respectively on Ξh−1 and dΞh−1. Moreover, as the x ∈ Ξh0−1 ∪ Ξh0 appearing nonlinearly are constants, the
coefficients in the fx, for x ∈ Ξh0−1 ∪ Ξh0 , are constants too.

We will show that the linearized system, truncated at level h0, admits torsion elements, so that the system Ξ is not flat
by lem. 82. Such torsion elements are first integrals of the Lie algebra generated by ∂x, for x ∈ Ξh and

τ := ∂t +
∑

x∈
⋃h0−1

h=0 Ξh

fx∂x,

where ∂x denotes ∂/∂x. See [33, 4.3] for more details on such constructions.

As the rank of the Jacobian matrix (22) is n0 < m,

Lie(τ; ∂x | x ∈ Ξh0
) = ⟨∂x | x ∈ Ξh0

⟩+ Lie(τ; [τ, ∂w] | w ∈ W ⊂ Ξh0
),

for some subset of variables W , such that ♯W = n0. We denote [τ, ∂w] by τ̂∂w and τ̂k+1∂w := [τ, τ̂k∂w]. One may
find integers ew, w ∈ W such that the πh0−1τ̂

k∂x, for x ∈ W and 1 ≤ k ≤ ew are linearly independent, where πh0−1

denotes the projection on the vector space ⟨∂x | x ∈ Ξh0−1⟩. Those integers may be chosen so that
∑

w∈W ew is
maximal.

Assume now that

πh0−1τ̂
ew+1∂w =

∑
x∈W

ex∑
k=0

cw,x,kπh0−1τ̂
k∂x

and define

ϖ(w) := τ̂ew+1∂w −
∑
x∈W

ex∑
k=0

cw,x,kτ̂
k∂x,

for all w ∈ W . Then, we have

Lie(τ; ∂x | x ∈ Ξh0) = ⟨∂x | x ∈ Ξh0⟩+ ⟨τ̂kδx | w ∈ W, 0 ≤ k ≤ ew⟩
+Lie(τ;ϖ(w) | w ∈ W ).

The brackets [τ, ϖ(w)], for w ∈ W , do not involve derivations ∂x, for x ∈ Ξh0−1 ∪ Ξh0−2, as the system is
chained at level h0 and strictly chained at level h0 − 1. All variables that appear nonlinearly are constant, so that
all coefficients are constants. This implies that the projection πh0−2Lie(τ;ϖ(w) | w ∈ W ), where πh0−2 denotes
the projection on the vector space ⟨∂x | x ∈ Ξh0−2⟩, is equal to πh0−2⟨ϖ(w) | w ∈ W ⟩, so that the intersection of
Lie(τ, ϖ(w) | w ∈ W ) with ⟨∂x | x ∈ Ξh0−2⟩ has dimension at most ♯W = n0 < ♯Ξh0−2. This implies that the
dimension of Lie(τ, ∂x | x ∈ Ξh0

) is not the maximal dimension
∑h0

h=0 ♯Ξh and that nontrivial torsion elements exist,
which concludes the proof.
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5 The simplified aircraft. A block diagonal system

5.1 The aircraft model

5.1.1 Nomenclature

In this section, we have collected all the notations to make easier reading the sequel12.

Roman
a: wing span
b: mean aerodynamic chord
Cx, Cy , Cz: aerodynamic force coeffi-
cients, wind frame
CD , CY , CL: aerodynamic force coeffi-
cients in [23]
Cl, Cm, Cn: aerodynamic moment coeffi-
cients
F : thrust
L, M , N : aerodynamic moments

m: mass
p, q, r: roll, pitch and yaw rates
S: wing area
V : airspeed
X , Y , Z: aerodynamic forces
yp: distance of the engines to the plane of
symmetry
Greek
α angle of attack
β sideslip angle
γ: flight path angle

η: differential thrust ratio
ϑ: pitch angle
θ: parameters
µ: bank angle
ϕ: roll angle
χ: aerodynamic azimuth or heading angle
ψ: yaw angle
δl, δm, δn: aileron, elevator, rudder deflex-
ion
θ: model parameters

The model presented here relies on Martin [47, 48]. On may also refer to Asselin [2], Gudmundsson [25] or McLean [49]
for more details.

5.1.2 Earth frame, wind frame and body frame

We use an earth frame with origin at ground level, with z-axis pointing downward, as in the figure 1 (a). The coordinates
of the gravity center of the aircraft are given in this referential.

a) b)

Figure 1: a) Earth frame and b) body frame.

The body frame or aircraft referential is defined as in figure 1 (b), where xb corresponds to the roll axis, yb to the pitch
axes and zb to the yaw axes, oriented downward. The angular velocity vector (p, q, r) is given in this referential, or to
be more precise, at each time, in the Galilean referential that is tangent to this referential.

The wind frame, with origin the center of gravity of the aircraft has an axis xw, in the direction of the velocity of the
aircraft, the axis zw being in the plane of symmetry of the aircraft. The Euler angles13 that define the orientation of the
wind frame in the earth frame are denoted χ(t), γ(t), µ(t), and are respectively the aerodynamic azimuth or heading
angle, the flight path angle and the aerodynamic bank angle, positive if the port side of the aircraft is higher than the
starboard side. See figure 2 (a). We go from earth referential to wind referential using first a rotation with respect to z

12Wing span a and mean aerodynamic chord b are respectively denoted by b and c in [23].
13More precisely, such angles are known as Tait-Bryan angles.
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axis by the heading angle χ, then a rotation with respect to y axis by the flight path angle γ, and last a rotation with
respect to x axis by the bank angle µ.

a) b)

Figure 2: a) Wind frame and b) From wind to body frame.

The orientation of the wind frame with respect to the body frame is defined by two angles: the angle of attack α(t) and
the sideslip angle β(t), which is positive when the wind is on the starboard side of the aircraft, as in figure 2 (b). We go
from the wind referential to the body referential using first a rotation with respect to z axis by the side slip angle β and
then a rotation with respect to y axis by the angle of attack α.

5.1.3 Dynamics

In the sequel, we shall write p(t), q(t), r(t) the coordinates of the rotation vector of the body frame with respect to the
the earth frame expressed in a frame attached to a Galilean referential, that coincides at time t with the body frame, and
L(t), M(t), N(t) the corresponding torques. In the same way X(t), Y (t) and Z(t) denote the forces applied on the
aircraft, expressed in a frame attached to a Galilean referential, that coincide at time t with the the wind referential.

5.1.4 Aircraft geometry

The mass of the aircraft is denoted by m, S is the surface of the wings. In the body frame, we assume that the aircraft is
symmetrical with respect to the xz-plane, so that the tensor of inertia has the following form:

J :=

[
Ixx 0 −Ixz
0 Iyy 0

−Ixz 0 Izz

]
. (26)

In the standard equations (30), we also need a, that stands for the wing span and b for the mean aerodynamic chord.

5.1.5 Forces and torques

The force (X,Y, Z) in the wind frame and the torque (L,M,N) are expressed by the following formulas:
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X = F (t) cos(α+ ϵ) cos(β(t))− ρ

2
SV (t)2Cx − gm sin (γ(t)); (27a)

Y = F (t) cos(α+ ϵ) sin(β(t)) +
ρ

2
SV (t)2Cy + gm cos(γ(t)) sin(µ(t)); (27b)

Z = −F (t) sin(α+ ϵ)− ρ

2
SV (t)2Cz + gm cos(γ(t)) cos(µ(t)); (27c)

L = −yp sin(ϵ)(F1(t)− F2(t)) +
ρ

2
SV (t)2bCl; (27d)

M =
ρ

2
SV (t)2cCm; (27e)

N = yp cos(ϵ)(F1(t)− F2(t)) +
ρ

2
SV (t)2cCn. (27f)

The angle ϵ is related to the lack of parallelism of the reactors with respect to the xy−plane in the body frame and is
small.

The aerodynamic coefficients Cx, Cy, Cz, Cl, Cm, Cn depend on α and β and also on the angular speeds p, q, r and the
controls are virtual angles14 δl, δm and δn, that respectively express the positions of the ailerons, elevator and rudder.

Remark 84. One may use η = (F1 − F2)/(F1 + F2) as an alternative control instead of δn in case of rudder jam,
where F1 and F2 represent the thrust of the right and left engines, the sum of which is equal to the total thrust F .

5.1.6 Equations

Following Martin [47, 48], the dynamics of the system is modeled by the following set of explicit differential equations
(28a–28i,29):

d

dt
x(t) = V (t) cos(χ(t)) cos(γ(t)); (28a)

d

dt
y(t) = V (t) sin(χ(t)) cos(γ(t)); (28b)

d

dt
z(t) = −V (t) sin(γ(t)); (28c)

d

dt
V (t) =

X

m
; (28d)

d

dt
γ(t) = −Y sin(µ(t)) + Z cos(µ(t))

mV (t)
; (28e)

d

dt
χ(t) =

Y cos(µ(t))− Z sin(µ(t))

cos(γ(t))mV (t)
; (28f)

d

dt
α(t) = 1

cos(β(t))
(−p cos(α(t)) sin(β(t)) + q cos(β(t))

−r sin(α(t)) sin(β(t)) + Z
mV (t)

);

(28g)

d

dt
β(t) = +p sin(α(t))− r cos(α(t)) +

Y

mV (t)
; (28h)

d

dt
µ(t) = 1

cos(β(t))
(p cos(α(t)) + r sin(α(t))

+ 1
mV (t)

(Y cos(µ(t)) tan(γ(t)) cos(β(t))

−Z(sin(µ(t)) tan(γ(t)) cos(β(t)) + sin(β(t)))));

(28i)

 d
dtp(t)
d
dtq(t)
d
dtr(t)

 = J−1

 (Iyy − Izz)qr + Ixzpq + L
(Izz − Ixx)pr + Ixz(r

2 − p2) +M
(Ixx − Iyy)pq − Ixzrq +N

 . (29)

14The angles are not physical angles, but rather measures related to some physical angles and that are calibrated by the aircraft
producer.
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In the last expressions, the terms depending on gravity have been incorporated to the expressions X , Y and Z, as
in [48].

We notice with Martin that this set of equations imply cos(β) cos(γ)V ̸= 0. The nonvanishing of V and cos(β) seems
granted in most situations; the vanishing of V may occur with aircrafts equipped with vectorial thrust, which means a
larger set of controls, that we won’t consider here. The vanishing of cos(γ) can occur with loopings etc. and would
require the choice of a second chart with other sets of Euler angles. According to (28c), the value of z is negative, as in
fig. 1 a), the axis z points to the ground.

5.2 The GNA model

In the last equations, ρ can depend on z, as the air density vary with altitude. The expression of Cx and Cz could also
depend on z to take in account ground effect. These expressions that depend on α, β, p, q, r, δl, δm and δn, should also
depend on the Mach number, but most available formulas are given for a limited speed range and the dependency on
V is limited to the V 2 term in factor. In the literature, the available expressions are often partial or limited to linear
approximations. McLean [49] provides such data for various types of aircrafts; for different speed and flight conditions,
including landing conditions with gears and flaps extended.

We have chosen here to use the Generic Nonlinear Aerodynamic (GNA) subsonic models, given by Grauer and
Morelli [23] that cover a wider range of values, given in the following table. Among the 8 aircrafts in their database,

−4◦ ≤ α ≤ 30◦ −20◦ ≤ β ≤ 20◦,
−100◦/s ≤ p ≤ 100◦/s −50◦/s ≤ q ≤ 50◦/s −50◦/s ≤ r ≤ 50◦/s
−10◦ ≤ δl ≤ 10◦ −20◦ ≤ δm ≤ 10◦ −30◦ ≤ δn ≤ 30◦

Figure 3: Range of values for the GNA model

we have made simulations with 4: fighters F-4 and F-16C, STOL utility aircraft DHC-6 Twin Otter and the sub-scale
model of a transport aircraft GTM (see [28]).

The GNA model depends on 45 coefficients:

CD = θ1 + θ2α+ θ3αq̃ + θ4αδm + θ5α
2 + θ6α

2q̃ + θ7δm + θ8α
3 + θ9α

3q̃ + θ10α
4,

Cy = θ11β + θ12p̃+ θ13r̃ + θ14δl + θ15δn,
CL = θ16 + θ17α+ θ18q̃ + θ19δn + θ20αq̃ + θ21α

2 + θ22α
3 + θ23α

4,
Cl = θ24β + θ25p̃+ θ26r̃ + θ27δl + θ28δn
Cm = θ29 + θ30α+ θ31q̃ + θ32δe + θ33αq̃ + θ34α

2q̃ + θ35α
2δe + θ36α

3q̃ + θ37α
3δe + θ38α

4,
Cn = θ39β + θ40p̃+ θ41r̃ + θ42δl + θ43δn + θ44β

2 + θ45β
3,

(30)

where p̃ = ap, r̃ = ar, q̃ = bq (see 5.1.4 for the meaning of a and b). The aerodynamic coefficient CD, CY and CL are
defined by [23, (1)]. The coefficients Cx Cy and Cz in the wind frame are then given by the formulas:

Cx = cos(β)CD − sin(β)CY ,
Cy = sin(β)CD + cos(β)CY ,
Cz = CL

(31)

Definition 85. The simplified model is obtained by replacing p, q, r, δℓ, δm an δn by 0 (or some known constants) in
the expressions of Cx, Cy and Cz .

28



A PREPRINT - MARCH 27, 2024

5.3 Block triangular structure of the simplified model

Using the simplified model, the order matrix, where −∞ terms do not appear for better readability, is the following:

x y z V γ χ α β µ F p q r δℓ δm δn
(28a)
(28b)
(28c)
(28d)
(28e)
(28f)
(28g)
(28h)
(28i)
(29p)
(29q)
(29r)



1 0 0 0
1 0 0 0

1 0 0

0 1 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0 0

0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0



.

So, algorithm Ō-TEST provides the following partition, proceeding as in sec. 4.2: with Ξ0 := {x, y, z}, Ξ1 := {V, γ, χ},
Ξ2 := {α, β, µ, F}, Ξ3 := {p, q, r} and Ξ4 := {δℓ, δm, δn} or Ξ4 := {δℓ, δm, η} when differential thrust is used
(see rem. 84), we see that, for 1 ≤ k ≤ 3, Ξ̇i only depends on

⋃k+1
κ=0 Ξκ, so that the model is block triangular with Σ1

corresponding to (28a–28c), Σ2 corresponding to (28d–28f), Σ3 corresponding to (28g–28i) and Σ4 to (29).

Simple computations show that∣∣∣∣∂P∂ξ |P ∈ Σ1; ξ ∈ Ξ1

∣∣∣∣ = −V 2 cos(γ);

∣∣∣∣∂P∂ξ |P ∈ Σ3; ξ ∈ Ξ3

∣∣∣∣ = 1

cos(β)
, (32)

that do not vanish. In the same way,∣∣∣∣∂P∂ξ |P ∈ Σ4; ξ ∈ Ξ3

∣∣∣∣ = ρ3

8
S3V 6a2b|J |−1

∣∣∣∣∂Ci

∂δj
|(i, j) ∈ {ℓ,m, n}2

∣∣∣∣ , (33)

does not vanish as the diagonal terms ∂Ci/∂δi, i = ℓ,m, n, are much bigger than the others.

So, to apply th. 57, we only need to consider the rank of the Jacobian matrix(
∂P

∂ξ
|P ∈ Σ2; ξ ∈ Ξ2

)
,

which is equal to the rank of the Jacobian matrix

∆ :=

(
∂Q

∂ξ
|Q ∈ {X, sin(µ)Y + cos(µ)Z,− cos(µ)Y + sin(µ)Z}; ξ ∈ Ξ2

)
. (34)

Proposition 86. The simplified aircraft is flat when the matrix ∆ has full rank.

Let ∆ξ be the matrix ∆ where the column corresponding to ξ ∈ Ξ2 has been suppressed. If |∆ξ| ̸= 0 at some point,
then x, y, z, ξ is a regular flat output at that point.

Proof. This is a direct consequence of th. 57 ii).

Example 87. We can associate a diffiety to our aircraft model, which is defined by R12 ×
(
RN)4, and a derivation ð

defined by ð := ð0 + ð1, where ð1 is the trivial derivation on
(
RN)4: ð1 :=

∑m
z∈{F,δl,δm,δn}

∑
k∈N z

(k+1)
i ∂/∂z

(k+1)
i

and ð0 is defined on R12 by the differential equations (28a–28i,29):

δ0 := V (t) cos (χ(t)) cos (γ(t))
∂

∂x
+ V (t) sin (χ(t)) cos (γ(t))

∂

∂y
+ · · ·

In practice, the diffiety is defined by a smaller open set, because of the bounds that exist on the values of the variables.
The values of the controls are bounded and one wishes to restrict the values of the angle of attack α or side-slip angle
β for safety reasons. The maximal values for the GNA model are given below in table 3. Other limitations must be
included, such as the maximal value of the thrust. The speed V should also be greater than the stalling speed (see 5.5).

We will now consider more closely the possible choices of flat outputs.
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5.4 Choices of flat outputs

5.4.1 The side-slip angle choice

Martin [47, 48] has used the set of flat outputs: x, y, z, β. We need to explicit under which condition such a flat output
may be chosen, i.e. when the Jacobian determinant

∆β =

∣∣∣∣∣∣∣
∂X
∂α

∂X
∂µ

∂X
∂F

∂(sinµY+cosµZ)
∂α

∂(sinµY+cosµZ)
∂µ

∂(sinµY+cosµZ)
∂F

∂(cosµY−sinµZ)
∂α

∂(cosµY−sinµZ)
∂µ

∂(cosµY−sinµZ)
∂F

∣∣∣∣∣∣∣
does not vanish, according to prop. 86. First, we remark, following Martin [47, p. 80] that when Y = gm cos(γ) sin(µ)
and Z = gm sin(γ) sin(µ), i.e. when the lift is zero, sinµY + cosµZ = gm cos(γ) and cosµY − sinµZ = 0, so
that the second column of ∆β is zero and the determinant vanishes. This means that 0-g flight trajectories are singular
for this flat output. On the other hand, when β and α are close to 0, which is the case in straight and level flight, easy
computations using eq. (27a–27c) allow Martin to conclude that

|∆β | ≈ −Z

(
ρ

2
SV 2 ∂Cz

∂α
+ F

)
≫ 0.

To go further, one may use the expression of X eq. (27a) and deduce from it

F =
X + ρ

2SV
2Cx + gm sin(γ)

cos(α+ ϵ) cos(β)
, (35)

assuming cos(α + ϵ) cos(β). Substituting this expression in Y and Z, we define Ỹ and Z̃ and further define Ŷ :=

cos(µ)Ỹ − sin(µ)Z̃ and Ẑ := sin(µ)Ỹ + cos(µ)Z̃. Then, |∆β | ≠ 0 when∣∣∣∣∣ ∂Ŷ
∂α

∂Ŷ
∂µ

∂Ẑ
∂α

∂Ẑ
∂µ

∣∣∣∣∣ ̸= 0. (36)

The main interest of this choice is to be able to impose easily β = 0, which is almost always required.

5.4.2 The bank angle choice

As the angle µ is known, we may compute from Ξ′
1 and Ξ′′

1 the values X , Y and Z. So, singularities for this flat outputs
are such that

|∆µ| =

∣∣∣∣∣∣∣
∂X
∂α

∂X
∂β

∂X
∂F

∂Y
∂α

∂Y
∂β

∂Y
∂F

∂Z
∂α

∂Z
∂β

∂Z
∂F

∣∣∣∣∣∣∣ ̸= 0 (37)

Using Ỹ and Z̃, as defined in subsec. 5.4.1, we see that this is equivalent to∣∣∣∣∣ ∂Ỹ
∂α

∂Ỹ
∂β

∂Z̃
∂α

∂Z̃
∂β

∣∣∣∣∣ ̸= 0. (38)

When β is 0, ∂Z̃/∂β is also 0, due to the aircraft symmetry. Using the GNA model (see 5.2), we have ∂Cx/β = 0 and
∂Cz/∂β = 0, so that ∂Z̃/∂β = 0. The value of the determinant (38) is then

−∂Z̃

∂α

∂Ỹ

∂β
. (39)

For most aircrafts, ∂Cy/∂β is negative at β = 0, with values in the range [−1.,−0.5]. Delta wing aircrafts seem to be a
exception, with smaller absolute values (−0.014 for the X-31) or even negative ones (+0.099 for the F-16XL). It seems
granted that for regular transport planes, ∂Cy/∂β is negative, so that the determinant vanishes only when ∂Z̃/∂α is 0.
We will see in 5.5 that this may be interpreted as stalling condition and that the vanishing of (39) on a trajectory with
constant controls means that the points of this trajectory are flat singularities, so that no other flat outputs could work.

This choice is the best to impose µ = 0 and is natural for decrabe maneuver, that is when landing with a lateral wind,
which implies β ̸= 0. We then need to maintain µ close to 0 to avoid the wings hitting the runway.

It is also a good choice when Y = Z = 0, a situation that may be encountered in aerobatics or when training for space
condition with 0-g flights (see subsec 7.2). The choices β and µ are compared in [57, 7.1] with the simulation of a twin
otter flying with one engine.
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5.4.3 The thrust choice

The choice of thrust F has one main interest: to set F = 0 and consider the case of a aircraft having lost all its engines.
The aircraft must land by gliding when all engines are lost. This is a rare situation, but many successful examples are
known, including the famous US Airways Flight 1549 [5]. The singularities of this flat output are such that

|∆F | =

∣∣∣∣∣∣∣
∂X
∂α

∂X
∂µ

∂X
∂β

∂(sinµY+cosµZ)
∂α

∂(sinµY+cosµZ)
∂µ

∂(sinµY+cosµZ)
∂β

∂(cosµY−sinµZ)
∂α

∂(cosµY−sinµZ)
∂µ

∂(cosµY−sinµZ)
∂β

∣∣∣∣∣∣∣
vanishes. When F = 0, by eq. (27a–27c), the vanishing of ∆F is equivalent to∣∣∣∣∣∣∣

∂Cx

∂α 0 ∂Cx

∂β
∂(cosµCz)

∂α
∂(sinµCy+cosµCz)

∂µ
∂(sinµCy)

∂β
∂(− sinµCz)

∂α
∂(cosµCy−sinµCz)

∂µ
∂(cosµCy)

∂β

∣∣∣∣∣∣∣ =
∂Cx

∂α

(
Cy

∂Cy

∂β
− Cz

∂Cx

∂β

)
.

When β vanishes, Cy and ∂Cz/∂β also vanish, due to the aircraft symmetry with respect to the xz-plane. So, we need
have β ̸= 0 to use those flat outputs. Using the GNA model, Cx and Cz depend only on α and Cy depends linearly on
β.

In the case of a gliding aircraft, situations with β ̸= 0 could indeed be useful to achieve the forward slip maneuver.
When the aircraft is too high, combining nonzero β and µ precisely allows a fast descent while keeping a moderate
speed. This is very useful when gliding, as there is no option for a go around when approaching the landing strip too
high or too fast. This maneuver was performed with success by the “Gimli Glider” [46], Air Canada Flight 143, that ran
out of fuel on July 23, 1983, which could land safely in Gimli former Air Force base. A simulation of the forward slip
may be found in [57, 7.2].

5.4.4 Other sets of flat outputs

Among the other possible choices for completing the set Ξ1 in order to get flat outputs, the interest of α seems mostly
academic. Indeed,

∆α =

∣∣∣∣∣∣∣
∂X
∂β

∂X
∂µ

∂X
∂F

∂(sinµY+cosµZ)
∂β

∂(sinµY+cosµZ)
∂µ

∂(sinµY+cosµZ)
∂F

∂(cosµY−sinµZ)
∂β

∂(cosµY−sinµZ)
∂µ

∂(cosµY−sinµZ)
∂F

∣∣∣∣∣∣∣
Then, |∆α| = 0 when ∣∣∣∣∣ ∂Ŷ

∂β
∂Ŷ
∂µ

∂Ẑ
∂β

∂Ẑ
∂µ

∣∣∣∣∣ = 0. (40)

Easy computations show that it is the case when µ = β = 0, so that α is not a suitable alternative input near stalling
conditions, except possibly when µ ̸= 0. But mostly, our aerodynamic model cannot fully reflect the real behavior near
stalling so that it seems safe to exclude stalling a.o.a from the domain of definition.

One may also consider time-varying expressions, e.g. linear combinations of β and µ, to smoothly go from one choice
to another.

5.5 Stalling conditions

It is known that the lift of a wing reaches a maximum at a critical angle of attack, due to flow separation. This
phenomenon can be hardly reversible and creates a sudden drop of the lift force Z from its peack value. Our
mathematical model is too poor to fully reflect such behavior, but a maximum for the lift can still be computed.

We need to take also in account the contribution of the thrust in the expression of Z, and simple computations show that
the critical angle of attack corresponds in our setting to a maximum of Z̃, that is ∂Z̃/∂α = 0, which corresponds to the
singularity for flat output µ already observed above (39).

Three cases may appear with stalling:

1) to reach an extremal value of Z̃, meaning that ∂Z̃/∂α vanishes;
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2) to reach the maximum thrust Fmax before reaching a maximum of Z̃;

3) reaching no maximum of Z̃ with an aircraft with trust/weight ratio greater than 1: in such a case, there is no stalling.

For horizontal straight line trajectories, we may compute the speed V and the thrust F , depending on α, for β = µ = 0,
using the simplified model. We may also use the full model. As α, β and µ are constants, p = q = r = 0, which further
allows to express δℓ, δm and δn depending on α, so that Cℓ = Cm = Cn = 0, which is easy with the GNA model that
is linear in those quantities.

E.g., For the F4, setting the weight to 38924lb [23], the evaluated stall speed, angle of attack and thrusts are respectively
67.6789m/s (131.56kn), 0.4200rad (24.07◦) and 77.0436 for the full model and 64.0904m/s, 0.4366rad and 78.8806
for the simplified one, without thrust limitations. These thrust values are below the thrust of J79-GE-17A engines
of later versions (79.38kN with afterburning). Assuming a maximal thrust of 2 × 71.8kN, that corresponds to the
J79-GE-2 engines of the first production aircrafts, the stall speed and angle of attack are 67.9835m/s and 0.3969rad
with the full model, 64.5515m/s and 0.4057rad with the simplified one. The full model stall speed of about 132kn
agrees more or so with the stall speed values of 146KCAS or 148KCAS, according to the models, computed with the
NATOPS manual [51, fig. 4.1 and 4.2] at 10000 ft and below and the computed a.o.a of 23◦ with the indicated stall
a.o.a of 27 to 28 “units”, keeping in mind that those units are not exactly degrees and that our mathematical definition
of stalling cannot fully match the actual behavior. See fig. 4.

We notice in the figure that the curves become unrealistic outside the range of values of the GNA model given in fig. 3,
so that F even takes negative values for α < 0.065rad, which is very close to the −4◦ limit.

a) b)

c) d)

Figure 4: F-4: values of V and F depending on α. a) & b) full generic nonlinear aerodynamic model; c) & d) simplified
model

We have the following theorem, that shows that stalling condition means that the system is not flat for some trajectories
with β = µ = 0.
Theorem 88. Let a trajectory be such that α, β, µ, F , γ and V are constants, with moreover β = 0, α and V
respectively equal to the stall a.o.a. and stall speed. There is no flat point in this trajectory.

Proof. Simple computations show that when β = 0, α is equal to stalling a.o.a and V the stall speed, the rank of the
Jacobian matrix (∂P/∂x | P ∈ Σ2, x ∈ Ξ3) is at most 3. This is then a straightforward consequence of th. 83, noticing
that χ′ is the only term involving χ in the equations and that it appears linearly.
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5.6 Restricted model with 9 state functions

When foccussing on flight handling quality, one may restrict to 9 state variables by neglecting x, y and χ and suppressing
equations (28a,28b28f), as those variables do not appear in the remaining 9 equations. We get then the order matrix:

z V γ α β µ F p q r δℓ δm δn
(28c)
(28d)
(28e)
(28g)
(28h)
(28i)
(29p)
(29q)
(29r)



1 0 0

0 1 0 0 0
0 0 1 0 0 0 0

0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0


.

Following the construction of subsec. 4.2, as we did in subsec. 5.3, we define Ξ̄0 := {z}, Ξ̄1 := {V, γ}, Ξ̄2 :=

{α, β, µ, F ) = Ξ2, Ξ̄3 := {p, q, r} = Ξ3 and Ξ̄4 := {δℓ, δm, δn} = Ξ4, we see that, for 1 ≤ k ≤ 3, Ξ̇i only depends
on
⋃k+1

κ=0 Ξκ, so that this new model is also block triangular with Σ̄1 corresponding to (28c), Σ̄2 corresponding to
(28d–28e), Σ3 corresponding to (28g–28i) and Σ4 to (29). It is easily seen that the only Jacobian matrix that may
possibly not be of full rank is (∂P/∂ξ|(P, ξ ∈ Σ̄2 ×Ξ2). As it is a submatrix of (∂P/∂ξ|(P, ξ ∈ Σ2 ×Ξ2), points that
do not satisfy the regularity condition of th. 57 for the 9 state variables system do not satify it for the 12 state variables
system. We can associate to this ō-system 12 possible sets of linearizing outputs: first, we take ξ1 = z, then ξ2 ∈ Ξ̄1 (2
possibilities) and {ξ3, ξ4} ∈ Ξ̄2 (6 possibilities).

6 Simulations using the simplified flat model

In this section, we show simulations done with the flat approximation of the model. These simulations are conducted
with the classical set of flat outputs described in section 5.4.1, that is x, y, z, β.

As mentioned above, the flat approximation was obtained by neglecting the dependency of Cx, Cy, Cz on
p, q, r, δl, δm, δn. Comparing with the full aircraft model considered in the next section, no significant change of
behaviour could be noticed. We show here that the model remains robust to various perturbations in the expression of
the forces.

This tends to show that in many contexts the flat approximation is quite sufficient.

Moreover, we show that the flat model allows a high flexibility in trajectory planning and tracking.

All these suitable properties remain when one reactor is out of order.

6.1 Theoretical setting for feed-back design

The great advantage of flatness is that the flat motion planning makes an open loop control immediately available. When
a closed loop is required, the feedback is designed from the difference between the actual values of the flat outputs and
their reference values, so that this difference, being the solution of some differential equation, tends to zero. The reader
may refer to [6] for a more robust approach of the control of flat systems.

In the framework of the flat aircraft model, the feedback is done is two stages. Indeed the dependency of the system
variables on F, p, q, r has a slow dynamics in comparison to the rapidity of the dynamics that controls p, q, r from
δl, δm, δn. This allows to construct a cascade feedback, as done in [48]. More precisely, one can build a dynamic
linearizing feedback that allows controlling the partial state vector Ξ = (x, y, z, V, α, β, γ, χ, µ, F ) using the command
Ḟ , p, q, r, which allows following the reference trajectories of the flat outputs x, y, z, β, using static linearizing feedback.
More precisely, one can compute a vector valued function ∆0 and a matrix valued function ∆1, both depending on
x, y, z, V, α, β, γ, χ, µ, F such that: 

x(3)

y(3)

z(3)

β̇

 = ∆0 +∆1

 p
q
r
Ḟ
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At this stage, the variables p, q, r, Ḟ are seen as commands. In order to make the system linear, one introduces a new
vector valued command v, such that:  p

q
r
Ḟ

 = ∆−1
1 (v −∆0)

Eventually the command v is chosen of the form:

v(t) =


P0(xref(t)− x(t)) + P1(ẋref(t)− ẋ(t)) + P2(ẍref(t)− ẍ(t)) + P3x

(3)
ref (t)

P0(yref(t)− y(t)) + P1(ẏref(t)− ẏ(t)) + P2(ÿref(t)− ÿ(t)) + P3y
(3)
ref (t)

P0(zref(t)− z(t)) + P1(żref(t)− ż(t)) + P2(z̈ref(t)− z̈(t)) + P3z
(3)
ref (t)

−k1(βref(t)− β(t)) + β̇ref(t),


where P (X) = P0 + P1X + P2X

2 + P 3
X is actually the following polynomial P (X) = (X − k1)

3. Therefore the
error function es(t) = sref(t) − s(t) satisfies the following differential equations P (es(t)) = 0. In our experiments,
k1 = −5, so that es(t) −→

t→+∞
0, for each value of s in x, y, z, β. The value of k1 has tuned manually and is similar to

values found in [47].

In a second stage the variables p, q, r are controlled through a static linearizing feedback based on δl, δm, δn. This part
of the system, as mentioned above, is fast in comparison to the first part. More precisely, one can compute the vector
valued function Λ0 and a matrix valued function Λ1, both depending on V, α, β, p, q, r such that:(

ṗ
q̇
ṙ

)
= Λ0 + Λ1

(
δl
δm
δn

)

Then as previously, one introduced a new command w such that(
δl
δm
δn

)
= Λ−1

1 (w − Λ0)

and

w =

( −k2(pref(t)− p(t)) + ṗref(t)
−k2(qref(t)− q(t)) + q̇ref(t)
−k2(rref(t)− r(t)) + ṙref(t)

)
,

where k2 = −15 in our experiments. Therefore s(t)− sref(t) −→
t→+∞

0, for s ∈ {p, q, r}.

The rationale behind this cascade feedback is the following. The variables (x, y, z, V, α, β, γ, χ, µ, F ) are slowly
controlled through Ḟ , p, q, r. Once the required values of p, q, r are known, they are quickly reached through the control
performed with δl, δm, δn. The respective values of k1 and k2 reflect the disparity of speed between the two dynamics.
See e.g. [35, 62] and the references therin for a singular perturbation approach of such systems.

6.2 Conventions used in our simulations

We now show a series of experiments that illustrate the strength of the flat approximation to control the aircraft in
various situations. Those experiments were all performed with GTM extracted from [28]. The implementation is made
in Python, relying on the symbolic library SYMPY, the numerical array library NUMPY and the numerical integration of
ODE systems from the library SCIPY.

The experiments are all about following a reference trajectory defined by the following expressions:


xref(t) = V1 cos(π(t− Tinitial)/(Tfinal − Tinitial))
yref(t) = V1 sin(π(t− Tinitial)/(Tfinal − Tinitial))
zref(t) = −V2t− 1000
βref(t) = 0

,

where Tinitial = 0s, Tfinal = 30s, V1 = 30ms−1, V2 = 5ms−1. This reference trajectory is an upward helix.
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6.3 Initial perturbation

We carried out experiments where the aircraft started away from the reference trajectory and then joined it after a few
seconds. If the initial perturbation is not too big, the feedback alone is capable to attract the aircraft to the reference
trajectory. If the initial starting point is really far away from the reference trajectory, the flexibility of the flatness based
approach allows designing very easily a transition trajectory which can be followed with the feedback and that brings
the aircraft to the reference upward helix trajectory.

The experiment is moreover performed when a one reactor is broken. We observe that the actual trajectory of the
aircraft merges with the reference one, as shown in figure 5. The reference and the actual trajectories merge perfectly,
even when starting from a point off the trajectory. In [57, fig. 2], the power of one engine is slowly reduced, so that one
can see the variation of state functions, such as bank angle.

a)
simulated trajectory with initial perturbation
reference trajectory
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e) time (s)

Figure 5: The values of the GTM trajectory, one engine: the aircraft converges toward the reference trajectory. a)
Trajectory, 3D view; b)–e) Histories of x, y, z, β

6.4 Variable wind

In this section, we address the most critical problem about the flat approximation. Since the dependency of the
aerodynamic coefficient on p, q, r, δl, δm, δn is discarded, one can wonder if the model is robust enough to significant
perturbations in the values of the thrust. It turns out that under mild external forces, the model remains reliable.

In the last experiment, the motion of the aircraft is perturbed by a variable wind. This perturbation force is a sinusoidal
function which amplitude is 50lbf and frequency is 0.1Hz. This perturbation is assumed to roughly model a quasi-
periodic change in wind direction. Doing a more realistic analysis is beyond our scope.

This setting is applied to the GTM with the reference trajectory defined above. We observe a very robust behavior of the
model, as rendered in figures 6 and 7. The reference and the actual trajectories still merge perfectly with a variable
wind. For the variables F, α, p, q, r variations due to the variable wind are noticeable in the graphs.
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Figure 6: Variable wind. a)–d) Histories of x, y, z
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Figure 7: Variable wind. a)–e) Histories of F, µ, p, q

7 Simulations using the full model

7.1 Implementation in Maple

Our implementation computes power series approximations of all state variables and control at regular time interval.
We proceed in the same way for the feed-back, which is also approximated with power series at the same time interval
for better efficiency during numerical integration.

The structure of the equations implies the existence of a lazy flat parametrization, as shown by th. 49. Moreover, it
means that the requested power series can be computed in a fast way using Newton’s method, when initialized with
suitable values. Most of the time, values for state variables such as β or α are close to 0. If not, calibration functions
can give e.g. the value of α, assuming that V , γ′, χ, β and µ are constants. See [57, § 4] for more details.

We denote by ξ̂(t) the planed function for any state variable ξ, according to the motion planning using the simplified flat
system and the choice of x̂, ŷ, ẑ and β̂ (or µ̂). We also denote by δξ the difference ξ − ξ̂ between the planed trajectory
and the trajectory computed with the full model. We did not manage to get a working feed-back without using integrals
I1, I2, I3, I4 of cos(χ)δx + sin(χ)δy, − sin(χ)δx + cos(χ)δy, δz and δβ (or δµ) respectively. When using the flat
outputs x, y, z, F , I4 is no longer needed.

For the feed-back, we choose positive real numbers λi,j , with 1 ≤ i ≤ 4, and 1 ≤ j ≤ 5 for i = 2 or i = 3 and
1 ≤ j ≤ 3 for i = 1 or i = 4. The value of δF , δδl, δδm, δδn, are computed, so that

∏3
i=1(d/dt + λ1,i)I1 = 0,∏3

i=1(d/dt + λ4,i)I4 = 0,
∏5

i=1(d/dt + λ2,i)I2 = 0,
∏5

i=1(d/dt + λ3,i)I3 = 0, using the derivation d/dt of the
linearized simplified system around the planed trajectory. Then, we use the controls δ̂l + δδl, δ̂m + δδm, δ̂n + δδn,
F̂ + δF in the numerical integration. If the δξ are small enough to behave like the dξ of the linearized system, and the
solution of the full model not too far from the planed solution of the simplified model, the convergence is granted.

In practice, the choice of suitable λi,j is difficult and empirical: two small, the trajectory is lost, two high, increasing
oscillations may appear. We neglect here the dynamics of the actuator, our goal being to show that the feed-back is
able to provide a solution for the full model, using the trajectory planed with the simplified one, the linearizing outputs
remaining close to their original values. The feedback used here relies on a linear approximation around the planned
trajectory. I has the advantage of fast computation but will not work any more when perturbations are too great. One
may refer e.g. to [6] or [74] for more robust control of flat systems.

Unless otherwise stated, angles are expressed in radians, lengths in meters, times in seconds, thrusts in Newtons, masses
in kg. Curves in red correspond to the planed trajectory ξ̂, while curves in blue correspond to the integration of the full
model. For more clarity z has been replaced by −z to get positive values when drawing curves.

Computation times are given using Maple 19 with an Intel processor Core i5 2.5GHz. These are just indications that
can vary from a session to another.

7.2 Using flat outputs with µ. Gravity-free flight with the F16

We experiment here a 0-g flight with a parabolic trajectory, using the F-16 model for which Cz vanishes for a value
of α close to −0.016 rad. See fig. 8, where δz corresponds to the difference between the reference altitude and the
altitude of the simulated model. For this simulation, we used an expression of air density ρ(z) varying with altitude z,
following Martin [47, A.16 p. 97]. The total computation time of the simulation is 371s.
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x = 750tkm/h; y = 0; z = g t2

2 − 2000; µ = 0;
λi,j = 5.;
ρ(z) = 1.225(1 + 0.0065z/288.15)(9.80665/(287.053×0.0065)−1)

(41)

a) b) c)

d) e)

Figure 8: F-16 0-g flight. a) α (rad); b) V (m/s); c) F (N); d) δm (rad) and e) δz (m).

8 Conclusion

We have introduced a notion of oudephippical systems, or ō-systems, that generalizes many special cases of chained or
triangular systems previously know in the control literature. We further gave algorithms to test in polynomial time if a
given system belongs to this category and to test regularity conditions that are sufficient to imply that the system is flat
at a some point.

Then, as the flat outputs are state variables, the computation of the flat parametrization and the design of a feedback to
stabilize the system around the planned trajectory are computationally easy, even for nontrivial systems, such as the
aircraft model used as an illustration. This model is flat if one neglects some terms and our simulations show that a
suitable feedback is able to compensate model errors due to this simplification.

The systematic study of all possible flat outputs in our setting made us discover new flat outputs for the aircraft, some
of them of practical interest. They provide a set of charts with flat parametrization, that cover all common flight
situations, flat singularities being close to stalling conditions. We are moreover able to prove a sufficient condition for
flat singularity that could be applied to the aircraft model.

Simulations show that the mathematical framework can handle complex models. A systematic study of stabilization
issues is left for further investigations.
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