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Abstract

We give a geometric assumption on a meromorphic affine connection for its Killing vector
fields to be univaluated. For, we prove a general result on the infinitesimal automorphisms
for a subcategory of meromorphic Cartan geometries, and uses the equivalence with the
former geometric structures. This result is applied to the classification on complex compact
manifolds with algebraic dimension zero, extending partially the main result of [3].

1 Introduction
Many geometric structures over complex or real manifolds are infinitesimal versions of some
homogeneous geometric structure on a model space, i.e on which the group of global automor-
phisms of the structure act transitively on this space. Thus, the infinitesimal isometries, i.e
differentiable or holomorphic local vector fields whose local flows preserve the geometric struc-
ture, are of special interset when we try to classify them. When these vector fields span the
tangent space at any point, we say that the geometric structure is locally homogeneous (resp.
quasi-homogeneous if an open dense subset is locally homogeneous). The classification of simply
connected manifolds (complex or real) admitting a locally homogeneous geometric structure is
a classical problem in differential geometry, and started with the riemanniann case. In partic-
ular, Riemann, Killing and Hopf proved that any simply connected and locally homogeneous
riemanniann manifold is in fact homogeneous (see [18]).

The quasi-homogeneity of the holomophic geometric structure on a compact complex man-
ifolds is sometimes obtained from complex-geometrical assumptions on the base manifold. For
example, any rigid holomorphic geometric structures (see [8]) on a compact complex manifold
whose meromorphic functions are constants is quasi-homogeneous, by a result proved by S.
Dumitrescu in [11]. It was extended to holomorphic Cartan geometries and their infinitesi-
mal automorphisms (or Killing fields). These are objects related with holomorphic geometric
structures in the sense that any holomorphic Cartan geometry on a base complex manifold M ,
with model a complex Klein geometry (G,P ), induces a holomorphic geometric structure whose
model only depends on (G,P ). For example, when (G,P ) is the affine Klein geometry, the
holomorphic geometric structure is a holomorphic affine connection (see Corollary 5.1).

In [3], the following classification result were proved : any simply connected complex compact
manifold M , whose meromorphic functions are constants, cannot bear a holomorphic (G,P )-
Cartan geometry. Two important facts are used in the proof. First, it is proved that any germ
of infinitesimal automorphism of the Cartan geometry is the germ of a global infinitesimal auto-
morphism : this is a generalization of a result by Nomizu ([17]) for analytic riemanniann metrics,
and follows from the fact that the former objects form a local system on M . Next, it is proved
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2 PRELIMINARIES AND NOTATIONS 2

that there is a family of global infinitesimal automorphisms, whose existence is ensured by the
previous fact, which integrates into an action by automorphisms of a complex abelian Lie group
L with an open dense orbit in M . The conclusion follow from detailed study of the geometry of
such manifolds M , which implies that the Cartan geometry is flat.

In the meromorphic category, the two above properties may not stand : infinitesimal auto-
morphisms could be multivaluated, and a meromorphic univaluated infinitesimal automorphism
may not have a well defined flow at some point of the pole. In this paper, we give a sufficient
condition on some meromorphic Cartan geometries to recover the first step, and apply it to the
classification of meromorphic affine connections. The section 2 recall the dictionnary between
locally free modules of finite rank and vector bundles, the corresponding meromorphic sections,
and recall the definition of the Atiyah’s exact sequence associated with a principal bundle. The
section 3 introduces meromorphic Cartan geometries and the holomorphic vector bundles nat-
urally associated to these objects. The section 4 gives sufficient conditions for two classes of
regular meromorphic parabolic geometries (subsection 4.1) for their infinitesimal automorphisms
to be univaluated. Finally, the section 5 applies the previous results to the classification of some
meromorphic affine connections on complex compact manifolds with algebraic dimension zero.

2 Preliminaries and notations

2.1 Locally free modules and meromorphic connections

Let (M,D) be a pair, i.e a complex manifoldM equipped with a divisor D. Let L be a coherent
OM -module. The order ordLD(s) at D of a section s of L[⋆D] defined on an open subset U ⊂M
is the greatest integer d ∈ Z such that s is also a section of L(−dD)∣U on U .

Definition 2.1. A meromorphic connection on (M,D) is a couple (V,∇) where V is a locally
free OM -module of finite rank, and ∇ is a morphism of C-sheaves from V[⋆D] to Ω1

M ⊗ V[⋆D]

satisfying the Leibniz identity ∇(fs) = d(f)s+ f∇(s) for any s ∈ V(U) and f ∈ OM [⋆D](U) (U
is an open subset of M).

If (L,∇) and (L′,∇) are two meromorphic connections related by L =
r

⊕
i=1
OMsi, L′ =

r

⊕
i=1
OM ti

and ti =
r

∑
j=1
qjisj for a meromorphic matrix Q on M , then the matrices A and A′ respectively

associated to the basis (si)i=1,...,r and (ti)i=1,...,r are related by the gauge-transformation formula
:

A′
= Q−1dQ +Q−1AQ (1)

where d stands for the deRham derivative.
A meromorphic affine connection on (M,D) is a meromorphic connection ∇ on TM

with poles supported at D. The torsion of a meromorphic affine connection ∇ on (M,D) is
the meromorphic section T∇ of Ω1

M ⊗End(TM) defined by :

T∇(X)(Y ) = ∇X(Y ) −∇Y (X) − [X,Y ]TM (2)

Let (M,D) be a pair and r ≥ 1 be an integer. Recall that mapping a holomorphic rank r
vector bundle V over M to the locally free rank r OM -module E of local holomorphic sections
of V is an equivalence of categories. It maps a isomorphism Ψ̂ ∶ V1 Ð→ V2 of vector bundles
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with associated sheaves of sections E1,E2, covering an isomorphism ϕ ∶ M1 Ð→ M2 of complex
manifolds, to the isomorphism Φ of OM -modules between E1 and ϕ∗E2 defined by :

Φ ∶ E1(U) Ð→ ϕ∗E2(U)

s Ð→ Ψ̂ ○ s ○ ϕ−1 (3)

where U is an open subset of M .

Definition 2.2. A couple (ϕ,Φ) as above will be called a isomorphism of vector bundles between
E1 and E2. More generally, we define a isomorphism of meromorphic bundles by replacing the
sheaves of holomorphic sections by the corresponding of meromorphic sections with poles at D1
and D2.

Let ∇1, ∇2 be two meromorphic connections on E1,E2 with poles supported at D1,D2. We
say that an isomorphism of meromorphic vector bundles (ϕ,Φ) preserves the connections
iff :

(ϕ,Φ)
⋆
∇2 = ∇1 (4)

where (ϕ,Φ)⋆∇2 is the pullback of ∇2 through (ϕ,Φ) defined by the commutative diagram :

E1
(ϕ,φ)⋆∇2 //

φ

��

Ω1
M1

⊗ E1[⋆D1]

ϕ∗(E2[⋆D2])
ϕ∗∇2

// ϕ∗Ω1
M2

⊗ ϕ∗(E2[⋆D2])

(dϕ)∗⊗φ−1

OO

where we denoted ϕ∗ the pullback in the sheaf theoretic sense and dϕ the differential in the
sheaf theoretic sense.

A flat meromorphic connection ∇ on E with poles at D is a meromorphic connection such
that the subsheaf of horizontal sections ker(∇) on M ∖D defined by :

∀U ⊂M ∖D, ker(∇)(U) = {s ∈ E(U) ∣∇(s) = 0} (5)

is a local system (see [9]).
We recall that there is an equivalence of categories between the category of local systems

of rank r on M ∖D with arrows being the isomorphisms, and the category of representations
ρ ∶ π1(M ∖D,x) Ð→ K (for any x ∈ M ∖D, and K is a C-vector space of dimension r) with
arrows being the isomorphisms of representations. Once a point x ∈ M ∖ D is choosen, this
equivalence is obtained by associating to the local system K, the monodromy mapMonx(K) ∶
π1(M ∖D,x)Ð→ Aut(Kx) (see [9]).

2.2 Atiyah sequence of the frame bundle

The frame bundle of a locally free OM -module E of rank r is the holomorphic GLr(C)-principal
bundle E p

Ð→M whose fiber at x ∈M is the set of isomorphisms Cr ≃ E(x). Here E(x) = Ex/mx

stands for the fiber of E at x.
We recall that for any complex Lie group P and a holomorphic P -principal bundle E p

Ð→M ,
there is a notion of P -linearization for aOE-module V : this is a family (φb)b∈P of isomorphisms
φb ∶ V ≃ r∗bV (where rb is the right action of P ) with nice properties (see [14]). A OE-module
equipped with a P -linearization is said to be P -equivariant. In this context, there is an
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equivalence between the P -equivariant locally free OE-modules and the locally freeOM -modules,
and between the P -equivariant morphisms and the morphisms between the corresponding OM -
modules (see []). For any representation ρ ∶ P Ð→ GL(V), and any holomorphic P -principal
bundle E p

Ð→M , we denote by E(V) the OM -module associated with the OE-module OE ⊗V,
where the P -linearization (φb)b∈P is given by φb = r∗b ⊗ ρ(b−1). We call it the representation
module associated with E and V. For any isomorphism Ψ ∶ E1 Ð→ E2 of holomorphic P -
principal bundles covering ϕ ∶ M1 Ð→ M2, the representation isomorphism of associated
vector bundles corresponding to Ψ is the isomorphism

Ψ(V) ∶ E1(V)Ð→ ϕ∗E2(V) (6)

associated to the P -equivariant isomorphism Ψ∗ ⊗ IdV of trivial OE-modules.

Definition 2.3. Let V be a representation of a complex Lie group P . Let E1
p1
Ð→ M1 and

E2
p1
Ð→ M2 be two holomorphic P -principal bundles, and D1,D2 be respectively two divisors of

M1 and M2. An isomorphism Ψ ∶ E1∣M1∖D1 Ð→ E2∣M2∖D2 of holomorphic P -principal bundles is
V-meromorphic between (M1,D1) and (M2,D2) iff the representation isomorphism Φ = Ψ(V)

restricts to an isomorphism Φ ∶ E1(V)[⋆D1]Ð→ ϕ∗E2(V)[⋆D2] (see 6).

In particular, mapping holomorphic GLr(C)-principal bundles E over M to the associated
representation modules E(Cr)gives an equivalence of categories. A pseudo-inverse is given by
mapping a locally free OM -module E of rank r to its frame bundle E.

Consider p = Lie(P ) which is the adjoint representation of P . Let At(E) be the OM -module
associated with the P -equivariant locally free OE-module TE equipped with the P -linearization
induced by the infinitesimal action of P on E : it is called the Atiyah bundle of E, and fits
into the short exact sequence :

0 // E(p)
ι // At(E)

q // TM // 0 (7)

where ι is the morphism associated with the P -equivariant mophism which to any A ∈ OE ⊗ p
associates the corresponding fundamental vector field on E, and q is the one associated with the
P -equivariant morphism dp ∶ TE Ð→ p∗TM .

The previous equivalence implies that P -equviariant meromorphic one forms on E, with poles
at D̃ = p−1(D), and values in V are in bijection with morphisms β ∶ At(E)[⋆D] Ð→ E(V)[⋆D],
or equivalently with sections of At(E)⊗E(V)[⋆D]. This correspondance restricts to a bijective
correspondance between :

● The set of morphisms β as above vanishing on the image of ι in (7), equivalently sections
of Ω1

M [⋆D]⊗E(V)

● The set of meromorphic one forms ω̃ on (E, D̃) with values in V vanishing on ker(dp)

3 Holomorphic branched Cartan geometries and the Killing con-
nection

In this section, we fix a pair (M,D) where M is of complex dimension n. We define mero-
morphic Cartan geometries, and the subcategory of branched holomorphic Cartan geometries.
We describe their infinitesimal automorphisms as sections for a meromorphic connection either
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on a trivial module over the principal bundle of the geometry, or on the corresponding module
over the base manifold. We introduce the subcategory of totally geodesic meromorphic Car-
tan geometries : in the next section, we will see that their infinitesimal automorphisms are
univaluated, in a sense that will be defined.

3.1 Meromorphic and holomorphic branched Cartan geometries

First, we have to define the models for Cartan geometries :

Definition 3.1. A complex Klein geometry of dimension n ≥ 1 is a couple (G,P ) where G is a
complex Lie group, and P is a complex Lie subgroup with dim(G) − dim(P ) = n.

Let (G,P ) be as in Definition 3.1 and let P ′ = ker(ad) where ad ∶ P Ð→ GL(g/p) is the
representation induced by the ajdoint representation. Then any choice of a basis for g/p identifies
Q = P /P ′ with a linear complex subgroup, and TG/P with the module G(g/p) associated to
the P -principal bundle E and the representation g/p. Thus, the complex manifold G/P comes
equiped with a holomorphic reduction G ×

P
Q of its holomorphic frame bundle R1(G/P ), i.e a

holomorphic Q-structure : namely G/P ′.
This is in fact only due to the presence of a holomorphic 1-g-form with special properties on

the total space of the holomorpihc P -principal bundle G Ð→ G/P , namely the Maurer-Cartan
form ωG of G. We can consider curved versions of theses objects for which the above fact
is still true replacing G by a suitable holomorphic P -principal bundle (see next subsection).
Authorizing the one form to have poles on the P -principal bundle, we obtain their meromorphic
analogues :

Definition 3.2. Let (G,P ) be a complex Klein geometry with dim(G/P ) = n and (M,D) be a
pair. A meromorphic (G,P )-Cartan geometry is a couple (E,ω0) where E

p
→M is a holomorphic

P -principal bundle, and ω0 is a meromorphic 1-g-form on E, with poles on D̃ = p−1(D), such
that :

(i) For any x ∈M ∖D, ι⋆xω0 coïncides with the Maurer-Cartan form ωE,x (see above).

(ii) ω0 is P -equivariant.

(iii) For any e ∈ E ∖ D̃, ω0(e) is an isomorphism between TeE and g.

These objects form a category :

Definition 3.3. Let (G,P ) be a complex Klein geometry and (M,D),(M ′,D′) be two pairs
with dim(M) = dim(M ′) = dim(G/P ). Let (E,ω0) and (E′, ω′0) be respectively two meromor-
phic (G,P )-Cartan geometries on (M,D) and (M ′,D′). An isomorphism between (E,ω0) and
(E′, ω′0) is an isomorphism of holomorphic P -principal fiber bundles Ψ ∶ E ∖ D̃

∼
→ E′ ∖ D̃′ such

that Ψ⋆ω′0 = ω0.

The following object is central in the study of Cartan geometries :

Definition 3.4. Let (E,ω0) be a meromorphic (G,P )-Cartan geometry on (M,D). Its curva-
ture function is the meromorphic function kω0 on E with values in W = g∗ ∧ g∗ ⊗ g and defined
by :

kω0 = dω0 ○ (ω
−1
0 ∧ ω−1

0 ) + [, ]g (8)

where [, ]g is the Lie-bracket of g identified with an element of W.
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Fix a Klein geometry (G,P ) and choose a basis (ei)i=1,...,N of g, with (ei)i=1,...,n spanning a
supplementary g− of p. Denote by (e∗i )i=1,...,N the dual basis of g∗.

Definition 3.5. Let (E,ω0) be a meromorphic (G,P )-Cartan geometry on (M,D). The mero-
morphic functions :

γki,j = e∗k ○ kω0(ei, ej) (9)

are called the structure coefficients of (E,ω0).

A natural subcategory of the meromorphic (G,P )-Cartan geometries on pairs is the following
:

Definition 3.6. A branched holomorphic (G,P )-Cartan geometry on a pair (M,D) is a mero-
morphic (G,P )-Cartan geometry (E,ω0) on (M,D) such that ω0 extends as a holomorphic one
form on E.

An important feature of these objects for the classification is the existence of a holomorphic
connection on the adjoint vector bundle. Indeed, let (E,ω0) be a branched holomorphic (G,P )-
Cartan geometry on (M,D), and EG = E ×

P
G the extension of the holomorphic P -principal

bundle E to the group G. By definition, EG is the quotient of the product E ×G by the action
of G given by (e, g) ⋅ h = (e ⋅ h,h−1g). Consider the G-equivariant holomorphic one form ω on
E ×G with values in g given by :

ω = ad(π2) ○ π
⋆
1ω0 + π

⋆
2ωG (10)

where π1, π2 are the projections on each factor and ωG is the Maurer-Cartan form of G. It
is straightforward to verify that for any A ∈ g0, ω( ddt ∣t=0(e, h) ⋅ expG(tA)) = 0, i.e the vectors
tangent to the fibers of

πG ∶ E ×GÐ→ EG (11)

are in the kernel of ω. Thus, ω induces a holomorphic one form on EG.

Definition 3.7. The holomorphic G-principal connection ω̃ on EG induced by ω is the tractor-
connection of (E,ω0). We denote by ∇ω0 the corresponding holomorphic connection on EG(g) =
E(g) (see Proposition 5.0.1).

The pullback p∗E(g) is the trivial module V = OE ⊗ g.

Lemma 3.1. The pullback p⋆∇ω0 is d −Ad(ω0) where d is the deRham diffential on the trivial
module V, Ad(ω0) is the section of Ω1

E ⊗End(g) = Ω1
E ⊗End(V) defined by :

X¬Ad(ω0)(s) = [ω0(X), s]g

for any holomorphic vector field X of E and section s of V. In particular, its curvature is
Rp⋆∇ω0 = Ad(dω0) +Ad(ω0 ∧ ω0).

Proof. Since the ω0-constant vector fields on E span TeE at any e ∈ E ∖ D̃, we can choose
Ã = ω−1

0 (A) for A ∈ g as a holomorphic vector field on E ∖ D̃. Let s be any section of V(U),
U ⊂ E ∖ D̃ an open subset. By definition of ∇ω0 and the remarks preceding Definition 3.7, we
have :

Ã¬p⋆∇ω0(s) = (A − Â)¬d(s̃)
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where s̃ is the unique G-equivariant section of OE×G ⊗ g which coïncides with s in restriction
to E ⊂ E × G, A is the unique G-invariant meromorphic vector field whose restriction to E

coïncides with Ã, and Â is the holomorphic vector field tangent to the fibers of E ×G
π1
Ð→ E

such that π⋆2ωG(Â) = A. Indeed, A − Â is the unique vector field which belongs to ker(ω)
and projects to Ã via π1 ∶ E × G Ð→ E. Now, A¬d(s̃) coïncides with Ã¬d(s) in restriction
to E, while Â¬d(s̃) = [A, s]g because s̃ is G-equivariant. The first formula follows. For the
curvature, it corresponds to the classical computation of the curvature in a trivialisation of a
vector bundle.

3.2 Meromorphic extension of the tangent sheaf

We now describe an object induced by any meromorphic Cartan geometry, which plays the same
role as the tangent bundle of the base manifold in the regular case. It is a particular case of the
following objects :

Definition 3.8. Let (M,D) be a pair.

1. A meromorphic extension of (M,D) is a couple (φ0,E) where E is a locally free OM -module
and φ0 ∶ TM[⋆D]Ð→ E[⋆D] is an isomorphism of OM -modules.

2. A holomorphic extension of (M,D) is a meromorphic extension (φ0,E) such that φ0(TM) ⊂

E.

3. The category F (resp. F0) of meromorphic extensions (resp. holomorphic extensions)
over pairs is defined as follow. An arrow between two meromorphic extensions (φ0,E) and
(φ′0,E

′) over (M1,D1) and (M2,D2) is a an isomorphism (ϕ,Φ) of meromorphic bundles
(resp. of vector bundles, see Definition 2.2) between E and E ′ such that the following
diagram commutes :

TM1
φ0 //

dϕ

��

E[⋆D1]

Φ
��

ϕ∗TM2
ϕ∗φ′0

// ϕ∗E ′[⋆D1]

(12)

4. The category obtained by restricting to meromorphic extensions of (M,D) and to isomor-
phisms of meromorphic bundles of the form (IdM ,Φ) is denoted by FM,D (resp. F0

M,D).

Meromorphic extensions on (M,D) are thus canonically isomorphic to submodules of maxi-
mal rank of the sheaf of tangent vector fields with poles at D. The restriction of the correspond-
ing frame bundle to M ∖D can thus be canonically identified with the frame bundle of M ∖D.
This gives the following alternative description :

Definition 3.9. Let (M,D) be a pair.

1. Let E p
Ð→ M be a holomorphic P -principal bundle and D̃ = p−1(D). A meromorphic

solderform on (E, D̃) is a P -equivariant meromorphic 1-Cn-form θ0 on E, with poles
supported at D̃, vanishing on ker(dp), and such that θ0(e) is surjective for any e ∈ E ∖ D̃.
A couple (E, θ0) is called a meromorphic solder form over (M,D)
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2. An arrow between two meromorphic solderforms (E, θ0) and (E′, θ′0) over (M1,D1) and
(M2,D2) is an isomorphism of holomorphic P -principal bundles Ψ̃ ∶ E Ð→ E′ such that
θ0 = Ψ̃⋆θ′0. This defines the category D of meromorphic solderforms over pairs.

Proposition 3.0.1. The map which to any meromorphic solder form (E, θ0) over (M,D) (Def-
inition 3.9) associates the meromorphic extension (φ0,E) where φ0 ∶ TM[⋆D]

∼
Ð→ E[⋆D] is the

isomorphism which corresponds to θ0 (see remarks above), extends to an equivalence of categories
m ∶ D Ð→ E.

Proof. If Ψ̃ ∶ E Ð→ E′ is an arrow between two objects (E, θ0) and (E′, θ′0) of the category of
solderforms over (M,D), we define m(Ψ̃) = Φ as the image of Ψ̃ through the equivalence of
categories described in subsection 2.2. Consider the images (φ0,E) and (φ′0,E) of (E, θ0) and
(E′, θ′0). Since θ′0 = Ψ̃⋆θ0, by definition, Φ ○ φ0 = φ′0 so m is a essentially surjective functor.
Since it is the restriction of the equivalence of categories described in subsection 2.2, it is an
equivalence of categories.

Now let (E,ω0) be any meromorphic (G,P )-Cartan geometry on (M,D). Then the mero-
morphic one form πg/p ○ ω0 obtained by projecting ω0 on g/p is P -equivariant for the quotient
adjoint action on g/p, and pointwise surjective on E ∖ p−1(D). Moreover, its kernel contains
ker(dp). By the subsection 2.2, it thus corresponds to a morphism of OM -modules :

φ0 ∶ TM[⋆D] Ð→ E[⋆D] (13)

where we set E = E(g/p). By construction, φ0 is an isomorphism of meromorphic bundles and
(E , φ0) is thus a meromorphic extension on (M,D).

Definition 3.10. The meromorphic extension (E , φ0) obtained as above is the meromorphic
extension induced by (E,ω0). We denote by f the map from the set of meromorphic (G,P )-
Cartan geometries on pairs to the set of meromorphic extensions which maps (E,ω0) to its
induced meromorphic extension (E , φ0). This extends as a functor f between the corresponding
categories.

3.3 Infinitesimal automorphisms as horizontal sections

Important objects in the study of meromorphic Cartan geometries are the following :

Definition 3.11. Let (E,ω0) be a meromorphic (G,P )-Cartan geometry on (M,D). An in-
finitesimal automorphism of (E,ω0) is a holomorphic vector field X on an open subset U ⊂M∖D,
lifting to a vector field X on p−1(U) such that φt⋆Xω0 = ω0. We write killlocM,ω0

for the subsheaf of
TM ∖D whose sections are the local infinitesimal automorphisms, and killlocE,ω0

for the subsheaf
of TE ∖ D̃ whose sections are the lifts of sections of killlocM,ω0

.

In order to study the sections of killlocM,ω0
, it is convenient to identify them with horizontal

sections for a meromorphic connection on a trivial module over E. This is a classical approch for
general meromorphic parallelisms (see for example [4]). Indeed, let’s denote by T the torsion of
the flat meromorphic connection ∇0 whose horizontal sections are the ω0-constant vector fields
on E. Then :

Proposition 3.0.2. Let (E,ω0) be a meromorphic (G,P )-Cartan geometry on (M,D).
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1. The sheaf killlocE,ω0
coïncides with the sheaf ker(∇recω0 ) of horizontal sections for the reciprocal

connection ∇rec defined by :
∇
rec
X = ∇

0
X + T (X, ⋅) (14)

for any local vector field X.

2. The connection ∇recω0 is invariant by the P -linearization (drb)b∈P corresponding to the ac-
tion of principal P -bundle.

Proof. 1. See Lemma 3.2 in [4].

2. This straightforwardly follows from the fact that the torsion of ∇0 is P -invariant by defi-
nition.

Definition 3.12. The Killing connection of a meromorphic (G,P )-Cartan geometry (E,ω0) on
(M,D) is the meromorphic connection (V,∇ω0) where V = OE ⊗ g and

∇
ω0 = Φ−1

ω0∇
rec

where Φω0 is the isomorphism of OE[⋆D̃]-modules between TE[⋆D̃] and V[⋆D̃].

Hence, killE,ω0 and killM,ω0 are respectively local systems on E ∖ D̃ and M ∖D.

As explained in the introduction, our goal is to classify quasi-homogeneous meromorphic
Cartan geometries (E,ω0). This hypothesis is satisfied whenever the base manifold M has only
constant meromorphic functions (see [10]). In this case, there exists a point x0 ∈ M and n
independent germs of Killing vector fields for (E,ω0). We want to see for a sufficient condition
for these germs to come from global Killing vector fields, i.e for the following property to be
satisfied :

Definition 3.13. Let (E,ω0) be a meromorphic (G,P )-Cartan geometry on a pair (M,D).
It satisfies the extension property of infinitesimal automorphisms if and only the local system
killM,ω0 on M ∖D extends as a local system k ⊂ TM on M .

3.4 Distinguished foliations and totally geodesic meromorphic Cartan ge-
ometries

We will restrict our attention on the following subcategory of meromorphic Cartan geometries.
Let (E,ω0) be a meromorphic (G,P )-Cartan geometry on (M,D), and A ∈ g ∖ {0}. Since ω0
induces an isomorphism of meromorphic bundles between TE[⋆D̃] and OE[⋆D̃]⊗g, there exists
a unique distribution of rank one (thus integrable) TA ⊂ TE with the following property :

ω0(TA) ⊂ OE[⋆D̃]A (15)

We will call it the A-distinguished foliation of (E,ω0), and a leaf Σ will be called a A-
distinguished curve for (E,ω0). A A-geodesic for (E,ω0) will be a complex curve Σ embed-
ded in M such that Σ ∖D lifts to a A-distinguished curve in E. When we can lift the whole Σ,
we say that Σ is a holomorphic geodesic.
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Definition 3.14. A meromorphic (G,P )-Cartan geometry (E,ω0) on a pair (M,D) is holo-
morphically totally geodesic iff for a dense subset W ⊂ D̃, and any e0 ∈W , there exists A ∈ g∖ p
and a smooth leaf Σ of TA (Equation 15) with Σ ∩ D̃ = {e0}.

The following lemma show that it suffices to check the existence of one distinguished curve
Σ as in Definition 3.14 for each irreducible component D̃α of D̃ :

Lemma 3.2. Let (E,ω0) be a meromorphic (G,P )-Cartan geometry on a pair (M,D), with
D a smooth irreducible divisor. Let e0 ∈ D̃ = p−1(D), and suppose there exists A ∈ g ∖ p and
a leaf Σ of TA through e0 s.t. Σ ∩ D̃ = {e0}. Then there exists a holomorphic foliation of an
open neighboorhood U of e0 in E such that any leaf Σ of TA∣U satisfies Σ∩ D̃ = {e′0(e)} for some
e′0(e) ∈ D̃.

Proof. Let’s prove the first statement. Since there is a leaf Σ of TA through e0, there exists
an open neighboorhood Ũ of e0 s.t. TA∣Ũ is a regular foliation, and defined by a non vanishing
holomorphic vector field ZA on Ũ .

The condition that Σ ∩ D̃ is a discrete set of points in D̃ is equivalent to ZA(e0) /∈ Te0D̃.
Denoting by z1 an equation of U ∩ D̃, this means (see [5]) :

dimCOE,e0/⟨LZA
(z1), z1⟩e0 <∞ (16)

Up to restriction of U , for any e ∈ U there is an isomorphism of vector spaces ρe between OE(U)

and OE,e associating to any holomorphic function its germ at e. The morphism ρe restricts as
an isomorphism between the subspaces ⟨LZA

(z1), z1⟩(U) and ⟨LZA
(z1), z1⟩e. Thus, the function

e↦ dimCOE,e/⟨LZA
(z1), z1⟩e is constant on U . In particular, by the above remark, any leaf Σ′

of TA∣U satisfies Σ′∩D̃ = {e1, . . . , ek}. Up to restriction of U , we can assume k = 1. In particular,
the leaf Σe of TA∣U through e ∈ U intersects D̃ in an unique point e′0(e).

Moreover, locally, the isomorphism class of totally geodesic meromorphic Cartan geometries
and the one of holomorphic totally geodesic Cartan geometries on a pair (M,D) coïncide :

Lemma 3.3. Let (M,D) be a pair and (G,P ) be a complex Klein geometry with dim(G/P ) =

dim(M). Let (E,ω0) be a totally geodesic meromorphic (G,P )-Cartan geometry on (M,D),
and denote by W ⊂ D the corresponding dense subset. Then for any x0 ∈ W , there exists a
neighboorhood U of x0 in M , a holomorphically totally geodesic meromorphic (G,P )-Cartan
geometry (E′, ω0) on (U,D) and an isomorphism Ψ ∶ E∣U∖D Ð→ E′∣U∖D between (E∣U , ω0) and
(E′, ω′0).

Proof. Pick x0 ∈W . By definition, there exists A ∈ g ∖ {0}, and a meromorphic A-distinguished
curve γ̃ ∶ D(0, ε) Ð→ E with p ○ γ̃(0) = x0 and p ○ γ̃(t) /∈ D for t ≠ 0. Denote by Σ the image of
γ = p ○ γ̃, which is a smooth one dimensional submanifold of M by definition of W . Thus, there
are local coordinates (u1, . . . , un) on an open neighboorhood U of x0 such that Σ is the common
zero loci of u2, . . . , un. This enables to consider a section σ of E over U ∖D, with the property
σ ○ γ = γ̃, by assuming σ to be constant (with respect to any holomorphic section σ0 ∶ U Ð→ E)
on level sets of (u2, . . . , un). A such section is g-meromorphic on (U,D), in the sense that the
induced trivialisation ψσ(g) ∶ E(g)∣U∖D Ð→ OU∖D ⊗ g maps the OU -submodule j∗E(g)[⋆D]

(where j ∶ U ∖D ↪ U is the inclusion) to the OU -submodule j∗OU [⋆D] ⊗ g. Moreover, if X is
a meromorphic vector field on U with pole at D ∩U , then the unique P -invariant holomorphic
vector field X̂ on p−1(U ∖D) satisfying X̂ ○σ = Tσ(X) extends as a meromorphic vector field on
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p−1(U). Indeed, it suffices to check it for X = ∂
∂u1

, for which it follows from X̂ ∣Σ = h ○ pω−1
0 (A)

with h a holomorphic function on U , and the equivariancy of ω0.
We then define the trivial holomorphic P -principal bundle E′ = U × P , with canonical holo-

morphic section σ′0 and the isomorphism of holomorphic P -principal bundles Ψ ∶ E∣U∖D Ð→
E′∣U∖D defined by

Ψ ○ σ = σ′0
Then the unique holomorphic (G,P )-Cartan connection on E′∣U∖D satisfying Ψ⋆ω′0 = ω0 extends
as a meromorphic Cartan connection on E′. Indeed, (σ′0)⋆ω′0 = σ⋆ω0 is a meromorphic one form
on U by the above remarks. Moreover, the intersection of te smooth submanifold Σ′ = σ′0(Σ)

with E′∣U∖D coïncide with Ψ(Σ) by construction, thus Σ′ is a A-distinguished curve. This means
that Σ is a holomorphic geodesic for (E′, ω′0), which ends the proof.

4 Infinitesimal automorphisms of meromorphic parabolic ge-
ometries

A classical result in riemaniann geometry states that any Killing vector field X for a rieman-
nian metric g is a Jacobi field : for any geodesic γ, its scalar product g(X(γ(t)), γ′(t))) with
the velocity of γ is constant. There is a natural generalization of riemannian metrics to the
holomorphic category, and the corresponding objects are equivalent to torsionfree holomorphic
affine connections preserving a holomorphic reduction to the orthogonal group. The holomor-
phic version of the previous result can be seen as a result on some torsionfree holomorphic affine
Cartan geometries (see Corollary 5.1). In this section, we will see a general result for mero-
morphic Cartan geometries. In particular, this will imply that the local system of infinitesimal
automorphisms for any totally geodesic regular meromorphic parabolic geometry prolongates as
a local system on the whole base manifold.

4.1 Regular meromorphic parabolic geometries

A complex parabolic Klein geometry is a complex Klein geometry (G,P ) where G is a
complex semi-simple Lie group, and P a parabolic subgroup. A meromorphic parabolic ge-
ometry is a meromorphic (G,P )-Cartan geometry for some complex parabolic Klein geometry.
We refer the reader to [7] for a detailed introduction.

With the subgroup P is associated a grading (gi)i∈Z of the Lie algebra g = Lie(G), meaning
[gi1 ,gi2]g ⊂ gi+j for any indices i1, i2 ∈ Z. We call it the parabolic graduation associated with

P . It induces a grading of any representation of G, in particular W = (
2
⋀g∗−) ⊗ g is graded by

homogeneous degrees Wl, and we denote by πl the corresponding projections.
The parabolic degree of (G,P ) is the smallest positive integer k ≥ 1 such that gi = {0} for

any ∣i∣ > k. The subspaces p = Lie(P ) and the subspace

g− =
1
⊕
i=−k

gi (17)

are clearly subalgebras of g. For any i ∈ {−k, . . . , k}, we will denote gi = ⊕
i′≥i

gi′ , inducing a

filtration (gi)i=−k,...,k of g.
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By a result of C. Chevalley, we can always pick a basis (eij)i=−k,...,k
j=1,...,ni

of g, such that (eij)j=1,...,ni is

a basis for gi for any i ∈ {−k, . . . , k}, and [ei1j1 , e
i2
j2
]g is either 0 or ei1+i2j for some j ∈ {1, . . . , ni1+i2}.

We will refer to it as a graded basis of g for (G,P ).
The homogeneous space G/P associated with a complex parabolic Klein geometry (G,P )

bears the following holomorphic geometric structure. Its tangent bundle is filtered by subbundles
(T −iG/P )i=1,...,k where T−iG/P is the projection of ω−1

G (gi) through the tangent map TpG/P of
the projection pG/P ∶ GÐ→ G/P . The Lie bracket of holomorphic vector fields on G/P induces a
Lie bracket of holomorphic vector bundle on the corresponding graded bundle gr(TG/P ). The
Lie algebra bundle thus obtained is locally isomorphic to (U × g−, [, ]g−).

The regular meromorphic parabolic geometries are the infinitesimal versions of this
model. More precisely, these are meromorphic (G,P )-Cartan geometries (E,ω0) on (M,D)

for which the homogeneous component πl(kω0) of degree l of the Cartan curvature vanishes
identically whenever l ≤ 0 (see above). This amounts to the following property. Let T−iM[⋆D]

be the image of ω−1
0 (g−i)[⋆D̃] through Tp. This gives a filtration of TM[⋆D̃], and (E,ω0) is

regular if and only if the Lie bracket of vector fields on M induces a structure of Lie algebras
bundle on the graded gr(TM ∖D), locally isomorphic to (U × g−, [, ]g−).

4.2 Bott connections and infinitesimal automorphisms of Cartan geometries

Now, we come back to a general complex Klein geometry (G,P ). Let (M,D) be a complex pair
of dimension n ≥ 1, and (E,ω0) be a meromorphic (G,P )-Cartan geometry on it. Fix A ∈ g∖{0}
and consider the holomorphic foliation TA from Equation 15. To any such holomorphic foliation
is associated a TA-partial holomorphic connection ∇TA on TE/TA, the Bott-connection of TA,
defined as follow. Let X be a holomorphic vector field on U ⊂ E, [X] its class in TE/TA(U),
and Z ∈ TA(U). Then :

Z¬∇TA([X]) = [[Z,X]TE] (18)
Let t ∈ C and V ⊂ U such that the flow φ = φtZ is well defined on V . Then clearly dφ(TA) ⊂ φ∗TA,
so φ induces a morphism [dφ] of OV -modules defined by the commutative diagram :

TV
dφ //

q

��

φ∗Tφ(V )

φ∗q
��

TV /TA [dφ]
// φ∗Tφ(V )/TA

(19)

By the formula (18), the horizontal sections for ∇TA are the [X] which are invariant by the
isomorphisms of holomorphic vector bundle (φ, [dφ]) defined as before.

It will be more convenient to work with the images of meromorphic vector fields on E through
the isomorphism Φω0 between TE[⋆D̃] and V[⋆D̃], where V = OE ⊗ g. We will write :

K = Φω0(killE,ω0) (20)

for the corresponding local system on E ∖ D̃. Clearly, the image of TA[⋆D̃] is VA = OE[⋆D̃]A.
The class of a section s of V[⋆D̃](U) (where U ⊂ E is an open subset) in V/VA[⋆D̃] will be
denoted by [s]V/VA

. Since Φω0 induces an isomorphism of OE-modules between TE/TA[⋆D̃]

and V/VA[⋆D̃] , for any Z ∈ TA(U), the morphism [dφ] defined by (19) corresponds to an
isomorphism

dφ ∶ V/VA[⋆D̃]∣V Ð→ φ∗V/VA[⋆D̃]∣φ(V ) (21)
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and thus an isomorphism (φ, dφ) of meromorphic bundles.
The isomorphism of meromorphic bundles Φω0 (see above) maps TA[⋆D̃] to VA[⋆D̃], and

we denote by Φω0 ∶ TE/TA[⋆D̃]Ð→ V/VA[⋆D̃] the isomorphism induced by Φω0 . Then :

Lemma 4.1. Let s be a section of K on an open subset U ⊂ E ∖ D̃. Then its class [s]V/VA
is

invariant by any isomorphism of meromorphic bundles (φ, dφ) constructed as above.

Proof. Let X be any holomorphic vector field on U ⊂ E, and [X] its class in TE/TA. By
definition, for any ZA = hÃ (where h is a meromorphic function on U and Ã = ω−1

0 (A)) we have
:

0 = [Ã,X]TE

= 1
h[ZA,X]TE mod TA[⋆D̃](U)

(22)

In other words, the classes of dφ(X) and φ∗X in TE/TA[⋆D̃], well defined on U ∩ φ(U),
coïncides i.e s is invariant by (φ, dφ).

Now, we suppose M to be simply connected. We wish to prove the extension property
for (E,ω0) (Definition 3.13). We will use the following general fact on meromorphic Cartan
geometries :

Proposition 4.0.1. Let (G,P ) be a complex Klein geometry, and (M,D) be a pair with
dim(M) = dim(G/P ). Let (E,ω0) be a meromorphic (G,P )-Cartan geometry on (M,D). Let
x0 ∈D belonging to an unique irreducible component Dα, and suppose that there exists A ∈ g∖ p
and a A-geodesic Σ for (E,ω0) such that Σ ∩Dα = {x0}. Then there exists a neighboorhood U
of x0 with the following properties:

1. Let s be a section of K on V ⊂ p−1(U). Then the image µ ∈ GL(Ve) of any loop at e ∈ V
in p−1(U ∖ D̃) by the local monodromy of K (at e) satisfies : [µ(se)]V/VA

= [se]V/VA
.

2. For any section s of K on p−1(U ∖D), [s]V/VA
extends as a section of V/VA[⋆D̃](p−1(U)).

In other words j∗πV/VA
(K) ⊂ V/VA[⋆D̃] where j is the inclusion of E ∖ D̃ in E and πV/VA

the morphism which map s to its class [s]V/VA
.

3. Suppose moreover that (E,ω0) is holomorphic branched on (M,D) and let s be as in 2.
Then πV/VA

(s) extends as a section of V/VA(p−1(U)). Equivalently, j∗πV/VA
(K) ⊂ V/VA.

Proof. 1. It is a classical result that the image KA = πV/VA
(K) of the local system K on E∖D̃

is a local system on E ∖ D̃. The image µA ∈ GL((KA)e) of any loop of E ∖ D̃ at e is given
by :

πV/VA
○ µ = µA ○ πV/VA

(23)

By the correspondance between local systems and their monodromy, it is thus sufficient
to prove that KA is a constant sheaf on a open subset Ũ ∖ D̃ where Ũ is a neighboorhood
of e0 ∈ p

−1(x0).
By Lemma 3.3, we can suppose, without loss of generality, that Σ is a holomorphic geodesic
for (E,ω0). By Lemma 3.2, there exists an open neighboorhood Ũ0 of some point e0 ∈

p−1(x0) such that any leaf of TA∣Ũ0
intersects D̃ in exactly one point. Equivalently, there

exists a holomorphic nonvanishing vector field Z defining TA∣Ũ0
such that φtZ(e′0) /∈ D̃ for

any e′0 ∈ D̃ ∩ Ũ0 and t ≠ 0 with ∣t∣ small enough. Pick a point e = φ−tZ (e0) of the leaf Σ
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through e0, which does’nt belong to D̃. Thus, there is a simply connected neighboorhood
V of e such that KA is a constant sheaf, and thus admits a basis [s1]V/VA

, . . . , [sr]V/VA
.

By the Lemma 4.1, the family dφ([s1]V/VA
), . . . , dφ([sr]V/VA

), where dφ is the morphism
(21), is a basis of φ∗KA(φ(V ) ∖ D̃). Then KA∣φ(V ) is a constant sheaf. The open neigh-
boorhood U = p(φ(V )) of x0 thus satisfies the required property.

2. Since(21) is an isomorphism of meromorphic bundles, we have proved in 1. that the local
system KA = πV/VA

(K) extends as a constant sheaf, included in V/VA[⋆D̃]∣p−1(U) since
(φ, dφ) is an automorphism of meromorphic bundles for V/VA.

3. The meromorphic Cartan geometry (E,ω0) is holomorphic branched on (M,D) if and
only if Φω0(TE) ⊂ V. Suppose this is the case. Since the automorphism of meromorphic
bundles (φ, [dφ]) of TE/TA defined before (19) is an automorphism of holomorphic vector
bundles. Since Φω0(TE) and V coïncides when restricted to p−1(U ∖D), we obtain that
the image of V/VA∣p−1(U∖D) through the dφ lies in V/VA∣φ(p−1(U∖D)), where φ(p−1(U ∖D))

is a neighboorhood of e0 by construction. This proves the assertion.

4.3 Affine and degree one parabolic models

We now apply Proposition 4.0.1 to prove the extension property for infinitesimal automorphisms
of some totally geodesic meromorphic (G,P )-Cartan geometries. More precisely, we let (G,P )

be a complex parabolic Klein geometry of dimension n ≥ 2 and degree k = 1 (see subsection 4.1),
or the complex affine Klein geometry of dimension n ≥ 2. For the first model, we denote by
g−1 ⊕ g0 ⊕ g1 the parabolic graduation associated with P (see subsection 4.1). For the second
one, g−1 will stand for the abelian subalgebra of infinitesimal generators for the translations in
Cn.

These two kind of models are of special interest because P acts transitively on P(g/p) through
the projectivized quotient adjoint action. Indeed, if (G,P ) is a degree one parabolic model,
for any A ∈ g−1 ∖ {0}, Ad(g0)[A] must span g−1, since g is semi-simple and g−1 is an abelian
subalgebra. If (G,P ) is the affine model, the isotropy group P = GLn(C) clearly acts transitively
on g−1.

By the above remarks, for any A ∈ g−1 ∖ {0}, there exists a basis (ei)i=1,...,n of the abelian
subalgebra g−1 ⊂ g = Lie(G) , and n elements b1, . . . , bn ∈ P such that

ad(b−1
i )[A] ∈ Cei (24)

for 1 ≤ i ≤ n.

Lemma 4.2. Let (E,ω0) be a meromorphic (G,P )-Cartan geometry on (M,D), and let x0 ∈D
belonging to a unique irreducible component Dα. Suppose there exists a geodesic Σ for (E,ω0)
with Σ ∩ D = {x0}. Then, for any 1 ≤ i ≤ n, there exists a ei-geodesic Σi for (E,ω0) with
Σi ∩D = {x0}.

Proof. By Lemma 3.3, we can suppose, without loss of generality, that Σ is a A-holomorphic
geodesic for A ∈ g− ∖{0}. Thus, there exists e0 ∈ p

−1(x0) and a A-distinguished smooth complex
curve Σ with p(Σ) = Σ and Σ ∩ D̃ = {e0}. Let b1, . . . , bn ∈ P as in (24). By equivariancy of
ω0, for any 1 ≤ i ≤ n, the bi-translated Σi of Σ is a ei-distinguished smooth complex curve,
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with Σi ∩ D̃ = {e0 ⋅ bi}. By Lemma 3.2, there is an open neighboorhood Ui of e0 ⋅ bi in E such
that for any e ∈ Ui, the leaf Σi of Tei ∣Ui through e intersects D̃ in an unique point e′0. In fact,
Ui ∩ p

−1(x0) is a Zariski-dense subset of the fiber p−1(x0), so that Ṽx0 =
n

⋂
i=1
Ui ∩ p

−1(x0) is a

Zariski dense subset of p−1(x0). Pick any e′0 ∈ Ṽ . Then by construction, for any 1 ≤ i ≤ n there
is a ei-distinguished smooth curve Σ′

i with Σ′
i ∩ D̃ = {e′0}. Their projections Σ′

i throuhg p are
ei-geodesics for (E,ω0), and the proof is thus achieved.

Corollary 4.1. Let (E,ω0) be a totally geodesic meromorphic (G,P )-Cartan connection on
(M,D), with M simply connected. Then :

1. (E,ω0) satisfies the extension property for the infinitesimal automorphisms.

2. Suppose moreover that (E,ω0) is branched holomorphic on (M,D). Then any section s
of ker(∇κω0)(U), where U ⊂ E is an open subset, is a section of V(U).

Proof. 1. Since the complement of a codimension 2 subset of M has the same fundamental
group as M , and in vertue of the equivalence between local systems and representations
of the fundamental group, it suffices to find a codimension 1 subset W of D, pick a
point x0 on an unique irreducible component Dα of D ∩W , and show the existence of a
neighboorhood U of x0 in M such that the restriction of ker(∇κω0) to p−1(U ∖D) extends
as a local system on p−1(U), included in TE[⋆D]∣U . The property on killM,ω0 is clearly
invariant under isomorphisms of meromorphic Cartan geometries, so we assume, without
loss of generality, that (E,ω0) is holomorphically totally geodesic (Lemma 3.3).
Pick x0 ∈W ∩Dα, where W is the dense subset in D of Definition 3.14. Thus, there exists
a holomorphic geodesic Σ of (E,ω0) with Σ ∩D = {x0}. We now apply Lemma 4.2 to
obtain, for any 1 ≤ i ≤ n, a holomorphic ei-geodesic Σi with Σi ∩D = {x0}. More precisely,
the proof of the lemma implies the existence of e0 ∈ p

−1(x0) such that the ei-distinguished
curve Σi projecting onto Σi satisfies Σi ∩ D̃ = {e0}. Using the Proposition 4.0.1 for each
geodesic, we obtain neighboorhoods Ui of x0 such that the restriction of the local system
πV/Vei

(ker(∇κω0)) to p−1(Ui) is a constant sheaf.

Let U =
n

⋂
i=1
Ui. Since e1, e2 are independant vectors of g, the morphism of OE-modules :

πV/Ve1
⊕ πV/Ve2

∶ V[⋆D̃] Ð→ V/Ve1[⋆D̃]⊕ V/Ve2[⋆D̃] (25)

is an isomorphism onto its image. Thus, it restricts to ker(∇κω0) as an isomorphism of C-
sheaves onto its image, a subsheaf of the local system πV/Ve1

(ker(∇κω0))⊕πV/Ve2
(ker(∇κω0)).

By the above remark, this local system is a constant sheaf when restricted to p−1(U).
Thus, the same is true for ker(∇κω0), i.e (E,ω0) satisfies the extension property for the
infinitesimal automorphisms.

2. Since (E,ω0) is a branched holomorphic Cartan geometry, we can apply the point 3. of
Proposition 4.0.1 to A = e1 and A = e2. We obtain that the image of ker(∇κω0) through
πV/Ve1

and πV/Ve2
respectively extends as subsheaves of V/Ve1 and V/Ve2 on E. Since the

morphism (25) clearly restricts to a morphism between V and V/Ve1 ⊕ V/Ve2 , this proves
the assertion.
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4.4 Parabolic geometries of higher degree

Now, we let (G,P ) be a complex parabolic Klein geometry of degree k > 1, and denote by
g−k ⊕ . . .g0 ⊕ . . .gk the parabolic graduation. We refer the reader to [7] for the definitions and a
complete introduction on this subject.

The group P no longer acts transitively on P(g/p). Instead, we use a result of [6] which
implies the following :

Lemma 4.3. Let (E,ω0) be a regular meromorphic (G,P )-Cartan geometry on a pair (M,D).
Then there exists a morphism of C-sheaves :

L ∶ Vg−k
[⋆D̃] Ð→ V[⋆D̃] (26)

with the following properties :

(i) Let π−k ∶ V[⋆D̃] Ð→ Vg−k
[⋆D̃] be the projection on Vg−k

with respect to Vg−k+1[⋆D̃]. Then
π−k ○L = IdVg

−k
.

(ii) The restriction of L ○ π−k to ker(∇κω0) is the identity on ker(∇κω0).

Proof. The Theorem 4 in [6] is exactly the regular version of this lemma, i.e when D is empty.
Its proof uses only differential operators constructed with the de Rham differential on trivial
modules, and morphisms of modules obtained by tensorizing linear map of complex vector
spaces with the identity on holomorphic functions. Thus, it straightforwardly extends to the
meromorphic category since such operators preserves the sheaves of meromorphic sections.

Corollary 4.2. Let (E,ω0) be a regular meromorphic (G,P )-Cartan geometry on a pair (M,D).
Suppose that for any irreducible component Dα of D, there exists A ∈ g−∖g−k and a A-geodesic Σ
of (E,ω0) with Σ∩Dα = {x0}. Then (E,ω0) satisfies the extension property for the infinitesimal
automorphisms.

Proof. The property of regularity is invariant under isomorphisms of meromorphic Cartan ge-
ometries, so we assume as in the proof of Corollary 4.1 that (E,ω0) is holomorphically totally
geodesic without losing any generality. We pick x0 ∈ W ∩Dα, where W is the dense subset of
D in Definition 3.14 and Dα the unique irreducible component of D containing x0, and prove
that ker(∇κω0) extends as constant C-subsheaf of V[⋆D̃] when restricted to some neighboorhood
p−1(U) of e0 ∈ p

−1(x0).
By definition of W , there exists A ∈ g− ∖ g−k and a A-holomorphic geodesic Σ of (E,ω0)

with Σ ∩ D = {x0}, and thus a leaf Σ of TA with Σ ∩ D̃ = {e0} for some e0 ∈ p−1(x0). We
now apply the Proposition 4.0.1 to the A-holomorphic geodesic Σ. Since k > 1, CA and g−k
are independant subspaces in g. Thus, the projection π−k(ker(∇κω0)) extends as a constant C-
subsheaf of Vg−k

[⋆D̃] on a neighboorhood U of e0. The image of a constant sheaf by a morphism
of C-sheaves is a constant sheaf, so by Lemma 4.3, ker(∇κω0) extends as a constant C-subsheaf
of V[⋆D̃] on U . The proof is then achieved.
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5 Application to the classification of meromorphic affine con-
nections

5.1 Equivalence between meromorphic principal connections and meromor-
phic connections

We now prove the equivalence between meromorphic connections on a locally free OM -module
E and meromorphic principal connections on its frame bundle E. It straightforwardly restricts
as an equivalence between meromorphic connections preserving a holomorphic reduction E1 ⊂ E
to a subgroup P ⊂ GLr(C), and meromorphic P -principal connections on E1. In the regular
setting, this was first proved by C.Erhesmanh ([13]) using the formalism of horizontal lifts for
paths, and reformulated in an equivariant way by M. Atiyah ([1]). We adopt the point of view
of M. Atiyah in order to extend the result to the meromorphic category.

The starting point is that for P = GLr(C), there is a canonical isomorphism ([1], Proposition
9) :

E(p) = End(E) (27)

There is a bijection between the set of meromorphic connections ∇ on E and the one of
OM -linear splittings δ ∶ E[⋆D]Ð→ J1(E)[⋆D] of the exact sequence of C-sheaves :

0 // Ω1
M [⋆D]⊗ E // J1(E)[⋆D] // E[⋆D] // 0 (28)

Let σ ∶ U Ð→ E be a holomorphic section of the holomorphic frame bundle. This corresponds to
a basis (s1, . . . , sr) of E ∣U , and we denote in the following lines by d the pullback of the de Rham
differential through the corresponding isomorphism E ∣U ≃ O⊕rU . The former equivalence is given
by ∇ = d − δ. Indeed, this clearly defines a meromorphic connection, and if ∇ is a meromorphic
connection on E ∣U , then δ1 = d−∇ is a morphism of OU -modules from E ∣U [⋆D] to Ω1

U [⋆D]⊗E ∣U ,
and we obtain a splitting δ = (IdE ∣U , δ1) of (28).

Definition 5.1. A meromorphic principal connection on a holomorphic GLr(C)-principal bun-
dle E p

Ð→ M with poles at D̃ = p−1(D) (shortly on (E, D̃)) is a meromorphic one form ω̃ on
E with values in p, which is P -equivariant and such that ω̃ coïncides with the Maurer-Cartan
form of P when restricted to any fiber p−1(x) ⊂ E.

Using the correspondance for equivariant one forms as in subsection 2.2, a meromorphic
P -principal connection on (E, D̃) is equivalent to a morphism β ∶ At(E)[⋆D] Ð→ E(p)[⋆D]

such that ι ○ β = IdAt(E), where ι is defined in (7). Its kernel defines a splitting

τ ∶ TM[⋆D]Ð→ At(E)[⋆D] (29)

of (7), which uniquely determines β. The following lemma straightforwardly follows from the
equivalence described before between equivariant morphisms of modules over principal bundles
and morphisms between the corresponding modules over the base manifolds :

Lemma 5.1. Let (M1,D1) and (M2,D2) be two pairs of same dimension. Let Ψ̃ ∶ E1 Ð→ E2
be an isomorphism of holomorphic P -principal bundles over M1 and M2 covering a morphism
of pairs ϕ ∶ M1 Ð→ M2 (i.e ϕ(D1) = D2). Let ω̃2 be a meromorphic principal connection on
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(E1, D̃1) where D̃1 is the preimage of D1 (resp. ω̃1 = Ψ̃⋆ω̃1), and τ1 (resp. τ2) be the splitting
as in (29). Then the diagram below is commutative :

TM1
τ1 //

dϕ

��

At(E1)[⋆D1]

p1∗dΨ̃
��

ϕ∗TM2
ϕ∗τ2

// ϕ∗At(E2)[⋆D1]

(30)

where p1 is the footmap of E1.

Denote by d̃ the usual de Rham differential on OE[D̃]⊗V. Since the P -linearization (φVb )b∈P
preserves the subsheaf of constant functions with values in V on E, the pushforward p∗d̃ restricts
to p∗d̃ ∶ E Ð→ p∗Ω1

E ⊗ E . This defines a meromorphic connection ∇ on E by :

∇ = τ¬p∗d̃ (31)

where d̃ is defined above and ¬ stands for the contraction by a vector field.

Proposition 5.0.1. Mapping a meromorphic principal connection (E, ω̃) over (M,D) to the
meromorphic connection (E ,∇) on (M,D) defined by (31) induces an equivalence of categories
between :

● The category of principal meromorphic (resp. holomorphic) connections over pairs, where
the arrows are the Cr-meromorphic isomorphisms (Definition 2.3 of principal bundles be-
tween pairs preserving the principal connections (resp. isomorphisms of holomorphic prin-
cipal bundles preserving the principal connections)

● The category of meromorphic (resp. holomorphic) connections on (M,D) with isomor-
phisms of meromorphic bundle (resp. holomorphic vector bundles, see Definition 2.2)
preserving connections (in the sense of (4)).

Proof. Let’s first prove that this maps induces a functor. Let Ψ̃ ∶ E1 Ð→ E2 be an isomorphism
of meromorphic principal connections between (E1, ω̃1) and (E2, ω̃1) over (M,D) and (E1,∇1)
and (E2,∇2) obtained as in (31). Let (ϕ,Φ) be the associated isomorphism of vector bundles (see
(3)). Fix any open subset U ⊂M1 and a basis (si)i=1,...,r of E1∣U and denote by (ϕ∗ti)i=1,...,r its
image through Φ. Denote by (s̃i)i=1,...,r and (t̃i=1,...,r) respectively the corresponding equivariant
functions on p−1

1 (U) and p−1
2 (ϕ(U)). Thus t̃i = s̃i ○ Ψ̃ by definition of Φ. By definition of

Φ−1ϕ⋆∇2, we can compute :

Φ−1ϕ⋆∇2(si) = (IdΩ1
M1

⊗Φ−1)[dϕ¬(ϕ∗∇2(ϕ
∗ti))] (32)

Using the definition of ∇1 and ∇2, and Lemma 5.1, we get :

Φ−1ϕ⋆∇2(si) = (IdΩ1
M1

⊗Φ−1)[(ϕ∗τ2 ○ dϕ)¬ϕ
∗p2∗d̃2(t̃i))]

= τ1¬(p1∗d̃1t̃i ○ Ψ̃)

= ∇1(si)

(33)
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where we denoted by d̃1 and d̃2 the usual deRham differentials on OE1⊗Cr and OE2⊗Cr. Hence
we can map Ψ̃ to the vector bundle isomorphism (ϕ,Φ) which preserves the linear meromorphic
connections ∇1 and ∇2.

Now, we construct the pseudo-inverse. Let (E ,∇) be a meromorphic connection over a pair
(M,D). Denote by E its frames bundle. Let x ∈ M and U be a neighbhoorhood equipped
with a holomorphic section σ ∶ U Ð→ E. Denote by (s1, . . . , sr) the corresponding basis of E ∣U .
The section σ induces a splitting TE∣p−1(U) = p∗TU ⊕ ker(dp) which is P -equivariant, hence a
splitting

At(E)∣U = TU ⊕E(p)∣U (34)
We denote by τ0 the splitting of the exact sequence (7) restricted to U induced by (34), and by
d the pullback of the deRham differential through the trivialization associated with (si)i=1,...,r.
Let δ = ∇− d, which vanishes on the image of E(p) through ι (see (7)). Its kernel thus define a
morphism Θ ∶ TU Ð→ At(E)∣U [⋆D], and we obtain a splitting

τ = τ0 +Θ (35)

of (7) over U . From the remarks above, this is equivalent to a meromorphic principal connection
ω̃U on p−1(U) with poles at D̃ ∩ p−1(U).

Now, let U,U ′ be two open subset and (si)i=1,...,r and (s′i)i=1,...,r be two basis of E ∣U and E ∣U ′

corresponding to holomorphic sections σ,σ′ of E on U and U ′. Let d and d′ be the corresponding
de Rham differentials, then :

d − d′(s′i) = d(s
′
i) = d(

r

∑
j=1
b−1
ji sj) =

r

∑
j=1

(bd0(b
−1

))jis
′
j (36)

where b is the meromorphic function on U ∩ U ′ with values in P such that σ′ = σ ⋅ b, and d0 is
the usual de Rham differential on p-valued functions. Denote by τ and τ ′ constructed as before.
Thus :

τ ′ − τ = [(σ, b⋆ωP )] (37)
Thus ∇′ − ∇ = d′ − d + τ ′ − τ = 0 and the corresponding meromorphic principal connections ω̃
and ω̃′ coïncide over p−1(U ∩ U ′). We obtain a global meromorphic principal connection ω̃ on
(E, D̃) inducing ∇ as in (31).

If (ϕ,Φ0) is an isomorphism of vector bundles preserving the meromorphic connections
∇1,∇2, then from subsection 2.2 it induces an isomorphism Ψ̃ of holomorphic principal bundles
between E and E′. Since the action of P on Cr is free, by definition of ∇1 and ∇2 we get that
ϕ∗τ2 = τ1 ○ dϕ. By Lemma 5.1 we obtain Ψ̃⋆ω̃2 = ω̃1.

5.2 Equivalence between meromorphic affine connections and meromorphic
affine Cartan geometries

In this subsection, we consider the complex affine group G of dimension n ≥ 1, and the complex
linear group P ⊂ G. The restricted adjoint representation ad ∶ P Ð→ GL(g) splits as the sum of
two irreducible representations g− , the subalgebra corresponding to the infinitesimal generators
for the translations in Aff(Cn), and p = Lie(P ). Consequently, if E p

Ð→ M is a holomorphic
P -principal bundle and ω0 is a meromorphic (G,P )-Cartan connection on (E, D̃), then it splits
as the sum :

ω0 = θ0 ⊕ ω̃ (38)
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of a meromorphic solderform θ0 on (E, D̃) (see Definition 3.9) and a meromorphic P -principal
connection ω̃ on (E, D̃).

Consider the category Fconn whose objects are triples (φ0,E ,∇) formed by a meromorphic
extension (φ0,E) over a pair (M,D) and a meromorphic connection (E ,∇) on (M,D), and the
arrows are the isomorphisms of vector bunlde (see subsection 2.2) preserving the meromorphic
connections (see (4)). Define the map f from the category Gaff of meromorphic (G,P )-Cartan
geometries on (M,D) to Fconn as follows. If (E,ω0) is an object of Gaff , consider the meromor-
phic solderform (E, θ0) (see Definition 3.9) defined by (38), and ∇ the meromorphic connection
on E = E(Cn) associated with ω̃ (see Proposition 5.0.1).

Now, consider the subcategory G0
aff of Gaff whose objects are holomorphic branched (G,P )-

Cartan geometries, together with their isomorphisms. Consider a subcategory Fconn,0 of Fconn
obtained by intersecting with F0 (Definition 3.8).

Proposition 5.0.2. Let (M,D) be a pair. The map f extends as an equivalence of categories
between Gaff (resp. G0

aff ) and Fconn (resp. Fconn,0).

Proof. Let Ψ ∶ E Ð→ E′ is an arrow between two meromorphic (G,P )-Cartan geometries (E,ω0)
and (E′, ω′0) over (M1,D1) and (M2,D2) , and (φ0,E ,∇) and (φ′0,E

′,∇′
) their images through

f . So Ψ is a morphism of holomorphic rincipal bundles between the frame bundles and we
define f(Ψ) = (ϕ,Φ) as the image of Ψ through the equivalence described in subsection 2.2. By
construction, since Ψ⋆ω′0 = ω0, we have Ψ⋆θ′0 = θ0 and Ψ⋆ω̃′ = ω̃. The first condition implies that
(ϕ,Φ) is an arrow of meromorphic extensions (Definition 3.8), while the second one implies that
it preserves the meromorphic connections ∇ and ∇′ (see Lemma 5.1). Hence, f is a functor.
Since it is the restriction of the equivalence of categories from Proposition 3.0.1, we obtain an
equivalence of categories.

Let (φ0,E ,∇) be an object of FconnM,D . Then :

∇ = φ−1
0 ∇ (39)

defines a meromorphic affine connection on (M,D), we will call it the meromorphic affine
connection induced by (φ0,E ,∇). Thus, there is a functor

µ ∶ Fconn Ð→ A (40)

to the category A of meromorphic affine connections on pairs.

We denote by T∇ the torsion of ∇ (Equation 2). There is the analagous notion of g−-torsion
for an object (E,ω0) of Gaff on (M,D). It is the P -equivariant meromorphic function τω0 on

E with values in Wg− =
2
⋀(g−)∗ ⊗ g− defined as the projection of the Cartan curvature kω0 of

(E,ω0) (see Definition 3.4) on Wg− respective to
2
⋀(g−)∗ ⊗ p.

Let (E,ω0) be an object of Gaff on a pair (M,D) and (φ0,E ,∇) its image through the
equivalence in Proposition 5.0.2. Let ∇ be the meromorphic affine connection on (M,D) induced
by this object (see above). Identify the g−-torsion τω0 ○(ω0∧Idg−) with a meromorphic one form
on (E, D̃) with values in g∗− ⊗ g− = End(Cn). Let τω0 be the section of Ω1

M [⋆D]⊗End(E)[⋆D]

corresponding to τω0 through the equivalence preceding Definition 5.1. Identify it with a section
of Ω1

M ⊗End(TM)[⋆D] through the isomorphism φ0 ∶ TM[⋆D]Ð→ E[⋆D]. Then :
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Lemma 5.2. The two sections τω0 and T∇ defined as above coïncides.

Proof. It suffices to prove the statement for the restriction (E∣M∖D, ω0) and ∇∣M∖D over M ∖D,
in the holomorphic categories. We refer to [16], Theorem 5.1.

The vanishing of the torsion is clearly preserved by the isomorphisms of Gaff and we define
Gnormaff as its subcategory whose objects are meromorphic (G,P )-Cartan geomtries whose torsion
vanishes identically. We define Anorm as the subcategory of A whose objects are meromorphic
affine connections on pairs whose torsions identically vanish.

Finally, let’s remark that for any object (E , φ0,∇) of Fconn,0, the meromorphic affine con-
nection (39) restricts as a holomorphic connection on the submodule E . We then define :

Definition 5.2. The category A0 is the subcategory of A whose objects are the meromorphic
affine connections on (M,D) preserving a locally free OM -module E with TM ⊂ E ⊂ TM[⋆D],
in the above sense. Its objects are called holomorphic branched affine connections.

Lemma 5.3. Let ∇ be a holomorphic branched affine connection on (M,D). Then the submod-
ule E ⊂ TM[⋆D] from Definition 5.2 is unique.

Proof. Let E be the bundle of holomorphic frames for E , and ω̃ be the meromorphic principal
connection on R1(M) corresponding to ∇ (Proposition 5.0.1). Suppose there exists another rank
n locally free submodule E ′ of TM[⋆D] such that ∇ restricts to a holomorphic connection on E ′,
and let ω̃′ be the corresponding holomorphic princpal connection on its bundle of holomorphic
frames E′.

Pick a point x ∈ M , and a neighbhoorhood U of x in M with two basis (s1, . . . , sn) of E ∣U
and (t1, . . . , tn) of E ′∣U . Denote by σ,σ′ the holomorphic sections of R1(M ∖ D) on U ∖ D
corresponding respectively to these basis, and b be the unique holomorphic function on U ∖D
with values in GLn(C) such that σ′ = σ ⋅ b. Thus, σ′⋆ω̃ = σ⋆ω̃ = 0, so that :

b⋆ωGLn(C) = σ′
⋆
ω̃ − σ⋆ω = 0 (41)

Hence, b prolongates on U as a holomorphic funcion. This being true for any x ∈M , we obtain
that the two prolongations E and E′ of R1(M ∖D) coïncide, i.e E = E ′.

Corollary 5.1. The composition of the equivalence from Proposition 5.0.2 and the map given by
(40) gives an equivalence of categories between Gaff (resp. G0

aff ) and A (resp. A0). It restricts
as an equivalence between Gnormaff and Anorm.

Recall that, given any meromorphic affine connection ∇ on (M,D), a local holomorphic
vector field X on an open subset U ⊂M is a Killing field for ∇ iff the pullback of ∇ by its flows
is again ∇. We denote by kill∇ the subsheaf of TM ∖D whose sections are the Killing field for
∇. By Corollary 5.1, we obtain :

Lemma 5.4. If (E,ω0) is an object of Gaff on a pair (M,D), and ∇ the corresponding mero-
morphic affine connection on (M,D), then killM,ω0 = kill∇.
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5.3 Totally geodesic branched affine connections in algebraic dimension zero

Now, we will give some application of the results of section 4 to the classification of affine
meromorphic connections on some simply connected complex compact manifolds M . Most of
them are adaptations of the arguments used in the proof of the principal theorem in [3], using
the results of this article.

Theorem 5.1. Let (M,D) be a pair, with M a simply connected complex compact manifold. If
(M,D) bears a quasihomogeneous and totally geodesic meromorphic affine connection ∇, then
it admits a meromorphic parallelism (X1, . . . ,Xn), such that Xi is a Killing vector field for ∇
when restricted to M ∖D.

Proof. Let (E,ω0) be the meromorphic affine Cartan geometry on M corresponding to ∇ (see
Corollary 5.1). By the Corollary 4.1, it satisfies the extension property of infinitesimal au-
tomorphisms, i.e the local system kill∇ on M ∖ D extends as a local system K on M , with
K ⊂ TM[⋆D]. Since M is simply connected, this is a constant sheaf on M . Since ∇ is assumed
quasihomogeneous, we can pick x ∈ M and a OM,x-basis X1,x, . . . ,Xn,x of (TM)x formed by
germs of Killing fields for ∇. These germs are thus restrictions of global meromorphic vector
fields X1, . . . ,Xn whose restrictions to M ∖D are elements of kill∇(M ∖D). Since their germs
at x are independants, there exists a Zariski-dense open subset M ∖S such that the restrictions
of X1, . . . ,Xn to any subset U ⊂M ∖ S are independant elements of TM(U), i.e (X1, . . . ,Xn)

is a meromorphic parallelism on M .

Corollary 5.2. Let M be a compact complex manifold with finite fundamental group, and whose
meromorphic functions are constants. Then M doesn’t bear any totally geodesic branched holo-
morphic affine connection.

Proof. Suppose that ∇ is a totally geodesic branched holomorphic affine connection on (M,D),
denote by E the submodule of TM[⋆D] from Lemma 5.3. Complete the meromorphic parallelism
(Xi)i=1,...,n from Theorem 5.1 into a basis (Xj)j=1,...,r for the global meromorphic Killing fields
of ∇. A meromorphic parallelism is a rigid geometric structure (see [12]), so by the Theorem
2 of [11], the juxtaposition of (Xj)j=1,...,r and ∇ is quasihomogeneous. Since ∇ satisfies the
extension property for the Killing vector fields (Corollary 4.1) and M is simply connected, we
obtain a meromorphic parallelism (X

′
i)i=1,...,n such that the restriction of each X ′

i to M ∖D is a
Killing field for ∇ and commutes with each Xj . In particular, each X ′

i is a C-linear combination
of the (Xj)j=1,...,r, so (X

′
i)i=1,...,n are commuting meromorphic vector fields.

Now, let pick any Gauduchon metric on M ([15]) and let’s prove that the degree deg(E) of
E with respect to this metric is zero. Let (E,ω0) be the branched holomorphic affine Cartan
geometry on (M,D) corresponding to ∇ (Corollary 5.1). Then E = E(g/p) = E(g)/E(p) by
definition of (E,ω0), and since P = GLn(C), we have deg(E(p)) = 0 (see [2], Corollary 4.2).

We must then prove that deg(E(g)) = 0. For, it is sufficient to prove that C1(R∇ω0 ) vanishes
identically, where C1 is the trace on End(E(g)) and ∇ω0 is the tractor connection (see Defini-
tion 3.7). We will prove that the meromorphic one form ηi =X

′
i¬C1(R∇ω0 ) vanishes identically

on M for any 1 ≤ i ≤ n. By Lemma 3.1, we have :

p⋆ηi = X̃ ′
i¬C1(Rp⋆∇ω0 ) = dC1(Ad(si))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
η̃0

i

+ X̃ ′
i¬Ad(ω0 ∧ ω0)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
η̃1

i

(42)
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where X̃ ′
i is the lifting of X ′

i to E and si = ω0(X
′
i).

The meromorphic one form η̃0
i is exact and P -equivariant. By a classical result on exact

invariant forms on connected Lie groups, the restriction of η̃0
i to any fiber of E p

Ð→M corresponds
to a homomorphism χ ∶ P Ð→ C. Because P = GLn(C), any such homomorphism is trivial, so
that η̃0

i vanishes on the fibers of E p
Ð→M . Thus, it is the pullback of a meromorphic exact one

form η0
i on M . Moreover, by Corollary 4.1, si is a holomorphic section of V on E, so that η̃0

i

is a holomorphic one form. Thus, η0
i is an exact holomorphic one form on a simply connected

compact complex manifold, i.e vanishes everywhere.
Now, let’s prove that η̃1

i = p
⋆ηi vanishes everywhere. Consider EG = E ×G

piG
Ð→ E and the

holomorphic tractor connection ω̃ on it (Definition 3.7). Using the splitting TEG = ker(ω̃) ⊕
ker(dπG), the pullback η̂1

i = π
⋆
Gη̃

1
i uniquely decomposes as a sum :

η̂1
i = η̂

H
i ⊕ η̂i (43)

with η̂Hi a G-invariant meromorphic one form on EG, vanishing on ker(ω̃), and η̂Vi vanishing
on ker(ω̃). In particular, η̂Hi is the pullback of ηi through the composition pG = p ○ πG, so that
η̂Vi vanishes everywhere. Now, using Corollary 4.1, η̃1

i is a holomorphic one form, so that ηi is
a holomorphic one form on M . Using the Lie-Cartan formula, we have :

dηi(X
′
j ,X

′
k) = LX′

j
ηi(X

′
k) −LX′

k
ηi(X

′
j) − ηi([X

′
j ,X

′
k]TM) (44)

Since the only meromorphic functions onM are the constants, we obtain LX′

j
ηi(X

′
k) = LX′

k
ηi(X

′
j) =

0, and since the meromorphic vector fields (X ′
i)i=1,...,n commute, ηi is a closed holomorphic one

form. Since M is simply connected and compact, ηi vanishes everywhere. This proves that
C1(R∇ω0 ) vanishes everywhere, i.e deg(E(g)) = 0.

Hence, deg(E) = 0. Let s1, . . . , sn be the images of X ′
1, . . . ,X

′
n through the morphism φ0,

where (φ0,E) is the holomorphic extension image of (E,ω0) as in Proposition 5.0.2. Since
si = ω0(X̃

′
i) is a section of V(E) for any 1 ≤ i ≤ n from Corollary 4.1, each si is a section of

E(M). Since they are independant, the holomorphic section
i=1
n

⋀ si of det(E) is not identically

vanishing, thus det(E) is trivial and
i=1
n

⋀ si never vanishes. It therefore forms a basis of E on M ,
and the dual sections s∗1 , . . . , s∗n are holomorphic sections of E∗ on M . We obtain a branched
holomorphic (Cn,{0})-Cartan geometry (M,η) on (M,D), where :

η =
n

⋀
i=1

(s∗i ○ φ0) ⊗ ei (45)

where (ei)i=1,...,n is the canonical basis of Cn. Because the η-constant vector fields (X ′
i)i=1,...,n

commute, it is a flat branched holomorphic Cartan geometry. Since M is simply connected and
compact, there is a holomorphic submersion dev ∶M Ð→ Cn. This is impossible by the maximum
principle, so M cannot bear any totally geodesic branched holomorphic affine connection.
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