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SINGLE-VALUED KILLING FIELDS OF A MEROMORPHIC AFFINE

CONNECTION AND CLASSIFICATION

ALEXIS GARCIA

Université Clermont-Auvergne, Campus des Cézeaux, Aubière (France)

Abstract. We give a geometric condition on a meromorphic affine connection for its Killing
vector fields to be single valued. More precisely, this condition relies on the pole of the connection
and its geodesics, and defines a subcategory. To this end, we use the equivalence between
these objects and meromorphic affine Cartan geometries. The proof of the previous result is
then a consequence of a more general result linking the distinguished curves of meromorphic
Cartan geometries, their poles and their infinitesimal automorphisms. This enables to extend
the classification result from [4] to the subcategory of meromorphic affine connection described
before.

1. Introduction

1.1. Geometric structures and Cartan geometries. A class of smooth geometric structures
on real manifolds, or holomorphic geometric structures on complex manifolds (see [19] for a
modern definition) is obtained as infinitesimal versions of a model geometry. As an example in
the smooth category, the notion of Riemannian metric is obtained as an infinitesimal version of
Euclidean geometry, and affine connections as infinitesimal versions of affine geometry. These
two classes of geometric structures were intensively studied, in particular by Riemann who
initiated with Gauss the Riemannian geometry.

In the two examples above, we remark that the group of global automorphisms of the model
geometry, i.e global transformations preserving the caracteristics of this geometry, acts transi-
tively on the base space, namely R

n. We say that the geometric structure corresponding to the
model geometry is homogeneous. This property was later proposed by Klein to give a definition
of a geometry, in his famous program aimed at classifying all the geometries. A Klein geometry
is a couple (G,P ) formed by a Lie group G, seen as the group of global automorphisms of the
geometry, and a closed Lie subgroup P seen as the subgroup of isotropy at a fixed point of the
space G/P .

Geometric structures underlying a Klein geometry are of diverse kinds. A general fact is that
the model space G/P is endowed with a Q-structure where Q is a linear subgroup naturally
associated with P . The geometric structures obtained in this way are of order one, but some
Klein geometries define higher order geometric structures. For example, for the affine Klein
geometry, where G is the affine group of Rn and P the linear subgroup, the group G is exactly
the group of global automorphisms for the canonical flat affine connection on R

n. In general,
the geometric structure underlying (G,P ) is defined using the P -principal bundle G −→ G/P
and the Maurer-Cartan form ωG of G.
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2 A. GARCIA

In a series of papers, in particular [10], Cartan described affine connections as infinitesimal
versions of the affine Klein geometry, and proposed to generalize this principle to any Klein
geometry to obtain a Cartan geometry. The formalism used nowadays came, in affine case,
from the works of Ehresmann, who gave a purely geometric definition of an affine connection
in terms of a principal bundle, a principal connection ([16]), and a soldering form to give a
geometric meaning to the principal bundle. There is also an equivariant definition which was
proposed by Atiyah in [1], and which is useful to extend some results in the meromorphic setting
(see subsection 5.2). The definition of a Cartan geometry on M modelled on (G,P ) that will
be adopted in this article is the following: a couple (E,ω) formed by a P -principal bundle
over M and a g-valued equivariant one form on E mimicking the infinitesimal properties of the
Maurer-Cartan form of G. It originates from the paper [22].

In this way, the principle constructing a geometric structure on G/P from a Klein geome-
try (G,P ) can be generalized to Cartan geometries, except that it produces non-homogeneous
geometric structures in general: the global automorphisms of the Cartan geometry doesn’t act
transitively on the base manifold.

1.2. Classification of quasi-homogeneous geometric structures on simply connected

manifolds. A natural question then, going back to the work of Riemann, Hopf and Killing for
Riemannian metrics (see for example [28]), is to classify locally homogenous geometric structures,
i.e for which the infinitesimal automorphisms span the tangent space of the base manifold at any
point. As an example, it is well-known that any locally homogeneous and complete Riemannian
metric on a simply connected manifold is homogeneous.

The above question is more relevant in the holomorphic category, for two principal reasons.
First, the existence of a holomorphic geometric structure on a complex compact manifold gives
some restrictions on its geometry or its topology. Secondly, local homogeneity is sometimes
deduced from the complex geometry of the base manifold, at least on an open dense subset.
These two reasons are well illustrated by the holomorphic version of Riemannian metrics, i.e
holomorphic fields of nondegenerate bilinear forms on the tangent spaces of a complex manifold
(see for example [12],[23]). Indeed, on a general complex manifold, such an object gives a trivi-
alisation of some power of the canonical bundle. On a compact complex surface, the curvature
of such a object is a constant function, implying local homogeneity.

In dimension two, we can also mention the work by Inoue, Kobayashi and Ochiai in [21].
Using the vanishing of the first two Chern classes of a complex compact surface in presence
of a holomorphic affine connection, and the Enriques-Kodaira classification, they gave a com-
plete classification of such objects. In particular, any compact complex surface admitting a
holomorphic affine connection admits a flat holomorphic affine connection, which is thus locally
homogeneous.

In [24], McKay showed that the existence of an arbitrary holomorphic Cartan geometry
on a complex kähler manifold imposes relations on its Chern classes. In a common paper
with Dumitrescu ([3]), they proved that a simply connected compact complex manifold, with
algebraic dimension zero (i.e whose meromorphic functions are the constants), does not bear
any holomorphic affine connection.

Dumitrescu gave in [13] a result in arbitrary dimension which implies that on compact complex
manifolds with only constant meromorphic functions, any holomorphic Cartan geometry must
be quasi-homogeneous, i.e locally homogeneous on an open dense subset. This was used in [4]
by Biswas and the two previous authors to improve the above result:

Theorem 1.1. Compact complex manifolds of algebraic dimension zero bearing a holomorphic
Cartan geometry of algebraic type have infinite fundamental group.
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Two important facts are used in the proof. First, it is proved that any germ of infinitesimal
automorphism of the Cartan geometry is the germ of a global infinitesimal automorphism: this
is a generalization of a result by Nomizu ([25]) for analytic Riemannian metrics, and follows
from the fact that the former objects form a local system on M . Hence, using the result
by Dumitrescu mentioned above, there are n = dim(M) independent germs of infinitesimal
automorphisms at some point of M , extending as a family of n global holomorphic vector fields
which are infinitesimal automorphisms. Next, it is proved that there exists such a family made
of commuting vector fields: hence, it integrates to a complex abelian Lie group L with an open
dense orbit in M . The conclusion follow from detailed study of the geometry of such manifolds
M , which implies that the Cartan geometry is flat.

1.3. Results of the paper. In this paper, we consider the meromorphic generalization of
the holomorphic geometric structures, in particular the meromorphic affine connections. In
the meromorphic category, the two above facts no longer stand: infinitesimal automorphisms
could be multivalued (see [5], example 3.8). Moreover, meromorphic single valued infinitesimal
automorphism may not have a well defined flow at some point of the pole.

We give a sufficient condition on some meromorphic Cartan geometries to recover the first
fact. Let’s explain briefly the condition. The holomorphic P -principal bundle E of a mero-
morphic Cartan geometry (E,ω0) on a pair (M,D), modelled on a complex Klein geometry
(G,P ), comes equipped with holomorphic foliations (possibly singular) TA whose leaves are the
A-distinguished curves. Such a leaf Σ̃ is a 1-dimensional complex submanifold of E whose tan-
gent directions are seen as of constant direction through ω0, i.e in the line CA spanned by a
vector A ∈ g. In the case of the affine model, it is natural to consider these leaves because their
projections Σ on the base manifold M are exactly the spirals of the corresponding meromorphic
affine connection (see [27]).

Moreover, there is a well-known result in Riemannian geometry stating that any Killing
vector field X for a Riemannian metric g is a Jacobi field, i.e for any geodesic Σ of ∇, the scalar
product g(γ′(t),X(γ(t))) is constant along γ. We can translate the two objects in terms of the
Cartan geometry (E,ω) corresponding to the Levi-Civita connection of g. The proof can then
be recovered from the fact that (E,ω) is torsionfree and from the structure of the Lie algebra g

of the complex euclidean group G.
In the meromorphic setting, and for an arbitrary model, we prove the result below, where V

stands for the sheaf of holomorphic functions on E with values in g and, for any A ∈ g, VA the
subsheaf of functions with values in CA.

Theorem 4.1. Let (G,P ) be a complex Klein geometry, and (M,D) be a pair with dim(M) =
dim(G/P ). Let (E,ω0) be a meromorphic (G,P )-Cartan geometry on (M,D). Pick a point
x0 ∈ D belonging to an unique irreducible component Dα, and suppose that there exists A ∈ g\p
and a the projection Σ of a A-distinguished curve for (E,ω0) such that Σ ∩ Dα = {x0}. Then
there exists a neighborhood U of x0 with the following properties:

(1) Let s be a the image of a Killing vector field through ω0, on an open subset V ⊂ p−1(U).
Then its class in V/VA extends as a single valued section of this sheaf on p−1(U \D).

(2) The class mentionned in 1. is moreover a section of V/VA[⋆D̃] on p−1(U).
(3) Suppose moreover that (E,ω0) is holomorphic branched on (M,D) and let s be as in 2.

Then s is in fact a section of V/VA on p−1(U).

The meromorphic Cartan geometries satisfying this condition of the above theorem for a
generic point x0 ∈ D on the pole are said to be totally geodesic in reference to the affine
case. This theorem implies that Killing fields of meromorphic affine connections which are
totally geodesic are single valued and meromorphic. If we restrict us to the subcategory of
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branched holomorphic affine connections, i.e those arising from branched holomorphic Cartan
geometries (see [3]), we obtain that the Killing vector fields may be seen as holomorphic sections
of submodule E ⊂ TM [⋆D] satisfying TM ⊂ E . Using this fact and some results in complex
geomety, we obtained the following partial generalization of Theorem 1.1:

Theorem 5.2. Let M be a compact complex manifold with finite fundamental group, and whose
meromorphic functions are constants. Then M doesn’t bear any totally geodesic branched holo-
morphic affine connection.

5.4. Plan of the paper. The plan of the paper is as follow. In section 2, we recall the dic-
tionnary between locally free modules of finite rank and vector bundles, the corresponding
meromorphic sections, and recall the definition of Atiyah’s exact sequence associated with a
principal bundle. In section 3, we introduce meromorphic Cartan geometries and the holo-
morphic vector bundles naturally associated to these objects. In section 4, we give sufficient
conditions for two classes of regular meromorphic parabolic geometries (subsection 4.1) for their
infinitesimal automorphisms to be single valued. In section 5, we prove the equivalence between
meromorphic affine Cartan connections and meromorphic affine connections, and we introduce
the τ -connections which are always induced by a meromorphic affine Cartan geometry sat-
isfying the sufficient condition described before. We then use the previous results to prove
Theorem 5.2. Finally, in the last section, we discuss the genericity of the τ -connections, and
illustrate Theorem 5.2 by examples in any dimension.

2. Preliminaries and notations

This preliminary section is devoted to recall the notion of meromorphic connections on a
locally free module, and the meromorphic version of Atiyah’s exact sequence associated with a
principal bundle.

2.1. Locally free modules and meromorphic connections. Let (M,D) be a pair, i.e a
complex manifold M equipped with a divisor D, we denote by OM the sheaf of holomorphic
functions on M and MM the sheaf of meromorphic functions on it. In order to write statements
about meromorphic objects with poles at D, we may use the sheaf OM [⋆D] of meromorphic
functions with poles supported on the irreducible components Dα of D =

∑

α
nαDα (see [26]).

Let L be a coherent OM -module. Then we can consider the sheaf:

(1) L[⋆D] = OM [⋆D] ⊗
OM

L

of meromorphic sections of L with poles supported at the irreducible components of D. The
order ordL

D(s) at D of a section s of L[⋆D] defined on an open subset U ⊂ M is the greatest
integer d ∈ Z such that s is also a section of L(−dD) on U .

Definition 2.1. A meromorphic connection on (M,D) is a couple (V,∇) where V is a locally
free OM -module of finite rank, and ∇ is a morphism of C-sheaves from V[⋆D] to Ω1

M ⊗ V[⋆D]
satisfying the Leibniz identity ∇(fs) = d(f)s + f∇(s) for any s ∈ V(U) and f ∈ OM [⋆D](U)
(U is an open subset of M).

If (L,∇) and (L′,∇) are two meromorphic connections such that L =
r⊕

i=1
OMsi, L′ =

r⊕

i=1
OM ti

and ti =
r∑

j=1
qjisj for a meromorphic matrix Q on M , then the matrices A and A′ respectively

associated to the basis (si)i=1,...,r and (ti)i=1,...,r are linked by the gauge-transformation formula:

(2) A′ = Q−1dQ+Q−1AQ
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where d stands for the de Rham derivative.
A meromorphic affine connection on (M,D) is a meromorphic connection ∇ on TM with

poles supported at D. The torsion of a meromorphic affine connection ∇ on (M,D) is the
meromorphic section T∇ of Ω1

M ⊗ End(TM) defined by:

(3) T∇(X)(Y ) = ∇X(Y ) − ∇Y (X) − [X,Y ]T M

Now, let describe the categories associated with the above objects. Let M,M ′ be two complex
manifolds and f : M −→ M ′ be a holomorphic map. We denote by

(4) f−1OM ′

the pullback in the sheaf theoretic sense. This is a sheaf of algebras over the constant sheaf CM .
Then OM is naturally a f−1OM ′-algebra through the CM -algebras morphism:

(5)
f# : f−1OM ′ −→ OM

s 7→ s ◦ f

Hence, any f−1OM ′-module defines a OM -module obtained by tensorizing with OM in the
category of f−1OM ′-modules.

Recall that there is a well-known equivalence between the category of holomorphic vector
bundles V of rank r ≥ 1 over complex manifolds and local free OM -modules of the same
rank obtained by considering the sheaf of local holomorphic sections of V . The image of a an
isomorphism Ψ̂ : V1 −→ V2 of vector bundles with associated sheaves of sections E1, E2, covering
an isomorphism f : M −→ M ′ of complex manifolds, is the isomorphism Φ of OM -modules:

(6)
Φ : E1 −→ OM ⊗

f−1OM′

f−1E2

s −→ Ψ̂ ◦ s ◦ ϕ−1

where U is an open subset of M .

Definition 2.2. A couple (ϕ,Φ) as above will be called a isomorphism of vector bundles between
E1 and E2. More generally, we define a isomorphism of meromorphic bundles by replacing the
sheaves of holomorphic sections by the corresponding of meromorphic sections with poles at a
divisor D of M and D′ of M ′.

The following definition of the pullback of a meromorphic connection is a particular case of
the construction of inverse images for D-modules (see [20]). Let ∇′ be a meromorphic connection
on the OM ′-module E ′ with poles at D′ and f : M −→ M ′ be a morphism of complex manifolds.
The dual of the differential df : TM −→ OM ⊗ f−1TM ′ is a morphism of OM -modules (df)∗ :
OM ⊗ f−1Ω1

M ′ −→ Ω1
M .

Now, let dM and dM ′ denote respectively the de Rham differentials on OM and OM ′ . Since
dM ◦ f# = (df)∗ ◦ f−1dM ′ by definition of f#, we remark that the left composition f−1∇′ :
f−1E ′ −→ Ω1

M ⊗ OM ⊗ f−1(E ′[⋆D′]) of the sheaf theoretic pullback f−1∇′ with (df)∗ ⊗ Id
satisfies :

(7) f−1∇′(f#(g′)s) = dM (f#(g′)) ⊗ s+ g′ ⊗ f−1∇′(s)

for any section s of f−1E ′ and g′ of f−1OM ′ . Thus, it extends as a morphism of CM -modules :

(8) f⋆∇′ : OM ⊗ f−1E ′ −→ Ω1
M ⊗ (OM ⊗ f−1E ′[⋆D′])

satisfying the Leibniz rule on M .

Definition 2.3. Let f and (E ′,∇′) as above. The pullback of (E ′,∇′) is the pair (E ,∇) where
E = OM ⊗ f−1E ′ and ∇ is the morphism defined as in (8).



6 A. GARCIA

When OM ⊗ f−1OM ′(D′) = OM (D) for some divisor D on M , the pullback (E , f⋆∇′) is a
meromorphic connection on (M,D). This the case for example when f is a submersion, but we
may find many counterexamples as the following example :

Exemple 2.1. Let M ′ = C
2 and D′ = {z1 = 0} Let E ′ = O⊕2

M ′ and ∇′ be the meromorphic

connection on E ′, with poles at D′, whose matrix in the canonical basis is dz2

z1
⊗ Id.

Let γ : C −→ M ′ be the holomorphic curve defined by γ(t) = (0, t). Then OC ⊗ γ−1E ′ = O⊕2
C

and γ⋆∇′ is the null morphism.

Proof. We have OC ⊗ γ−1OM ′(D′) = {0}
C

because γ(C) ⊂ D′. Now, by definition of ∇′, the

morphism γ−1∇′ defined before (7) maps γ−1E ′ in Ω1
C

⊗ OC ⊗ γ−1( 1
z1

E ′). By the first remark,
this is the trivial module. �

We finish with the Riemann-Hilbert correspondance. A flat meromorphic connection ∇ on
E with poles at D is a meromorphic connection such that the subsheaf of horizontal sections
ker(∇) on M \D defined by:

(9) ∀U ⊂ M \D, ker(∇)(U) = {s ∈ E(U) s.t.∇(s) = 0}

is a local system (see [11]).
We recall that there is an equivalence of categories between the category of local systems

of rank r on M \ D with arrows being the isomorphisms, and the category of representations
ρ : π1(M \ D,x) −→ K (for any x ∈ M \ D, and K is a C-vector space of dimension r) with
arrows being the isomorphisms of representations. Once a point x ∈ M \ D is chosen, this
equivalence is obtained by associating to any local system K, the monodromy map Monx(K) :
π1(M \D,x) −→ Aut(Kx) (see [11]).

2.2. Atiyah sequence of the frame bundle. The frame bundle of a locally free OM -module

E of rank r is the holomorphic GLr(C)-principal bundle E
p

−→ M whose fiber at x ∈ M is the
set of isomorphisms C

r ≃ E(x). Here E(x) = Ex/mx stands for the fiber of E at x.

We recall that for any complex Lie group P and a holomorphic P -principal bundle E
p

−→ M ,
there is a notion of P -linearization for a OE-module V: this is a family (φb)b∈P of isomorphisms
φb : V ≃ r∗

b V (where rb is the right action of P ) with nice properties (see [17]). A OE-module
equipped with a P -linearization is said to be P -equivariant. In this context, there is an equiv-
alence between the P -equivariant locally free OE-modules and the locally free OM -modules,
and between the P -equivariant morphisms and the morphisms between the corresponding OM -
modules (see [2]) . For any representation ρ : P −→ GL(V), and any holomorphic P -principal

bundle E
p

−→ M , we denote by E(V) the OM -module associated with the OE-module OE ⊗V,
where the P -linearization (φb)b∈P is given by φb = r∗

b ⊗ ρ(b−1). We call it the representation
module associated with E and V. For any isomorphism Ψ : E −→ E′ of holomorphic P -principal
bundles covering ϕ : M −→ M ′, the representation isomorphism of associated vector bundles
corresponding to Ψ is the isomorphism

(10) Ψ(V) : E(V) −→ ϕ∗E′(V)

associated to the P -equivariant isomorphism Ψ∗ ⊗ IdV of trivial OE-modules.

Definition 2.4. Let V be a representation of a complex Lie group P . Let E
p1

−→ M and

E′ p1
−→ M ′ be two holomorphic P -principal bundles, and D,D′ be respectively two divisors of M

and M ′.

(1) An isomorphism Ψ : E|M\D −→ E′|M ′\D′ of holomorphic P -principal bundles is V-

meromorphic between (M,D) and (M ′,D′) iff the representation isomorphism Φ = Ψ(V)
restricts to an isomorphism Φ : E(V)[⋆D] −→ ϕ∗E′(V)[⋆D′] (see 10).
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(2) A V-meromorphic section of a holomorphic P -principal bundle E
p

−→ M on U with pole
at D is a holomorphic section σ : U \D −→ E such that the corresponding trivialisation
ψσ of E(V)|U\D induces an isomorphism of meromorphic bundles between E(V) and
OU ⊗ V.

In particular, mapping holomorphic GLr(C)-principal bundles E over M to the associated
representation modules E(Cr) gives an equivalence of categories. A pseudo-inverse is given by
mapping a locally free OM -module E of rank r to its frame bundle E.

Consider p = Lie(P ) which is the adjoint representation of P . Let At(E) be the OM -module
associated with the P -equivariant locally free OE-module TE equipped with the P -linearization
induced by the infinitesimal action of P on E: it is called the Atiyah bundle of E, and fits into
the short exact sequence:

(11) 0 // E(p)
ι

// At(E)
q

// TM // 0

where ι is the morphism associated with the P -equivariant morphism which to any A ∈ OE ⊗ p

associates the corresponding fundamental vector field on E, and q is the one associated with the
P -equivariant morphism dp : TE −→ p∗TM .

The previous equivalence implies that P -equivariant meromorphic one forms on E, with poles
at D̃ = p−1(D), and values in V are in bijection with morphisms β : At(E)[⋆D] −→ E(V)[⋆D],
or equivalently with sections of At(E) ⊗E(V)[⋆D]. This correspondance restricts to a bijective
correspondance between:

• The set of morphisms β as above vanishing on the image of ι in (11), equivalently sections
of Ω1

M [⋆D] ⊗ E(V)

• The set of meromorphic one forms ω̃ on (E, D̃) with values in V vanishing on ker(dp)

3. Holomorphic branched Cartan geometries and the Killing connection

In this section, we fix a pair (M,D) where M is of complex dimension n. We define mero-
morphic Cartan geometries, and the subcategory of branched holomorphic Cartan geometries.
We describe their infinitesimal automorphisms as sections for a meromorphic connection either
on a trivial module over the principal bundle of the geometry, or on the corresponding module
over the base manifold. We introduce the subcategory of totally geodesic meromorphic Cartan
geometries: in the next section, we will see that their infinitesimal automorphisms are single
valued, in a sense that will be defined.

3.1. Meromorphic and holomorphic branched Cartan geometries. First, we have to
define the models for Cartan geometries:

Definition 3.1. A complex Klein geometry of dimension n ≥ 1 is a couple (G,P ) where G is a
complex Lie group, and P is a complex Lie subgroup with dim(G) − dim(P ) = n.

Let (G,P ) be as in Definition 3.1 and let P ′ = ker(ad) where ad : P −→ GL(g/p) is the
representation induced by the adjoint representation. Then any choice of a basis for g/p identifies
Q = P/P ′ with a linear complex subgroup, and TG/P with the module G(g/p) associated to
the P -principal bundle E and the representation g/p. Thus, the complex manifold G/P comes
equiped with a holomorphic reduction G ×

P
Q of its holomorphic frame bundle R1(G/P ), i.e a

holomorphic Q-structure: namely G/P ′.
This is in fact only due to the presence of a g-valued holomorphic 1-form with special proper-

ties on the total space of the holomorphic P -principal bundle G −→ G/P , namely the Maurer-
Cartan form ωG of G. We can consider curved versions of theses objects for which the above
fact is still true replacing G by a suitable holomorphic P -principal bundle (see next subsection).
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Authorizing the one form to have poles on the P -principal bundle, we obtain their meromorphic
analogues:

Definition 3.2. Let (G,P ) be a complex Klein geometry with dim(G/P ) = n and (M,D)

be a pair. A meromorphic (G,P )-Cartan geometry is a couple (E,ω0) where E
p

→ M is a
holomorphic P -principal bundle, and ω0 is a g-valued meromorphic one form on E, with poles
on D̃ = p−1(D), such that:

(i) For any x ∈ M \D, ι⋆xω0 coïncides with the Maurer-Cartan form ωE,x (see above).
(ii) ω0 is P -equivariant.

(iii) For any e ∈ E \ D̃, ω0(e) is an isomorphism between TeE and g.

These objects form a category:

Definition 3.3. Let (G,P ) be a complex Klein geometry and (M,D),(M ′,D′) be two pairs
with dim(M) = dim(M ′) = dim(G/P ). Let (E,ω0) and (E′, ω′

0) be respectively two meromor-
phic (G,P )-Cartan geometries on (M,D) and (M ′,D′). An isomorphism between (E,ω0) and

(E′, ω′
0) is an isomorphism of g-meromorphic P -principal fiber bundles Ψ : E \ D̃

∼
→ E′ \ D̃′ (see

Definition 2.4) such that Ψ⋆ω′
0 = ω0.

The following object is central in the study of Cartan geometries:

Definition 3.4. Let (E,ω0) be a meromorphic (G,P )-Cartan geometry on (M,D). Its curvature
function (or curvature) is the meromorphic function kω0

on E with values in W = g∗ ∧ g∗ ⊗ g

and defined by:

(12) kω0
= dω0 ◦ (ω−1

0 ∧ ω−1
0 ) + [, ]g

where [, ]g is the Lie-bracket of g identified with an element of W.

Fix a Klein geometry (G,P ) and choose a basis (ei)i=1,...,N of g, with (ei)i=1,...,n spanning a
subspace g− complementary to p. Denote by (e∗

i )i=1,...,N the dual basis of g∗.

Definition 3.5. Let (E,ω0) be a meromorphic (G,P )-Cartan geometry on (M,D). The mero-
morphic functions:

(13) γk
i,j = e∗

k ◦ kω0
(ei, ej)

are called the structure coefficients (or structure functions) of (E,ω0).

A natural subcategory of the meromorphic (G,P )-Cartan geometries on pairs is the following:

Definition 3.6. A branched holomorphic (G,P )-Cartan geometry on a pair (M,D) is a mero-
morphic (G,P )-Cartan geometry (E,ω0) on (M,D) such that ω0 extends as a holomorphic one
form on E.

An important feature of these objects for the classification is the existence of a holomorphic
connection on the adjoint vector bundle. Indeed, let (E,ω0) be a branched holomorphic (G,P )-
Cartan geometry on (M,D), and EG = E ×

P
G the extension of the holomorphic P -principal

bundle E to the group G. By definition, EG is the quotient of the product E ×G by the action
of G given by (e, g) · h = (e · h, h−1g). Consider the G-equivariant holomorphic one form ω on
E ×G with values in g given by:

(14) ω = ad(π2) ◦ π⋆
1ω0 + π⋆

2ωG

where π1, π2 are the projections on each factor and ωG is the Maurer-Cartan form of G. It is
straightforward to verify that for any A ∈ g0, ω( d

dt |t=0(e, h) · expG(tA)) = 0, i.e the vectors
tangent to the fibers of

(15) πG : E ×G −→ EG
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are in the kernel of ω. Moreover, ω is invariant under the action of G on E×G. Thus, ω induces
a holomorphic one form on EG.

Definition 3.7. The holomorphic G-principal connection ω̃ on EG induced by ω is the tractor-
connection of (E,ω0). We denote by ∇ω0 the corresponding holomorphic connection on EG(g) =
E(g) (see Proposition 5.0.1).

The pullback p∗E(g) is the trivial module V = OE ⊗ g.

Lemma 3.1. The pullback p⋆∇ω0 is d−Ad(ω0) where d is the de Rham diffential on the trivial
module V, Ad(ω0) is the section of Ω1

E ⊗ End(g) = Ω1
E ⊗ End(V) defined by:

XyAd(ω0)(s) = [ω0(X), s]g

for any holomorphic vector field X of E and section s of V. In particular, its curvature is
Rp⋆∇ω0 = Ad(dω0) +Ad(ω0 ∧ ω0).

Proof. Since the ω0-constant vector fields on E span TeE at any e ∈ E \ D̃, we can choose
Ã = ω−1

0 (A) for A ∈ g as a holomorphic vector field on E \ D̃. Let s be any section of V(U),
U ⊂ E \ D̃ an open subset. By definition of ∇ω0 and the remarks preceding Definition 3.7, we
have:

Ãyp⋆∇ω0(s) = (A− Â)yd(s̃)

where s̃ is the unique G-equivariant section of OE×G ⊗ g which coïncides with s in restriction
to E ⊂ E × G, A is the unique G-invariant meromorphic vector field whose restriction to E

coïncides with Ã, and Â is the holomorphic vector field tangent to the fibers of E × G
π1−→ E

such that π⋆
2ωG(Â) = A. Indeed, A − Â is the unique vector field which belongs to ker(ω)

and projects to Ã via π1 : E × G −→ E. Now, Ayd(s̃) coïncides with Ãyd(s) in restriction

to E, while Âyd(s̃) = [A, s]g because s̃ is G-equivariant. The first formula follows. For the
curvature, it corresponds to the classical computation of the curvature in a trivialisation of a
vector bundle. �

3.2. Meromorphic extension of the tangent sheaf. We now describe an object induced by
any meromorphic Cartan geometry, which plays the same role as the tangent bundle of the base
manifold in the regular case. It is a particular case of the following objects:

Definition 3.8. Let (M,D) be a pair.

(1) A meromorphic extension of (M,D) is a couple (φ0, E) where E is a locally free OM -
module and φ0 : TM [⋆D] −→ E [⋆D] is an isomorphism of OM -modules.

(2) A holomorphic extension of (M,D) is a meromorphic extension (φ0, E) such that φ0(TM) ⊂
E.

(3) The category F (resp. F0) of meromorphic extensions (resp. holomorphic extensions)
over pairs is defined as follow. An arrow between two meromorphic extensions (φ0, E) and
(φ′

0, E
′) over (M,D) and (M ′,D′) is a an isomorphism (ϕ,Φ) of meromorphic bundles

(resp. of vector bundles, see Definition 2.2) between E and E ′ such that the following
diagram commutes:

(16) TM
φ0

//

dϕ
��

E [⋆D]

Φ
��

ϕ∗TM ′

ϕ∗φ′

0

// ϕ∗E ′[⋆D]
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(4) The category obtained by restricting to meromorphic extensions of (M,D) and to iso-
morphisms of meromorphic bundles of the form (IdM ,Φ) is denoted by FM,D (resp.
F0

M,D).

Meromorphic extensions on (M,D) are thus canonically isomorphic to submodules of maximal
rank of the sheaf of tangent vector fields with poles at D. The restriction of the corresponding
frame bundle to M \D can thus be canonically identified with the frame bundle of M \D. This
gives the following alternative description:

Definition 3.9. Let (M,D) be a pair.

(1) Let E
p

−→ M be a holomorphic P -principal bundle and D̃ = p−1(D). A meromorphic
solderform on (E, D̃) is a P -equivariant C

n-valued meromorphic 1-form θ0 on E, with
poles supported at D̃, vanishing on ker(dp), and such that θ0(e) is surjective for any
e ∈ E \ D̃. A couple (E, θ0) is called a meromorphic solder form over (M,D)

(2) An arrow between two meromorphic solderforms (E, θ0) and (E′, θ′
0) over (M,D) and

(M ′,D′) is an isomorphism of holomorphic P -principal bundles Ψ̃ : E −→ E′ such that
θ0 = Ψ̃⋆θ′

0. This defines the category D of meromorphic solderforms over pairs.

Proposition 3.0.1. The map which to any meromorphic solder form (E, θ0) over (M,D)

(Definition 3.9) associates the meromorphic extension (φ0, E) where φ0 : TM [⋆D]
∼

−→ E [⋆D]
is the isomorphism which corresponds to θ0 (see remarks above), extends to an equivalence of
categories m : D −→ E.

Proof. If Ψ̃ : E −→ E′ is an arrow between two objects (E, θ0) and (E′, θ′
0) of the category of

solderforms over (M,D), we define m(Ψ̃) = Φ as the image of Ψ̃ through the equivalence of
categories described in subsection 2.2. Consider the images (φ0, E) and (φ′

0, E) of (E, θ0) and
(E′, θ′

0). Since θ′
0 = Ψ̃⋆θ0, by definition, Φ ◦ φ0 = φ′

0 so m is an essentially surjective functor.
Since it is the restriction of the equivalence of categories described in subsection 2.2, it is an
equivalence of categories. �

Now let (E,ω0) be any meromorphic (G,P )-Cartan geometry on (M,D). Then the mero-
morphic one form πg/p ◦ ω0 obtained by projecting ω0 on g/p is P -equivariant for the quotient

adjoint action on g/p, and pointwise surjective on E \ p−1(D). Moreover, its kernel contains
ker(dp). By the subsection 2.2, it thus corresponds to a morphism of OM -modules:

(17) φ0 : TM [⋆D] −→ E [⋆D]

where we set E = E(g/p). By construction, φ0 is an isomorphism of meromorphic bundles and
(E , φ0) is thus a meromorphic extension on (M,D).

Definition 3.10. The meromorphic extension (E , φ0) obtained as above is the meromorphic
extension induced by (E,ω0). We denote by f the map from the set of meromorphic (G,P )-
Cartan geometries on pairs to the set of meromorphic extensions which maps (E,ω0) to its
induced meromorphic extension (E , φ0). This extends as a functor f between the corresponding
categories.

3.3. Infinitesimal automorphisms as horizontal sections. Important objects in the study
of meromorphic Cartan geometries are the following:

Definition 3.11. Let (E,ω0) be a meromorphic (G,P )-Cartan geometry on (M,D). An infini-
tesimal automorphism of (E,ω0) is a holomorphic vector field X on an open subset U ⊂ M \D,
lifting to a vector field X on p−1(U) such that φt⋆

Xω0 = ω0. We write killloc
M,ω0

for the subsheaf of

TM \D whose sections are the local infinitesimal automorphisms, and killloc
E,ω0

for the subsheaf

of TE \ D̃ whose sections are the lifts of sections of killloc
M,ω0

.
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In order to study the sections of killloc
M,ω0

, it is convenient to identify them with horizontal
sections for a meromorphic connection on a trivial module over E. This is also a classical
approach for general meromorphic parallelisms (see for example [5]). Indeed, let’s denote by T
the torsion of the flat meromorphic connection ∇0 whose horizontal sections are the ω0-constant
vector fields on E. Then:

Proposition 3.0.2. Let (E,ω0) be a meromorphic (G,P )-Cartan geometry on (M,D).

(1) The sheaf killloc
E,ω0

coïncides with the sheaf ker(∇rec
ω0

) of horizontal sections for the recip-
rocal connection ∇rec defined by:

(18) ∇rec
X = ∇0

X + T (X, ·)

for any local vector field X.
(2) The connection ∇rec

ω0
is invariant by the P -linearization (drb)b∈P corresponding to the

action of principal P -bundle.

Proof. (1) See Lemma 3.2 in [5].
(2) This straightforwardly follows from the fact that the torsion of ∇0 is P -invariant by

definition.
�

Definition 3.12. The Killing connection of a meromorphic (G,P )-Cartan geometry (E,ω0) on
(M,D) is the meromorphic connection (V,∇ω0) where V = OE ⊗ g and

∇ω0 = Φ−1
ω0

∇rec

where Φω0
is the isomorphism of OE [⋆D̃]-modules between TE[⋆D̃] and V[⋆D̃].

The sheaves killE,ω0
and killM,ω0

are respectively local systems on E \ D̃ and M \D.

As explained in the introduction, our goal is to classify quasi-homogeneous meromorphic
Cartan geometries (E,ω0). This hypothesis is satisfied whenever the base manifold M has only
constant meromorphic functions (see [13]). In this case, there exists a point x0 ∈ M and n
independent germs of Killing vector fields for (E,ω0) at x0. We seek for a sufficient condition
for these germs to come from global Killing vector fields, i.e for the following property to be
satisfied:

Definition 3.13. Let (E,ω0) be a meromorphic (G,P )-Cartan geometry on a pair (M,D).
It satisfies the extension property of infinitesimal automorphisms if and only the local system
killM,ω0

on M \D extends as a local system k ⊂ TM on M .

3.4. Distinguished foliations and totally spiral meromorphic Cartan geometries. We
now isolate a subcategory of meromorphic Cartan geometries for which the extension property
will be easier to obtain. Let (E,ω0) be a meromorphic (G,P )-Cartan geometry on (M,D), and
A ∈ g \ {0}. Since ω0 induces an isomorphism of meromorphic bundles between TE[⋆D̃] and
OE [⋆D̃] ⊗ g, there exists a unique distribution of rank one (thus integrable) TA ⊂ TE with the
following property:

(19) ω0(TA) ⊂ OE [⋆D̃]A

We will call it the A-distinguished foliation of (E,ω0), and a leaf Σ̃ will be called a A-distinguished
curve for (E,ω0).

Let A ∈ g \ {0} and Σ̃ a A-distinguished curve for (E,ω0). If A ∈ p, then Σ̃ is tangent to the
kernel ker(dp) of the differential of the bundle map. If A 6∈ p, Σ̃ ∩ (E \ D̃) is transverse to this
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distribution. Hence, the restriction of p to Σ̃ is a cover map from Σ̃ to its image Σ ⊂ M . In
particular, if Σ is simply connected, then it is a biholomorphism.

Definition 3.14. Let A ∈ g and (E,ω0) a meromorphic (G,P )-Cartan geometry.

(1) A A-spiral for (E,ω0) at x0 ∈ M is a complex smooth curve Σ embedded in M , containing
x0 and such that Σ \D lifts to a A-distinguished curve in E.

(2) A holomorphic A-spiral is a A-spiral Σ such that the lift Σ̃ as in 1. extends to a curve
Σ̃ projecting onto Σ.

Definition 3.15. A meromorphic (G,P )-Cartan geometry (E,ω0) on a pair (M,D) satisfies
the τ -condition if the following is true. For any irreducible component Dα of D, there exists
x0 ∈ Dα and a spiral Σ for (E,ω0) with Σ ∩D = {x0}

Recall that for any holomorphic foliation TA on a complex manifold E admits an analytic
subset Sing(TA) of codimension at least 2 s.t. for any e0 ∈ E\Sing(TA), there is a neighborhood
U of e0 and a nonvanishing holomorphic vector field Z ∈ TE(U) with:

(20) TA|U = OUZ

In this case, we say that Z defines TA over U , and the leaves of TA in U are exactly the orbits
of the local flow for Z. From this remark, we can easily deduce the first part of the following:

Lemma 3.2. Let E and TA be as above. Let D̃ be any submanifold E.

(1) The following assertions are equivalent:
(i) D̃ is a union of leaves for TA.

(ii) Any local vector field Z defining TA is everywhere tangent to D̃.
(iii) For any local equation z1 of U ∩ D̃, and local vector field Z defining TA over U , the

dimension :

(21) dimC OE,e0
/〈LZ(z1), z1〉e0

is never finite for e0 ∈ D̃ ∩ U .
We say that a submanifold D̃ ⊂ E is invariant by TA.

(2) If D̃ is not invariant by TA, then there exists an Zariksi-dense subset W̃ ⊂ D̃ \Sing(TA)
with the following property: for any e0 ∈ W̃ , there exists a leaf Σ̃ of TA through e0

satisfying Σ̃ ∩ D̃ = {e0}.

Proof. (1) The equivalence between (i) and (ii) is clear from the above remark. The number
(21) is the order of tangency of TA to D̃ at e0 (see [6]).

(2) Let z1 be a local equation for D̃, defined on an open subset U ⊂ E where we can find
a holomorphic vector field Z defining TA. Then the dimension (21) is zero except for a
finite number of points in D̃∩U (see [6]). Complete z1 into local coordinates (z1, . . . , zn)
on U , and decompose Z = h ∂

∂z1
+Z ′ where h is a holomorphic function on U and Z ′ is a

holomorphic vector field on U which belongs to the submodule spanned by ∂
∂z2

, . . . , ∂
∂zn

.

Since LZ′(z1) = 0, the previous fact implies that h is not a multiple of z1. This means
that Z is generically transverse to D̃ ∩U , and the leaves of TA|U are so, completing the
proof of 2.

�

Definition 3.16. Let (E,ω0) be a meromorphic (G,P )-Cartan geometry on a pair (M,D), and
let (D̃α)α∈I be the irreducible components of the divisor D̃ = p−1(D). We say that (E,ω0)
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satisfies the strong τ -condition if for any α ∈ I, there exists A ∈ g such that D̃α is not invariant
by TA.

In what follows, we prove that in the case of a branched holomorphic Cartan geometry
(Definition 3.6), the strong τ -condition can be detected in terms of the geometric structures
induced by this geometry:

Lemma 3.3. Let (E,ω0) be a branched holomorphic (G,P )-Cartan geometry on (M,D). Let
A ∈ g \ p. Then the foliation TA is transverse to ker(dp). In particular, for any complementary
subspace g− of p, we obtain a holomorphic foliation of E which is transverse to ker(dp).

Proof. Let e0 ∈ E \ Sing(TA), and U be an open neighborhood of e0 in E \ Sing(TA) equiped
with coordinates (z1, . . . , zN ), with the property that ∂

∂zn+1
, . . . , ∂

∂zN
are sections of ker(dp) (i.e

vertical vector fields). Fix a basis (e1, . . . , eN ) of g obtained by completing a basis (en+1, . . . , eN )
of p.

Since (E,ω0) is a branched holomorphic Cartan geometry, the matrix Q = (qij)i,j=1,...,N of
ω0 in the previous basis takes the form:

(22) Q =

(
A 0
B C

)

where:

• A,B,C are holomorphic matrices on U .
• C ′ = C−1 is a holomorphic matrix U .

Hence, the matrixQ−1 of the ω0-constant vector fields associated with (ej)j=1,...,N in ( ∂
∂zi

)i=1,...,N

is:

(23) Q−1 =

(
A1 0
B1 C1

)

with:

CB1 +BA1 = 0

Consider any irreducible component D̃α of D̃ = p−1(D), and any j ∈ {n+ 1, . . . , N}. Since C−1

is holomorphic on U , the above equation implies that for any vector in C
n:

(24) ordD̃α∩U (B1






a1
...
an




)j ≥ min

i=1,...,n
ordD̃α∩U (A1






a1
...
an




)i

where the subscript stands for the i-th component.
We now interpret the inequality (24) geometrically. Let Z be a holomorphic vector field

defining TA on U . Define






a1
...
aN




 to be the coordinates of A in the basis (ei)i=1,...,N . Thus:

(25) Z = hÃ

with h a meromorphic function on U satisfying:
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ordD̃α∩U (h) = − min
j=1,...,N

ordD̃α∩U (
N∑

i=1
q−1

ji ai)

= −min( min
i′=1,...,n

ordD̃α∩U (A1






a1
...
an




)i′ , min

j′=1,...,n
ordD̃α∩U (B1






a1
...
an




)j′)

Using (24), we obtain that ordD̃α∩U (h) = − min
i′=1,...,n

ordD̃α∩U (A1






a1
...
an




)i′ .

Decompose Z = Z ′ + Z ′′ with Z ′ in the subsheaf of holomorphic vector fields spanned by
( ∂

∂zi
)i=1,...,n and Z ′′ in the subsheaf ker(dp). Then the coordinates of Z ′ (resp. Z ′′) in ( ∂

∂zi
)i=1,...,n

(resp. ( ∂
∂zi

)i=n+1,...,N ) are

hA1






a1
...
an






respectively:

hB1






a1
...
an




+ hC1






an+1
...
aN






Using the above remark, and (24) again, we conclude that Z ′ has order zero along D̃α ∩ U
since ai0

6= 0 for some i0 ∈ {1, . . . , n}, while Z ′′ is holomorphic. Since Z ′ never vanishes on
the regular part of (E,ω0) (up to restriction of U), we conclude that Z is nowhere tangent to
ker(dp), concluding the proof. �

Proposition 3.0.3. Let (E,ω0) be a branched holomorphic (G,P )-Cartan geometry on (M,D).
Suppose that no irreducible component Dα of D is invariant by the spirals of (E,ω0). Then
(E,ω0) satisfies the strong τ -condition.

Proof. Pick an irreducible component D̃α of D̃ = p−1(D). We have to prove that there exists
A ∈ g and a A-distinguished curve Σ̃ transverse to D̃α. But by the hypothesis, there exists
a spiral Σ of (E,ω0) which is transverse to Dα = p(D̃α). Thus, there exists A ∈ g \ p and a
A-distinguished curve Σ̃ with p(Σ̃) = Σ \Dα.

Remark that TA is the kernel of an unique holomorphic P -principal connection on the re-
stricted bundle E|Σ\Dα

, and Σ̃ is a horizontal section of this connection. By Lemma 3.3, this
holomorphic principal connection extends as a holomorphic principal connection on E|Σ. Hence,
Σ̃ extends as a horizontal section of E|Σ, i.e p(Σ̃) = Σ. Up to restriction of Σ, we can assume
that Σ ∩ Dα = {x0}. Thus Σ̃ intersects D̃α in some point in the fiber of x0, concluding the
proof.

�

4. Infinitesimal automorphisms of meromorphic parabolic geometries

A classical result in Riemannian geometry states that any Killing vector field X for a Rie-
mannian metric g is a Jacobi field: for any geodesic γ, its scalar product g(X(γ(t)), γ′(t))) with
the velocity of γ is constant. There is a natural generalization of Riemannian metrics to the
holomorphic category, and the corresponding objects are equivalent to torsionfree holomorphic
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affine connections preserving a holomorphic reduction to the orthogonal group. The holomor-
phic version of the previous result can be seen as a result on some torsionfree holomorphic affine
Cartan geometries (see Corollary 5.1). In this section, we will see a general result for mero-
morphic Cartan geometries. In particular, this will imply that the local system of infinitesimal
automorphisms for any totally geodesic regular meromorphic parabolic geometry extends as a
local system on the whole base manifold.

4.1. Regular meromorphic parabolic geometries. A complex parabolic Klein geometry is a
complex Klein geometry (G,P ) where G is a complex semi-simple Lie group, and P a parabolic
subgroup. A meromorphic parabolic geometry is a meromorphic (G,P )-Cartan geometry for
some complex parabolic Klein geometry. We refer the reader to [9] for a detailed introduction.

With the subgroup P is associated a grading (gi)i∈Z of the Lie algebra g = Lie(G), meaning
[gi1

, gi2
]g ⊂ gi+j for any indices i1, i2 ∈ Z. We call it the parabolic filtration associated with

P . It induces a grading of any representation of G, in particular W = (
2∧
g∗

−) ⊗ g is graded by
homogeneous degrees Wl, and we denote by πl the corresponding projections.

The parabolic degree of (G,P ) is the smallest positive integer k ≥ 1 such that gi = {0} for
any |i| > k. The subspaces p = Lie(P ) and the subspace

(26) g− =
−1⊕

i=−k

gi

are clearly subalgebras of g. For any i ∈ {−k, . . . , k}, we will denote gi =
⊕

i′≥i
gi′ , inducing a

filtration (gi)i=−k,...,k of g.
By a result of C. Chevalley, we can always pick a basis (ei

j)i=−k,...,k
j=1,...,ni

of g, such that (ei
j)j=1,...,ni

is a basis for gi for any i ∈ {−k, . . . , k}, and [ei1

j1
, ei2

j2
]g is a vector in Zei1+i2

j for some j ∈

{1, . . . , ni1+i2
}. We will refer to it as a graded basis of g for (G,P ).

The homogeneous space G/P associated with a complex parabolic Klein geometry (G,P )
bears the following holomorphic geometric structure. Its tangent bundle is filtered by subbundles
(T−iG/P )i=1,...,k where T−iG/P is the projection of ω−1

G (gi) through the tangent map TpG/P of
the projection pG/P : G −→ G/P . The Lie bracket of holomorphic vector fields on G/P induces
a Lie bracket of holomorphic vector bundle on the corresponding graded bundle gr(TG/P ). The
Lie algebra bundle thus obtained is locally isomorphic to (U × g−, [, ]g−

).
The regular meromorphic parabolic geometries are the infinitesimal versions of this model.

More precisely, these are meromorphic (G,P )-Cartan geometries (E,ω0) on (M,D) for which
the homogeneous component πl(kω0

) of degree l of the Cartan curvature vanishes identically
whenever l ≤ 0 (see above). This amounts to the following property. Let T−iM [⋆D] be the
image of ω−1

0 (g−i)[⋆D̃] through Tp. This gives a filtration of TM [⋆D̃], and (E,ω0) is regular if
and only if the Lie bracket of vector fields on M induces a structure of Lie algebras bundle on
the graded gr(TM \D), locally isomorphic to (U × g−, [, ]g−

).

4.2. Bott connections and infinitesimal automorphisms of Cartan geometries. Now,
we come back to a general complex Klein geometry (G,P ). Let (M,D) be a complex pair of
dimension n ≥ 1, and (E,ω0) be a meromorphic (G,P )-Cartan geometry on it. Fix A ∈ g \ {0}
and consider the holomorphic foliation TA from (19). To any such holomorphic foliation is
associated a TA-partial holomorphic connection ∇TA on TE/TA, the Bott-connection of TA,
defined as follow. Let X be a holomorphic vector field on U ⊂ E, [X] its class in TE/TA(U),
and Z ∈ TA(U). Then:

(27) Zy∇TA([X]) = [[Z,X]T E ]
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Let t ∈ C and V ⊂ U such that the flow φ = φt
Z is well defined on V . Then clearly dφ(TA) ⊂

φ∗TA, so φ induces a morphism [dφ] of OV -modules defined by the commutative diagram:

(28) TV
dφ

//

[]
��

φ∗Tφ(V )

φ∗[]
��

TV/TA
[dφ]

// φ∗Tφ(V )/TA

By the formula (27), the horizontal sections for ∇TA are the [X] which are invariant by the
isomorphisms of holomorphic vector bundle (φ, [dφ]) defined as before.

It will be more convenient to work with the images of meromorphic vector fields on E through
the isomorphism Φω0

between TE[⋆D̃] and V[⋆D̃], where V = OE ⊗ g. We will write:

(29) K = Φω0
(killE,ω0

)

for the corresponding local system on E\D̃. Clearly, the image of TA[⋆D̃] is VA = OE [⋆D̃]A. The
class of a section s of V[⋆D̃](U) (where U ⊂ E is an open subset) in V/VA[⋆D̃] will be denoted by
[s]V/VA

. Since Φω0
induces an isomorphism of OE-modules between TE/TA[⋆D̃] and V/VA[⋆D̃]

, for any Z ∈ TA(U), the morphism [dφ] defined by (28) corresponds to an isomorphism

(30) dφ : V/VA[⋆D̃]|V −→ φ∗V/VA[⋆D̃]|φ(V )

and thus an isomorphism (φ, dφ) of meromorphic bundles.
The isomorphism of meromorphic bundles Φω0

(see above) maps TA[⋆D̃] to VA[⋆D̃], and we
denote by Φω0

: TE/TA[⋆D̃] −→ V/VA[⋆D̃] the isomorphism induced by Φω0
. Then:

Lemma 4.1. Let s be a section of K on an open subset U ⊂ E \ D̃. Then its class [s]V/VA
is

invariant by any isomorphism of meromorphic bundles (φ, dφ) constructed as above.

Proof. Let X be any holomorphic vector field on U ⊂ E, and [X] its class in TE/TA. By
definition, for any ZA = hÃ (where h is a meromorphic function on U and Ã = ω−1

0 (A)) we
have:

(31)
0 = [Ã,X]T E

= 1
h [ZA,X]T E mod TA[⋆D̃](U)

In other words, the classes of dφ(X) and φ∗X in TE/TA[⋆D̃], well defined on U ∩ φ(U),
coïncides i.e s is invariant by (φ, dφ). �

Now, we suppose M to be simply connected. We wish to prove the extension property
for (E,ω0) (Definition 3.13). We will use the following general fact on meromorphic Cartan
geometries:

Theorem 4.1. Let (G,P ) be a complex Klein geometry, and (M,D) be a pair with dim(M) =
dim(G/P ). Let (E,ω0) be a meromorphic (G,P )-Cartan geometry on (M,D). Let x0 ∈ D be-
longing to the smooth part of an unique irreducible component Dα, and D̃α = p−1(Dα). Suppose
that there exists A ∈ g \ p and a A-distinguished curve Σ̃ for (E,ω0) such that Σ̃ ∩ D̃α = {e0}
for some point e0 in the fiber of x0. Then there exists a neighborhood U of x0 with the following
properties:

(1) Let s be a section of K on V ⊂ p−1(U \ D). Then the class [s]V/VA
of s in TE/TA

extends as a (univaluated) section of TE/TA on p−1(U \D).
(2) The section of V/VA obtained as above is the restriction of a section of V/VA[⋆D] over

p−1(U).
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(3) Suppose moreover that (E,ω0) is holomorphic branched on (M,D). Then the above
section lies in V/VA(p−1(U)).

Proof. (1) It is a classical result that the image KA = πV/VA
(K) of the local system K on

E \ D̃ is a local system on E \ D̃. Moreover, K is P -equivariant, and the same remains
valid for KA. We thus have to prove that KA is a constant sheaf on an open subset
Ũ \ D̃ where Ũ ⊂ E containing some e0 ∈ p−1(x0). It suffices to prove that there exists
a simply connected Ũ , with Ũ ∩ D̃ simply connected, and e′

0 ∈ Ũ ∩ D̃ such that KA is a
constant sheaf in a neighborhood of e′

0.
The hypothesis says that D̃α is not invariant by TA. By Lemma 3.2 there exists an

open neighborhood Ũ0 of some point e0 ∈ p−1(x0) such that a generic leaf of TA|U0

intersects D̃ ∩ U0 in exactly one point. Pick e′
0 such that there exists a leaf Σ̃ of TA

with Σ̃ ∩ D̃ = {e′
0}. Pick e ∈ Σ̃ \ D̃, and a simply connected open neighborhood V of e

equipped with a basis (s1, . . . , sr) of K.
By the Lemma 4.1, the family dφ([s1]V/VA

), . . . , dφ([sr]V/VA
), where dφ is the mor-

phism (30), is a basis of φ∗KA(φ(V ) \ D̃). Then KA is a constant sheaf when restricted
to Ũ \D̃, where Ũ = φ(V ) is a neighborhood of e′

0. By the above remarks, this concludes
the proof.

(2) Since(30) is an isomorphism of meromorphic bundles, we have proved in 1. that the
local system KA = πV/VA

(K) extends as a constant sheaf, included in V/VA[⋆D̃]|p−1(U)

since (φ, dφ) is an automorphism of meromorphic bundles for V/VA.
(3) The meromorphic Cartan geometry (E,ω0) is holomorphic branched on (M,D) if and

only if Φω0
(TE) ⊂ V. Suppose this is the case. Since the automorphism of meromorphic

bundles (φ, [dφ]) of TE/TA defined before (28) is an automorphism of holomorphic vector
bundles. Since Φω0

(TE) and V coïncides when restricted to p−1(U \D), we obtain that
the image of V/VA|p−1(U\D) through the dφ lies in V/VA|φ(p−1(U\D)), where φ(p−1(U \D))

is a neighborhood of e′
0 by construction. This proves the assertion.

�

4.3. Affine and degree one parabolic models. We now apply Theorem 4.1 to prove the ex-
tension property for infinitesimal automorphisms of some holomorphic branched (G,P )-Cartan
geometries which satisfies the τ -condition (Definition 3.15). More precisely, we let (G,P ) be:

• A complex parabolic Klein geometry of dimension n ≥ 2 and degree k = 1 (see subsection 4.1),
with G a complex simply connected simple Lie group,

• Or the complex affine Klein geometry of dimension n ≥ 2.

For the first model, we denote by g−1 ⊕ g0 ⊕ g1 the parabolic filtration associated with P (see
subsection 4.1). For the second one, g−1 will stand for the abelian subalgebra of infinitesimal
generators for the translations in C

n.
These two kind of models are of special interest because the Levi subgroupG0 = expG(g0) ⊂ P

acts transitively on the lines in g−1. This is clear for the second one, since the corresponding
action is the standard representation of GLn(C). For the first one, remark that P = G0 ⋉

expG(g1), and [g1, g−1]g ⊂ g0. Hence, [g0, g−1]g must be g−1. This implies that the action of G0

on g−1 is open.
By the above remarks, for any A ∈ g−1 \ {0}, there exists a basis (ei)i=1,...,n of the abelian

subalgebra g−1 ⊂ g = Lie(G) , and n elements b1, . . . , bn ∈ P such that

(32) ad(b−1
i )[A] ∈ Cei

for 1 ≤ i ≤ n.
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Lemma 4.2. Let (E,ω0) be a holomorphic branched (G,P )-Cartan geometry on (M,D), and
let x0 ∈ D belonging to the smooth part of an unique irreducible component Dα. Suppose there
exists a spiral Σ for (E,ω0) with Σ ∩ D = {x0}. Then, for any 1 ≤ i ≤ n, there exists a
holomorphic ei-spiral Σi for (E,ω0) with Σi ∩D = {x0}.

Proof. By Proposition 3.0.3, Σ is a A-holomorphic geodesic for A ∈ g \ p. Thus, there exists
e0 ∈ p−1(x0) and a A-distinguished smooth complex curve Σ̃ with p(Σ̃) = Σ and Σ̃∩ D̃α = {e0}.
Let b1, . . . , bn ∈ P as in (32). By equivariance of ω0, for any 1 ≤ i ≤ n, the bi-translated Σ̃i of Σ̃
is a ei-distinguished smooth complex curve, with Σ̃i ∩ D̃α = {e0 · bi}. This means that for any
i ∈ {1, . . . , n}, D̃α is not invariant by Tei

. By Lemma 3.2, this implies that for any such i, there
exists a Zariski open-dense subset Wi of D̃α such that, for any e′

0 ∈ Wi, there exists a leaf Σ̃i of
Tei

transverse to D̃α at e′
0.

Consider the open subset Vx0
of the fiber of x0 in E defined by:

(33) Ṽx0
=

n⋂

i=1

Wi ∩ p−1(x0)

Since each Wi contains a point in the fiber of x0, Ṽx0
is a non-empty Zariski-dense open subset

of this fiber. Moreover by construction, for any e′
0 ∈ Ṽx0

, and any 1 ≤ i ≤ n there is a ei-
distinguished smooth curve Σ̃i with Σ̃i ∩ D̃ = {e′

0}. The corresponding projections Σi throuhg
p are holomorphic ei-spirals for (E,ω0), and the proof is thus achieved. �

Corollary 4.1. Let (E,ω0) be a holomorphic branched (G,P )-Cartan geometry on (M,D), with
M simply connected. Suppose it satisfies the τ -condition (Definition 3.15). Then:

(1) (E,ω0) satisfies the extension property for the infinitesimal automorphisms.
(2) Any section s of ker(∇κ

ω0
)(U) (where ∇κ

ω0
is the Killing connection, see Definition 3.12,

and U ⊂ E is an open subset of M) is a section of V(U).

Proof. (1) Since the complement of a codimension 2 subset of M has the same fundamental
group as M , and in virtue of the equivalence between local systems and representations
of the fundamental group, it suffices to find a codimension 1 subset W of D, pick a
point x0 on an unique irreducible component Dα of D ∩W , and show the existence of a
neighborhood U of x0 in M such that the restriction of ker(∇κ

ω0
) to p−1(U \D) extends

as a local system on p−1(U), included in TE[⋆D]|U .
Pick any irreducible component D̃α of D̃. By Lemma 3.2, there exists e0 ∈ D̃α and

a leaf Σ̃ of TA with Σ̃ ∩ D̃α = {e0}. Thus, there exists a A-spiral Σ of (E,ω0) with
Σ ∩Dα = {x0}. By Proposition 3.0.3, we can moreover suppose that Σ is a holomorphic
A-spiral.

We now apply Lemma 4.2 to obtain, for any 1 ≤ i ≤ n, a holomorphic ei-spiral Σi

with Σi ∩ D = {x0}. More precisely, the proof of the lemma implies the existence, for
i ∈ {1, . . . , n} fixed, of e0 ∈ p−1(x0) such that the ei-distinguished curve Σ̃i projecting
onto Σi satisfies Σ̃i ∩ D̃ = {e0}. Using the Theorem 4.1 for each geodesic, we obtain
neighborhoods Ui of x0 such that the restriction of the local system πV/Vei

(ker(∇κ
ω0

)) to

p−1(Ui) is a constant sheaf.

Let U =
n⋂

i=1
Ui. Since e1, e2 are independent vectors of g, the morphism of OE-modules:

(34) πV/Ve1
⊕ πV/Ve2

: V[⋆D̃] −→ V/Ve1
[⋆D̃] ⊕ V/Ve2

[⋆D̃]

is an isomorphism onto its image. Thus, it restricts to ker(∇κ
ω0

) as an isomorphism of C-
sheaves onto its image, a subsheaf of the local system πV/Ve1

(ker(∇κ
ω0

))⊕πV/Ve2
(ker(∇κ

ω0
)).
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By the above remark, this local system is a constant sheaf when restricted to p−1(U).
Thus, the same is true for ker(∇κ

ω0
), i.e (E,ω0) satisfies the extension property for the

infinitesimal automorphisms.
(2) Since (E,ω0) is a branched holomorphic Cartan geometry, we can apply the point 3. of

Theorem 4.1 to A = e1 and A = e2. We obtain that the image of ker(∇κ
ω0

) through
πV/Ve1

and πV/Ve2
respectively extends as subsheaves of V/Ve1

and V/Ve2
on E. Since

the morphism (34) clearly restricts to a morphism between V and V/Ve1
⊕ V/Ve2

, this
proves the assertion.

�

Remark 4.1.1. The conclusion of point 1. in Corollary 4.1 remains valid if we consider a
meromorphic (G,P )-Cartan geometry (E,ω0) on (M,D), but replacing the τ -condition by the
strong τ -condition (Definition 3.16). The conclusion of point 2. remains true if V is replaced
by V[⋆D].

4.4. Parabolic geometries of higher degree. Now, we let (G,P ) be a complex parabolic
Klein geometry of degree k > 1, and denote by g−k ⊕ . . . g0 ⊕ . . . gk the parabolic filtration. We
refer the reader to [9] for the definitions and a complete introduction on this subject.

The group P no longer acts transitively on P(g/p). Instead, we use a result of [8] which
implies the following:

Lemma 4.3. Let (E,ω0) be a regular meromorphic (G,P )-Cartan geometry on a pair (M,D).
Then there exists a morphism of C-sheaves:

(35) L : Vg−k
[⋆D̃] −→ V[⋆D̃]

with the following properties:

(i) Let π−k : V[⋆D̃] −→ Vg−k
[⋆D̃] be the projection on Vg−k

with respect to Vg−k+1[⋆D̃]. Then
π−k ◦ L = IdVg

−k
.

(ii) The restriction of L ◦ π−k to ker(∇κ
ω0

) is the identity on ker(∇κ
ω0

).

Proof. The Theorem 4 in [8] is exactly the non-singular version of this lemma, i.e when D is
empty. Its proof uses only differential operators constructed with the de Rham differential on
trivial modules, and morphisms of modules obtained by tensorizing linear map of complex vector
spaces with the identity on holomorphic functions. Thus, it straightforwardly extends to the
meromorphic category since such operators preserves the sheaves of meromorphic sections. �

Corollary 4.2. Let (E,ω0) be a regular holomorphic branched (G,P )-Cartan geometry on a
pair (M,D). Suppose that for any irreducible component Dα of D, there exists A ∈ g− \ g−k

and a A-spiral Σ of (E,ω0) with Σ ∩ Dα = {x0}. Then (E,ω0) satisfies the extension property
for the infinitesimal automorphisms.

Proof. By Proposition 3.0.3, we can suppose that the curves Σ in the statement are holomorphic
spirals, i.e. admit lifts to A-distinguished curves Σ̃ with Σ̃ ∩ D̃ = {e0}, for some e0 ∈ p−1(x0)
and A ∈ g− \ g−k.

Pick an irreducible component D̃α, let e0 be as above and apply the Theorem 4.1. Since k > 1,
CA and g−k are independent subspaces in g. Thus, the projection π−k(ker(∇κ

ω0
)) extends as a

constant C-subsheaf of Vg−k
[⋆D̃] on a neighborhood U of e0. The image of a constant sheaf by

a morphism of C-sheaves is a constant sheaf, so by Lemma 4.3, ker(∇κ
ω0

) extends as a constant

C-subsheaf of V[⋆D̃] on U . The proof is then achieved. �

Remark 4.1.2. Corollary 4.2 admits a meromorphic version as in the degree one case, see
Remarque 4.1.1.
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5. Application to the classification of meromorphic affine connections

5.1. Equivalence between meromorphic principal connections and meromorphic con-

nections. We now prove the equivalence between meromorphic connections on a locally free
OM -module E and meromorphic principal connections on its frame bundle E. It straightfor-
wardly restricts as an equivalence between meromorphic connections preserving a holomorphic
reduction E ⊂ E to a subgroup P ⊂ GLr(C), and meromorphic P -principal connections on
E. In the regular setting, this was first proved by C. Ehresmann ([16]) using the formalism of
horizontal lifts for paths, and reformulated in an equivariant way by M. Atiyah ([1]). We adopt
the point of view of M. Atiyah in order to extend the result to the meromorphic category.

The starting point is that for P = GLr(C), there is a canonical isomorphism ([1], Proposition
9):

(36) E(p) = End(E)

There is a bijection between the set of meromorphic connections ∇ on E and the one of
OM -linear splittings δ : E [⋆D] −→ J1(E)[⋆D] of the exact sequence of C-sheaves:

(37) 0 // Ω1
M [⋆D] ⊗ E // J1(E)[⋆D] // E [⋆D] // 0

where J1(E) is the jet-module of E (see [1]). Let σ : U −→ E be a holomorphic section of
the holomorphic frame bundle. This corresponds to a basis (s1, . . . , sr) of E|U , and we denote
in the following lines by d the pullback of the de Rham differential through the corresponding
isomorphism E|U ≃ O⊕r

U . The former equivalence is given by ∇ = d − δ. Indeed, this clearly
defines a meromorphic connection, and if ∇ is a meromorphic connection on E|U , then δ1 =
d − ∇ is a morphism of OU -modules from E|U [⋆D] to Ω1

U [⋆D] ⊗ E|U , and we obtain a splitting
δ = (IdE|U , δ1) of (37).

Definition 5.1. A meromorphic principal connection on a holomorphic GLr(C)-principal bun-

dle E
p

−→ M with poles at D̃ = p−1(D) (shortly on (E, D̃)) is a meromorphic one form ω̃ on
E with values in p, which is P -equivariant and such that ω̃ coïncides with the Maurer-Cartan
form of P when restricted to any fiber p−1(x) ⊂ E.

Using the correspondance for equivariant one forms as in subsection 2.2, a meromorphic P -
principal connection on (E, D̃) is equivalent to a morphism β : At(E)[⋆D] −→ E(p)[⋆D] such
that ι ◦ β = IdAt(E), where ι is defined in (11). Its kernel defines a splitting

(38) τ : TM [⋆D] −→ At(E)[⋆D]

of (11), which uniquely determines β. The following lemma straightforwardly follows from the
equivalence described before between equivariant morphisms of modules over principal bundles
and morphisms between the corresponding modules over the base manifolds:

Lemma 5.1. Let (M,D) and (M ′,D′) be two pairs of same dimension. Let Ψ̃ : E −→ E′ be
an isomorphism of holomorphic P -principal bundles over M and M ′ covering a morphism of
pairs ϕ : M −→ M ′ (i.e ϕ(D) = D′). Let ω̃2 be a meromorphic principal connection on (E, D̃1)
where D̃1 is the preimage of D (resp. ω̃1 = Ψ̃⋆ω̃1), and τ1 (resp. τ2) be the splitting as in (38).
Then the diagram below is commutative:

(39) TM
τ1

//

dϕ
��

At(E)[⋆D]

p1∗dΨ̃
��

ϕ∗TM ′

ϕ∗τ2

// ϕ∗At(E′)[⋆D]

where p1 is the footmap of E.
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Denote by d̃ the usual de Rham differential on OE [D̃] ⊗V. Since the P -linearization (φVb )b∈P

preserves the subsheaf of constant functions with values in V on E, the pushforward p∗d̃ restricts
to p∗d̃ : E −→ p∗Ω1

E ⊗ E . This defines a meromorphic connection ∇ on E by:

(40) ∇ = τyp∗d̃

where d̃ is defined above and y stands for the contraction by a vector field.

Proposition 5.0.1. Mapping a meromorphic principal connection (E, ω̃) over (M,D) to the
meromorphic connection (E ,∇) on (M,D) defined by (40) induces an equivalence of categories
between:

• The category of principal meromorphic (resp. holomorphic) connections over pairs,
where the arrows are the C

r-meromorphic isomorphisms (see Definition 2.4) of prin-
cipal bundles between pairs preserving the principal connections (resp. isomorphisms of
holomorphic principal bundles preserving the principal connections)

• The category of meromorphic (resp. holomorphic) connections on (M,D) with isomor-
phisms of meromorphic bundle (resp. holomorphic vector bundles, see Definition 2.2)
preserving connections (in the sense of (??)).

Proof. Let’s first prove that this map induces a functor. Let Ψ̃ : E −→ E′ be an isomorphism of
meromorphic principal connections between (E, ω̃1) and (E′, ω̃1) over (M,D) and (E1,∇1) and
(E2,∇2) obtained as in (40). Let (ϕ,Φ) be the associated isomorphism of vector bundles (see
(6)). Fix any open subset U ⊂ M and a basis (si)i=1,...,r of E1|U and denote by (ϕ∗ti)i=1,...,r its
image through Φ. Denote by (s̃i)i=1,...,r and (t̃i=1,...,r) respectively the corresponding equivariant

functions on p−1
1 (U) and p−1

2 (ϕ(U)). Thus t̃i = s̃i ◦ Ψ̃ by definition of Φ. By definition of
Φ−1ϕ⋆∇2, we can compute:

(41) Φ−1ϕ⋆∇2(si) = (IdΩ1
M

⊗ Φ−1)[dϕy(ϕ∗∇2(ϕ∗ti))]

Using the definition of ∇1 and ∇2, and Lemma 5.1, we get:

(42)

Φ−1ϕ⋆∇2(si) = (IdΩ1
M

⊗ Φ−1)[(ϕ∗τ2 ◦ dϕ)yϕ∗p2∗d̃2(t̃i))]

= τ1y(p1∗d̃1t̃i ◦ Ψ̃)

= ∇1(si)

where we denoted by d̃1 and d̃2 the usual de Rham differentials on OE ⊗C
r and OE′ ⊗C

r. Hence
we can map Ψ̃ to the vector bundle isomorphism (ϕ,Φ) which preserves the linear meromorphic
connections ∇1 and ∇2.

Now, we construct the pseudo-inverse. Let (E ,∇) be a meromorphic connection over a pair
(M,D). Denote by E its frames bundle. Let x ∈ M and U be a neighbhoorhood equipped
with a holomorphic section σ : U −→ E. Denote by (s1, . . . , sr) the corresponding basis of E|U .
The section σ induces a splitting TE|p−1(U) = p∗TU ⊕ ker(dp) which is P -equivariant, hence a
splitting

(43) At(E)|U = TU ⊕ E(p)|U

We denote by τ0 the splitting of the exact sequence (11) restricted to U induced by (43), and by
d the pullback of the de Rham differential through the trivialization associated with (si)i=1,...,r.
Let δ = ∇ − d, which vanishes on the image of E(p) through ι (see (11)). Its kernel thus define
a morphism Θ : TU −→ At(E)|U [⋆D], and we obtain a splitting

(44) τ = τ0 + Θ
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of (11) over U . From the remarks above, this is equivalent to a meromorphic principal connection
ω̃U on p−1(U) with poles at D̃ ∩ p−1(U).

Now, let U,U ′ be two open subset and (si)i=1,...,r and (s′
i)i=1,...,r be two basis of E|U and E|U ′

corresponding to holomorphic sections σ, σ′ of E on U and U ′. Let d and d′ be the corresponding
de Rham differentials, then:

(45) d− d′(s′
i) = d(s′

i) = d(
r∑

j=1

b−1
ji sj) =

r∑

j=1

(bd0(b−1))jis
′
j

where b is the meromorphic function on U ∩ U ′ with values in P such that σ′ = σ · b, and d0 is
the usual de Rham differential on p-valued functions. Denote by τ and τ ′ constructed as before.
Thus:

(46) τ ′ − τ = [(σ, b⋆ωP )]

Thus ∇′ − ∇ = d′ − d+ τ ′ − τ = 0 and the corresponding meromorphic principal connections ω̃
and ω̃′ coïncide over p−1(U ∩ U ′). We obtain a global meromorphic principal connection ω̃ on
(E, D̃) inducing ∇ as in (40).

If (ϕ,Φ0) is an isomorphism of vector bundles preserving the meromorphic connections ∇1,∇2,
then from subsection 2.2 it induces an isomorphism Ψ̃ of holomorphic principal bundles between
E and E′. Since the action of P on C

r is free, by definition of ∇1 and ∇2 we get that ϕ∗τ2 =
τ1 ◦ dϕ. By Lemma 5.1 we obtain Ψ̃⋆ω̃2 = ω̃1.

�

5.2. Equivalence between meromorphic affine connections and meromorphic affine

Cartan geometries. In this subsection, we consider the complex affine group G of dimen-
sion n ≥ 1, and the complex linear group P ⊂ G. The restricted adjoint representation
ad : P −→ GL(g) splits as the sum of two irreducible representations g− , the subalgebra
corresponding to the infinitesimal generators for the translations in Aff(Cn), and p = Lie(P ).

Consequently, if E
p

−→ M is a holomorphic P -principal bundle and ω0 is a meromorphic (G,P )-
Cartan connection on (E, D̃), then it splits as the sum:

(47) ω0 = θ0 ⊕ ω̃

of a meromorphic solderform θ0 on (E, D̃) (see Definition 3.9) and a meromorphic P -principal
connection ω̃ on (E, D̃).

Consider the category Fconn whose objects are triples (φ0, E ,∇) formed by a meromorphic
extension (φ0, E) over a pair (M,D) and a meromorphic connection (E ,∇) on (M,D), and the
arrows are the isomorphisms of vector bunlde (see subsection 2.2) preserving the meromorphic
connections (see (??)). Define the map f from the category Gaff of meromorphic (G,P )-
Cartan geometries on (M,D) to Fconn as follows. If (E,ω0) is an object of Gaff , consider the

meromorphic solderform (E, θ0) (see Definition 3.9) defined by (47), and ∇ the meromorphic
connection on E = E(Cn) associated with ω̃ (see Proposition 5.0.1).

Now, consider the subcategory G0
aff of Gaff whose objects are holomorphic branched (G,P )-

Cartan geometries, together with their isomorphisms. Consider a subcategory F0
conn of Fconn

obtained by intersecting with F0 (Definition 3.8).

Proposition 5.0.2. Let (M,D) be a pair. The map f extends as an equivalence of categories
between Gaff (resp. G0

aff ) and Fconn (resp. F0
conn).

Proof. Let Ψ : E −→ E′ be an arrow between two meromorphic (G,P )-Cartan geometries

(E,ω0) and (E′, ω′
0) over (M,D) and (M ′,D′) , and (φ0, E ,∇) and (φ′

0, E
′,∇

′
) their images

through f . So Ψ is a morphism of holomorphic principal bundles between the frame bundles and
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we define f(Ψ) = (ϕ,Φ) as the image of Ψ through the equivalence described in subsection 2.2.
By construction, since Ψ⋆ω′

0 = ω0, we have Ψ⋆θ′
0 = θ0 and Ψ⋆ω̃′ = ω̃. The first condition implies

that (ϕ,Φ) is an arrow of meromorphic extensions (Definition 3.8), while the second one implies
that it preserves the meromorphic connections ∇ and ∇′ (see Lemma 5.1). Hence, f is a functor.
Since it is the restriction of the equivalence of categories from Proposition 3.0.1, we obtain an
equivalence of categories. �

Let (φ0, E ,∇) be an object of Fconn on (M,D). Then:

(48) ∇ = φ−1
0 ∇

defines a meromorphic affine connection on (M,D), we will call it the meromorphic affine con-
nection induced by (φ0, E ,∇). Thus, there is a functor

(49) µ : Fconn −→ A

to the category A of meromorphic affine connections on pairs.

We denote by T∇ the torsion of ∇ (Equation 3). There is the analogous notion of g−-torsion
for an object (E,ω0) of Gaff on (M,D). It is the P -equivariant meromorphic function τω0

on

E with values in Wg−
=

2∧
(g−)∗ ⊗ g− defined as the projection of the Cartan curvature kω0

of

(E,ω0) (see Definition 3.4) on Wg−
respective to

2∧
(g−)∗ ⊗ p.

Finally, let’s remark that for any object (E , φ0,∇) of F0
conn, the meromorphic affine connection

(48) restricts as a holomorphic connection on the submodule E . We then define:

Definition 5.2. The category A0 is the subcategory of A whose objects are the meromorphic
affine connections on (M,D) preserving a locally free OM -module E with TM ⊂ E ⊂ TM [⋆D],
in the above sense. Its objects are called holomorphic branched affine connections.

Lemma 5.2. Let ∇ be a holomorphic branched affine connection on (M,D). Then the submod-
ule E ⊂ TM [⋆D] from Definition 5.2 is unique.

Proof. Let E be the bundle of holomorphic frames for E , and ω̃ be the meromorphic principal
connection on R1(M) corresponding to ∇ (Proposition 5.0.1). Suppose there exists another rank
n locally free submodule E ′ of TM [⋆D] such that ∇ restricts to a holomorphic connection on E ′,
and let ω̃′ be the corresponding holomorphic princpal connection on its bundle of holomorphic
frames E′.

Pick a point x ∈ M , and a neighbhoorhood U of x in M with two basis (s1, . . . , sn) of E|U
and (t1, . . . , tn) of E ′|U . Denote by σ, σ′ the holomorphic sections of R1(M \ D) on U \ D
corresponding respectively to these basis, and b be the unique holomorphic function on U \ D
with values in GLn(C) such that σ′ = σ · b. The classical jauge formula implies that b must be
a solution of the differential equation:

(50) d(b) = Ab− bA′

where A (resp. A′) is the matrix of ∇ in the basis σ (resp. σ′). Since A and A′ are holomorphic
on U , we can use the proof of the Proposition II.2.13 in [26] to obtain that b extends on U as a
holomorphic funcion. Reversing the roles of σ and σ′, this is also true for b−1, so that E and E ′

coïncide over U . We get the unicity. �

Corollary 5.1. The composition of the equivalence from Proposition 5.0.2 and the map given
by (49) gives an equivalence of categories between Gaff (resp. G0

aff ) and A (resp. A0).
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Recall that, given any meromorphic affine connection ∇ on (M,D), a local holomorphic vector
field X on an open subset U ⊂ M is a Killing field for ∇ iff the pullback of ∇ by its flows is
again ∇. We denote by kill∇ the subsheaf of TM \D whose sections are the Killing field for ∇.
By Corollary 5.1, we obtain:

Lemma 5.3. If (E,ω0) is an object of Gaff on a pair (M,D), and ∇ the corresponding mero-
morphic affine connection on (M,D), then killM,ω0

= kill∇.

5.3. Geodesics of holomorphic branched affine connections and τ-affine connections.

Let ∇ be a holomorphic affine connection on a complex manifold M , and (E,ω) be a holomorphic
affine Cartan geometry inducing it. Recall that geodesics Σ ⊂ M of ∇ are the projections of the
A-distinguished curve of (E,ω0) for A ∈ g−. Equivalently, these are the images of holomorphic
parametrized curves γ : D(0, ǫ) −→ M such that:

(51) γ⋆∇(dγ(
∂

∂t
)) = 0

where dγ( ∂
∂t ) is the image of the canonical vector field on the open disk D(0, ǫ) ⊂ C through

the differential dγ : TC −→ OC ⊗ γ−1TM , and γ⋆∇ is the pullback (Definition 2.3).

Definition 5.3. Let ∇ be a meromorphic affine connection on a pair (M,D). A geodesic of ∇ is
a curve Σ ⊂ M whose restriction to M \D is locally the image of a geodesic of the holomorphic
affine connection ∇|M\D in the above sense.

Note that such a definition permits any holomorphic curve γ with image contained in D to
be a geodesic for ∇. This is coherent with the classical definition (51) since the pullback γ⋆∇
will often be the zero morphism for such a curve (see Exemple 2.1).

Lemma 5.4. Let ∇ be a holomorphic branched affine connection on a pair (M,D). Let Σ ⊂ M
be a curve. Then the following assertions are equivalent:

(i) Σ is a geodesic for ∇
(ii) For any non-constant holomorphic curve γ : D(0, ǫ) −→ Σ, γ⋆∇ is the null morphism

or there exists a holomorphic function hγ on D(0, ǫ), which does’nt identically vanish,
and such that:

γ⋆∇(
1

hγ

∂

∂t
) = 0

where ∂
∂t and γ⋆∇ are defined as above.

Proof. Let (E,ω0) be the unique holomorphic branched affine Cartan geometry inducing ∇
through the equivalence of Proposition 5.0.2, and such that E = E(Cn) is the submodule of
Definition 5.2. By Lemma 3.3, the p-component of ω0 defines a holomorphic P -principal con-
nection on E. We denote by θ0 the g−-component of ω0.

We first prove that (i) implies (ii). By the above remark, for any choice of a point e0 in
the fiber of γ(0), there exists an unique lift γ̃ of γ to a holomorphic curve tangent to ker(ω̃)
and satisfying γ̃(0) = e0. Suppose that γ⋆∇ is not the null morphism. By definition of ∇, the
hypothesis (i) implies that for any t0 ∈ D(0, ǫ) such that γ(t0) doesn’t lie in D, there exists
a holomorphic function h in a neighborhood of t0 with γ̃⋆θ0(h(t) ∂

∂t ) constant, that is there

exists A ∈ g− with γ̃⋆θ0( ∂
∂t) = 1

h(t)A in a neighborhood of t0. It is clear that the direction

CA is independent from the point t0 as before. Now, since ω0 is a holomorphic branched
Cartan connection, γ̃⋆θ0 is a holomorphic one form on D(0, ǫ) with values in CA. In particular,
hγ = γ̃⋆θ0( ∂

∂t) is a holomorphic function on D(0, ǫ), which is not identically vanishing by the

assumption. By definition of γ⋆∇ this implies γ⋆∇( 1
hγ

∂
∂t) = 0. We have proved (ii).
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Now we prove (ii) implies (i). If γ⋆∇ is the null morphism, then by the Leibniz identity we
must have OC ⊗ γ−1OM (D) = {0}

C
. Thus, the image of γ must lie in D, and γ is a geodesic.

Suppose γ⋆∇ is not the null morphism. Then we can use the above description of γ⋆∇( ∂
∂t) to

conclude that γ̃⋆θ0( ∂
∂t) is a holomorphic function with values in CA for some A ∈ g−. Since γ̃ is

tangent to ker(ω̃), we recover that its image Σ̃ is a A-distinguished curve for (E,ω0) projecting
onto the image of γ, that is (i) is satisfied. �

Definition 5.4. A meromorphic affine connection ∇ on a pair (M,D) is said to be a τ -
connection if no irreducible component of D is invariant by the geodesics of ∇ in the sense
of Definition 5.3.

The (3.0.3) admits the following consequence :

Corollary 5.2. Let ∇ be a holomorphic branched holomorphic ∇ on a pair (M,D). If ∇ is a τ -
connection, then any holomorphic branched affine Cartan geometry (E,ω0) inducing ∇ through
the equivalence of Corollary 5.1 satisfies the strong τ -condition (Definition 3.16).

Proof. In virtue of Lemma 5.2, (E,ω0) is isomorphic to the holomorphic branched Cartan ge-
ometry where E = R(E) is the frame bundle of the unique submodule E ⊂ TM [⋆D] on which ∇
restricts as a holomorphic connection, and ω0 = θ0 ⊕ ω̃ where ω̃ is the corresponding P -principal
connection and θ0 the meromorphic solderform of E (see Definition 3.9).

The proof of Lemma 5.4 recall the basic fact that the restrictions of geodesics for ∇ to M \D
are exactly the projections through p : E −→ M of the A-distinguished curves of (E|M\D , ω0),
for some A ∈ g−. These are in particular A-spirals for (E,ω0). Thus, using Proposition 3.0.3,
we get the desired implication. �

5.4. Holomorphic branched τ-connections in algebraic dimension zero. Now, we will
give an application of the results of section 4 to the classification of affine meromorphic connec-
tions on some simply connected complex compact manifolds M . Most of them are adaptations
of the arguments used in the proof of the principal theorem in [4], using the results of this article.

Theorem 5.1. Let (M,D) be a pair, with M a simply connected complex compact manifold.
If (M,D) bears a quasihomogeneous meromorphic affine τ -connection ∇ (Definition 5.4), then
it admits a meromorphic parallelism (X1, . . . ,Xn), such that X i is a Killing vector field for ∇
when restricted to M \D.

Proof. Let (E,ω0) be the meromorphic affine Cartan geometry on M corresponding to ∇ (see
Corollary 5.1). By the Corollary 4.1, it satisfies the extension property of infinitesimal au-
tomorphisms, i.e the local system kill∇ on M \ D extends as a local system K on M , with
K ⊂ TM [⋆D]. Since M is simply connected, this is a constant sheaf on M . Since ∇ is assumed
quasihomogeneous, we can pick x ∈ M and a OM,x-basis X1,x, . . . ,Xn,x of (TM)x formed by
germs of Killing fields for ∇. These germs are thus restrictions of global meromorphic vector
fields X1, . . . ,Xn whose restrictions to M \ D are elements of kill∇(M \ D). Since their germs
at x are linearly independent, there exists a Zariski-dense open subset M \ S such that the
restrictions of X1, . . . ,Xn to any subset U ⊂ M \ S are independent elements of TM(U), i.e
(X1, . . . ,Xn) is a meromorphic parallelism on M .

�

We obtain:

Theorem 5.2. Let M be a compact complex manifold with finite fundamental group, and whose
meromorphic functions are constants. Then M doesn’t bear any totally geodesic branched holo-
morphic affine connection.



26 A. GARCIA

Proof. Suppose that ∇ is a totally geodesic branched holomorphic affine connection on (M,D),
denote by E the submodule of TM [⋆D] from Lemma 5.2. Complete the meromorphic parallelism
(X i)i=1,...,n from Theorem 5.1 into a basis (Xj)j=1,...,r for the global meromorphic Killing fields
of ∇. A meromorphic parallelism is a rigid geometric structure (see [15]), so by the Theorem
2 of [14], the juxtaposition of (Xj)j=1,...,r and ∇ is quasihomogeneous. Since ∇ satisfies the
extension property for the Killing vector fields (Corollary 4.1) and M is simply connected, we

obtain a meromorphic parallelism (X
′
i)i=1,...,n such that the restriction of each X

′
i to M \D is a

Killing field for ∇ and commutes with each Xj . In particular, each X
′
i is a C-linear combination

of the (Xj)j=1,...,r, so (X
′
i)i=1,...,n are commuting meromorphic vector fields.

Now, let pick any Gauduchon metric on M ([18]) and let’s prove that the degree deg(E) of
E with respect to this metric is zero. Let (E,ω0) be the branched holomorphic affine Cartan
geometry on (M,D) corresponding to ∇ (Corollary 5.1). Then E = E(g/p) = E(g)/E(p) by
definition of (E,ω0), and since P = GLn(C), we have deg(E(p)) = 0 (see [3], Corollary 4.2).

We must then prove that deg(E(g)) = 0. For, it is sufficient to prove that C1(R∇ω0 ) van-
ishes identically, where C1 is the trace on End(E(g)) and ∇ω0 is the tractor connection (see
Definition 3.7). We will prove that the meromorphic one form ηi = X ′

iyC1(R∇ω0 ) vanishes
identically on M for any 1 ≤ i ≤ n. By Lemma 3.1, we have:

(52) p⋆ηi = X̃ ′
iyC1(Rp⋆∇ω0 ) = dC1(Ad(si))

︸ ︷︷ ︸

η̃0
i

+ X̃ ′
iyAd(ω0 ∧ ω0)

︸ ︷︷ ︸

η̃1
i

where X̃ ′
i is the lifting of X ′

i to E and si = ω0(X ′
i).

The meromorphic one form η̃0
i is exact and P -equivariant. By a classical result on exact in-

variant forms on connected Lie groups, the restriction of η̃0
i to any fiber of E

p
−→ M corresponds

to a homomorphism χ : P −→ C. Because P = GLn(C), any such homomorphism is trivial, so

that η̃0
i vanishes on the fibers of E

p
−→ M . Thus, it is the pullback of a meromorphic exact one

form η0
i on M . Moreover, by Corollary 4.1, si is a holomorphic section of V on E, so that η̃0

i

is a holomorphic one form. Thus, η0
i is an exact holomorphic one form on a simply connected

compact complex manifold, i.e vanishes everywhere.

Now, let’s prove that η̃1
i = p⋆ηi vanishes everywhere. Consider EG = E × G

piG−→ E and the
holomorphic tractor connection ω̃ on it (Definition 3.7). Using the splitting TEG = ker(ω̃) ⊕
ker(dπG), the pullback η̂1

i = π⋆
Gη̃

1
i uniquely decomposes as a sum:

(53) η̂1
i = η̂H

i ⊕ η̂i

with η̂H
i a G-invariant meromorphic one form on EG, vanishing on ker(ω̃), and η̂V

i vanishing on
ker(ω̃). In particular, η̂H

i is the pullback of ηi through the composition pG = p ◦ πG, so that
η̂V

i vanishes everywhere. Now, using Corollary 4.1, η̃1
i is a holomorphic one form, so that ηi is

a holomorphic one form on M . Using the Lie-Cartan formula, we have:

(54) dηi(X
′
j ,X

′
k) = LX′

j
ηi(X

′
k) − LX′

k
ηi(X

′
j) − ηi([X

′
j ,X

′
k]T M )

Since the only meromorphic functions onM are the constants, we obtain LX′

j
ηi(X

′
k) = LX′

k
ηi(X

′
j) =

0, and since the meromorphic vector fields (X ′
i)i=1,...,n commute, ηi is a closed holomorphic one

form. Since M is simply connected and compact, ηi vanishes everywhere. This proves that
C1(R∇ω0 ) vanishes everywhere, i.e deg(E(g)) = 0.

Hence, deg(E) = 0. Let s1, . . . , sn be the images of X ′
1, . . . ,X

′
n through the morphism φ0,

where (φ0, E) is the holomorphic extension image of (E,ω0) as in Proposition 5.0.2. Since
si = ω0(X̃ ′

i) is a section of V(E) for any 1 ≤ i ≤ n from Corollary 4.1, each si is a section of
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E(M). Since they are independent, the holomorphic section

i=1
n∧
si of det(E) is not identically

vanishing, thus det(E) is trivial and

i=1
n∧
si never vanishes. It therefore forms a basis of E on M ,

and the dual sections s∗
1, . . . , s

∗
n are holomorphic sections of E∗ on M . We obtain a branched

holomorphic (Cn, {0})-Cartan geometry (M,η) on (M,D), where:

(55) η =
n∧

i=1

(s∗
i ◦ φ0) ⊗ ei

where (ei)i=1,...,n is the canonical basis of Cn. Because the η-constant vector fields (X ′
i)i=1,...,n

commute, it is a flat branched holomorphic Cartan geometry. Since M is simply connected
and compact, there is a holomorphic submersion dev : M −→ C

n. This is impossible by
the maximum principle, so M cannot bear any totally geodesic branched holomorphic affine
connection.

�

6. Genericity of the affine τ-condition on surfaces

In this section, we fix a pair (M,D) where M is a complex surfaces and D an effective divisor
of M with irreducible and reduced components (Dα)α∈I . We fix a submodule E ⊂ TM [⋆D] with
TM ⊂ E .

Definition 6.1. In the above setting, we denote by A0
E the set of holomorphic branched affine

connections on (M,D) whose associated submodule is E (Definition 5.2). We denote by A0
E,τ

the subset of A0
E consisting of τ -connection (Definition 5.4).

We prove a result of genericity for A0
E,τ (Theorem 6.1). We also give examples of flat holo-

morphic branched affine τ -connections on compact complex manifolds of arbitrary dimension,
and one example of a non-flat holomorphic branched affine τ -connection on a complex compact
threefold.

6.1. Consequence of the existence of a τ-connection on the submodule. We begin with
a necessary condition on E for A0

E,τ not being empty.

Proposition 6.0.1. Suppose the exitence of a τ -connection ∇ in A0
E,τ . Then E satisfies the

following property. Let Dα be an irreducible component of D, and x ∈ Dα. Let (z1, z2) be local
coordinates on an open neighborhood U of x with

Dα ∩ U = {z1 = 0}

The matrix of any element ϕ ∈ End(E)(U), identified with an element of End(E)[⋆D](U), in
( ∂

∂z1
, ∂

∂z2
) takes the form:

(56)

(
∗ z1f1

∗ f2

)

where f1, f2 are holomorphic functions on U .

Proof. Let ∇, Dα, x and U as in the statement. Let (E,ω0) be the unique holomorphic branched
affine Cartan geometry inducing ∇ and such that E is the frame bundle of E . The hypothesis
on ∇ implies that the pullback D̃α of Dα to E is invariant through the A-distinguished foliation

TA (see Equation 19), for any A ∈ g−. Using the proof Lemma 3.3, and denoting by ( ∂̃
∂z1
, ∂̃

∂z2
)
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two P -invariant holomorphic vector fields on p−1(U) projecting on ( ∂
∂z1

, ∂
∂z2

), we get that the
ω0-constant vector fields Y1, Y2 associated with e1, e2 decompose as:

(57) Yi = zni
1 gi

∂̃

∂z1
+ zmi

1 g′
i

∂̃

∂z2
+ Y ′

i

where Y ′
i is an element of ker(dp)(p−1(U)), gi, g

′
i are invertible or identically vanishing holomor-

phic functions, and:

(58) 0 ≥ ni > mi or gi = 0

Now, fix any holomorphic section σ of E on U and denote by (Y 1, Y 2) the corresponding basis
of E on U . These are the projections of Y1 ◦ σ and Y2 ◦ σ through Tp, so that:

(59) Y i = zni
1 gi

∂

∂z1
+ zmi

1 g′
i

∂

∂z2

The inequality (58) implies that, up to replacing σ by σ · b for some holomorphic function
b : U −→ P , we can suppose that g1 = 0, i.e the matrix Q of (Y 1, Y 2) in ( ∂

∂z1
, ∂

∂z2
) is:

(60) Q =

(
0 zn2

1 g2

zm1

1 g′
1 zm2

1 g′
2

)

with g2, g
′
1, g

′
2, n2 and m2 as before. Since E|U contains TU , the inverse of this matrix must be

a holomorphic matrix on U .
This implies the following identities:

(61)

n2 +m2 −m1 ≥ 0
n2 < 0
m1 < 0
m2 ≤ 0

Let ϕ ∈ End(E)(U) with matrix

(
α γ
β δ

)

in (Y 1, Y 2). Then the matrix of the same section

in the basis ( ∂
∂z1

, ∂
∂z2

) is:

(62) Q

(
α γ
β δ

)

Q−1 =

(

∗ gzn2−m2

1

∗ g′zm2−m1

1

)

for some holomorphic functions g, g′ on U . Using (61), we get that this matrix has the desired
form. �

6.2. Intermediate condition and local characterization. We continue by introducing a
subset A0

E,1 ⊂ A0
E , containing the complement of A0

E,τ in A0
E . This subset has the advantage

that its elements ∇ can be described by their local Christoffel symbols.

Definition 6.2. The set A0
E,1 is the subset of elements ∇ ∈ A0

E , with the following property.
For any x ∈ Dα, where Dα is some irreducible component of D, there exists a non-constant
geodesic γ : D(0, ǫ) −→ M for ∇ with

(63) γ(0) = x and Im(γ) ⊂ Dα

Lemma 6.1. Let ∇ ∈ A0
E . The following properties are equvialent:

(i) ∇ ∈ A0
E,1
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(ii) For any irreducible component Dα of D, any x ∈ Dα\
⋃

β 6=α
Dβ , and any open neighborhood

U of x with local coordinates (z1, z2) as in Proposition 6.0.1, the matrix of ∇ in ( ∂
∂z1
, ∂

∂z2
)

is of the form:

(64)
∑

i=1,2

dzi ⊗

(
ai ci

bi di

)

with:

(65)

{
c2 vanishing on Dα ∩ U
d2 holomorphic

Proof. We first prove (i) implies (ii). Suppose that ∇ is as in (i), and let γ be a non constant
geodesic at x ∈ Dα with Im(γ) ⊂ Dα. Let U and (z1, z2) as in (ii) and denote by γi = zi ◦ γ, so
that γ′

1 is identically vanishing on D(0, ǫ) by the hypothesis on γ. The first line of the generalized
geodesic equation from Lemma 5.4 implies that c2 ◦ γ must be identically vanishing, since γ′

2

is not identically vanishing by hypothesis. In particular, since Dα ∩ U is irreducible, c2 must
be identically vanishing on this divisor. Moreover, the second line of the same equation implies
that y = 1

hγ
γ′

2 is a solution of the differential equation:

(66) y′ = (d2 ◦ γ)y

Now, let γ̃ be the lifting of γ to a A-distinguished curve of the unique holomorphic branched
affine Cartan connection (E,ω0) inducing ∇ and with E = R(E). Then γ̃⋆ω0 is of constant
rank. Recall that the holomorphic function hγ in Lemma 5.4 is defined by γ̃⋆ω0( ∂

∂t) = hγA.

But ω0 has constant rank on the pullback D̃α of Dα, by definition of D. Thus, hγ must be an
invertible holomorphic function on D(0, ǫ), so that y is a holomorphic function. Then d2 ◦ γ
must be holomorphic, and since γ′(0) 6= 0, this implies that d2 has no pole along Dα ∩ U . But
the poles of ∇ are contained in D, so that d2 is a holomorphic function on the whole U .

Now we prove (ii) implies (i). Let ∇ ∈ A0
E and suppose (ii) is satisfied. Let x ∈ Dα, and

(U, (z1, z2)) as above, and suppose moreover that z1(x) = z2(x) = 0. Define γ1 = 0, and γ2 to
be a solution of (66) on D(0, ǫ) (ǫ > 0) with γ2(0) = 0. Such a solution exists because d2 is
holomorphic. Then the unique holomorphic curve γ : D(0, ǫ) with γi = zi ◦ γ is a geodesic of ∇
by Lemma 5.4. By construction, Im(γ) ⊂ Dα, i.e. ∇ ∈ A0

E,1. �

6.3. Genericity result. The set A0
E has the structure of an affine space directed byEnd(E)(M).

Indeed, suppose there exists ∇ ∈ A0
E . Let ∇′ be any meromorphic connection on (M,D), and:

(67) Θ = ∇′ − ∇

which is an element of Ω1
M ⊗ End(TM)[⋆D](M) = Ω1

M ⊗ End(E)[⋆D]. Then it is immediate
that ∇′ ∈ A0

E exactly when Θ ∈ Ω1
M ⊗ End(E)(M).

Using the above remark and Lemma 6.1, we get the following result:

Theorem 6.1. Let (M,D) be a pair and E ⊂ TM [⋆D] a submodule containing TM . Then one
and only one of the following assertions is true:

(a) A0
E,τ = A0

E

(b) A0
E,1 = A0

E

Proof. Suppose (a) to be false and let’s prove (b). By hypothesis, there exists an element ∇ ∈ A0
E

which is not a τ -connection. Fix any element ∇′ of A0
E . Fix an irreducible component Dα of

D, a point x ∈ Dα \
⋃

β 6=α
Dβ and an open neighborhood U of x with coordinates (z1, z2) such

that U ∩ Dα = {z1 = 0}. The matrix of Θ from (67) in ( ∂
∂z1

, ∂
∂z2

) is the difference between the
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matrices of ∇′ and ∇. It has the form (56) by Proposition 6.0.1. By Lemma 6.1, and since ∇ is
already an element of A0

E,1 we get that ∇′ is again an element of A0
E,1, that is (b) is true.

�

In particular, in order to prove that a complex manifold M admits a holomorphic branched
τ -connection with poles at D, and with associated submodule E , it is sufficient to prove that
there exists a holomorphic connection ∇ on E which does’nt belong to A0

E,1, i.e such that for
any irreducible component Dα of D, there exists x ∈ Dα such that no geodesic γ of ∇ at x is
contained in Dα.

6.4. Example in any dimension. We now construct an example, for any n ≥ 1, of a compact
complex manifold M of dimension n, equipped with a submodule E ⊂ TM [⋆D] with TM ⊂ E
and an object ∇ ∈ A0

E,τ . Namely, M are Hopf manifolds and ∇ is constructed from branched
coverings between these manifolds and from the holomorphic affine structure coming from their
universal covering.

Pick any λ ∈]0, 1[, and define Γ′ and Γ to be respectively the abelian groups spanned by
the linear automorphisms λ2IdCn and (z1, z2, . . . , zn) 7→ (λz1, λ

2z2, . . . , λ
2zn) of Cn. Let M̃ =

C
n \ {0}, and let M = Γ\M̃ and M ′ = Γ′\M̃ . M and M ′ are Hopf manifolds associated with Γ

and Γ′, so these are complex compact manifolds. Since Γ′ is a subgroup of the affine group of
C

n, the canonical affine structure ∇0 of Cn (restricted to M̃) descends as a holomorphic affine
connection ∇′ on M ′.

The map f̃ : M̃ −→ M̃ given by f̃(z1, . . . , zn) = (z2
1 , . . . , zn) is equivariant for the actions of

Γ and Γ′. Thus we obtain a map f : M −→ M ′ defined by the commutative diagram:

(68) M̃
f̃

//

��

M̃

��

M
f

// M ′

By construction, f is a double covering with ramification locus the divisor D of M obtained
as the quotient of D̃ = {z1 = 0} by the action of Γ. The pullback ∇ = f⋆∇′ is an object of
A0

E,τ where E = OM ⊗
f−1OM′

f−1TM ′. Indeed, by construction, ∇ pulls back to C
n (first to M̃ ,

then to C
n by the Hartog’s extension theorem) as the Γ-invariant meromorphic affine connection

∇̃ = f̃⋆∇0. Now, the curve Σ̃ = {z2 = . . . = zn = 0} projects onto itslef through f̃ , and is
a geodesic for ∇0. Thus, its projection Σ on M is a geodesic for ∇, and by construction Σ
intersects D exactly at one point, namely the class of (0, . . . , 0).

Unfortunately, the examples just constructed are flat, i.e they are obtained from a branched
developping map f̃ : M̃ −→ C

n from the universal cover of the manifold M to the affine model
C

n = Aff(Cn)/GLn(C). Moreover, there are no non-flat examples on the Hopf manifolds M :
this can be recovered using that End(E) is the trivial module on M , that Ω1

M has no non-trivial
global sections, and the parametrization of A0

E as in Equation 67.

However, we mention the existence of non-flat examples due to the following construction, by
S. Cantat in [7],of a complex compact manifold M , equipped with a holomorphic parallelism
with non-trivial structure constants, and with a multiple branched cover f : M −→ M as a
self-map.

Let H3 be the complex Heisenberg group, that is the subgroup of SL3(C) of upper-triangular
matrices with ones on the diagonal. The subgroup Γ := H3(Z[i]) of elements with coefficients in
Z[i] is a cocompact lattice of H3. The quotient M = H3/Γ is then a complex compact manifold.



SINGLE-VALUED KILLING FIELDS OF A MEROMORPHIC AFFINE CONNECTION AND CLASSIFICATION31

It is equipped with the holomorphic parallelism (Z1, Z2, Z3) obtained from any basis of righ-
invariant holomorphic vector fields on H3(C). We denote by ∇′ the unique holomorphic affine
connection on M ′ = M such that ∇′(Zi) = 0. By construction, the torsion of ∇′ is not zero. It
is proved in [7] (Exemple 5.3) that there exists a finite surjective morphism f : M −→ M ′ with
ramification locus a non-trivial divisor D of M . We can reproduce the constructions used with
the Hopf manifolds to obtain an object ∇ = f⋆∇′ of A0

E where E = OM ⊗
f−1OM′

f−1TM ′. Then

we use the:

Lemma 6.2. Let f : M −→ M ′ be a branched cover between two complex manifolds M,M ′, with
ramification locus D ⊂ M (we denote D′ = f∗(D)), and ∇′ ∈ A0

E ′,τ where E ′ is any submodule

of TM ′[⋆D′] as in Definition 5.2. Then the pullback ∇ = f⋆∇′ is an object of A0
E,τ where

E = OM ⊗
f−1OM′

f−1E ′.

Proof. The fact that ∇ is an object of A0
E is clear from the equivalence Corollary 5.1 and the

definition of a holomorphic branched Cartan geometry. Now, let Dα be any irreducible compo-
nent of D, D′

α its projection through f . Since ∇′ is a τ -connection, there exists x′
0 ∈ D′

α and a
geodesic Σ′ for ∇′ such that Σ′ ∩ D′

α = {x′
0}. Let x0 be any point of the fiber f−1(x′

0) ⊂ Dα,
and Σ = f−1(Σ′). Using the characterization of Lemma 5.4, and the definition of the pullback,
we obtain that Σ is a geodesic of ∇. By construction Σ ∩Dα is the finite set of points f−1(x′

0),
so we can consider a neighborhood U of x0 such that Σ ∩ U is a geodesic of ∇, intersecting Dα

exactly at x0. So ∇ ∈ A0
E,τ .

�
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