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Abstract
We give a geometric assumption on a meromorphic affine connection for its Killing vector fields to

be univaluated. For, we prove a general result on the infinitesimal automorphisms for a subcategory
of meromorphic Cartan geometries, and uses the equivalence with the former geometric structures.
This result is applied to the classification on complex compact manifolds with algebraic dimension
zero, extending partially the main result of [3].

1 Introduction
Many geometric structures over complex or real manifolds are infinitesimal versions of some homogeneous
geometric structure on a model space, meaning that the global automorphisms of the structure act tran-
sitively on this space. Thus, the infinitesimal isometries, i.e differentiable or holomorphic local vector
fields whose local flows preserve the geometric structure, are of special interset when we try to classify
them. When these vector fields span the tangent space at any point, we say that the geometric structure
is locally homogeneous (resp. quasi-homogeneous if an open dense subset is locally homogeneous). The
classification of simply connected manifolds (complex or real) admitting a locally homogeneous geometric
structure is a classical problem in differential geometry, and started with the riemanniann case. In partic-
ular, Riemann, Killing and Hopf proved that any simply connected and locally homogeneous riemanniann
manifold is in fact homogeneous (see [18]).

The quasi-homogeneity of the holomophic geometric structure on a compact complex manifolds is
sometimes obtained from complex-geometrical assumptions on the base manifold. For example, any rigid
holomorphic geometric structures (see [8]) on a compact complex manifold whose meromorphic functions
are constants is quasi-homogeneous, by a result proved by S. Dumitrescu in [11]. It was extended
to holomorphic Cartan geometries and their infinitesimal automorphisms (or Killing fields). These are
objects related with holomorphic geometric structures in the sense that any holomorphic Cartan geometry
on a base complex manifold M , with model a complex Klein geometry (G,P ), induces a holomorphic
geometric structure whose model only depends on (G,P ). For example, when (G,P ) is the affine Klein
geometry, the holomorphic geometric structure is a holomorphic affine connection (see Corollary 5.1).

The facts mentionned above were used in [3] to prove a classification result : any simply connected
complex compact manifold M , whose meromorphic functions are constants, cannot bear a holomorphic
(G,P )-Cartan geometry. Two important steps in the proof are as follow. First, it is proved that any
germ of infinitesimal automorphism of the Cartan geometry is the germ of a global infinitesimal auto-
morphism : this is a generalization of a result by Nomizu ([17]) for analytic riemanniann metrics, and
follows from the fact that the former objects form a local system on M . Next, it is proved that there is
a family of global infinitesimal automorphisms, whose existence is ensured by the previous fact, which
integrates into an action by automorphisms of a complex abelian Lie group L with an open dense orbit
in M . The conclusion follow from detailed study of the geometry of such manifolds M , which implies
that the Cartan geometry is flat.

In the meromorphic category, the two steps may fail : infinitesimal automorphisms could be multi-
valuated, and a meromorphic univaluated infinitesimal automorphism may not have a well defined flow
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2 PRELIMINARIES AND NOTATIONS 2

at some point of the pole. In this paper, we give a sufficient condition on some meromorphic Cartan
geometries to recover the first step, and apply it to the classification of meromorphic affine connections.

2 Preliminaries and notations
2.1 Locally free modules and meromorphic connections
Let (M,D) be a pair, i.e a complex manifold M equipped with a divisor D. Let L be a coherent OM -
module. The order ordLD(s) at D of a section s of L[⋆D] defined on an open subset U ⊂ M is the
greatest integer d ∈ Z such that s is also a section of L(−dD)∣U on U .

Definition 2.1. A meromorphic connection on (M,D) is a couple (V,∇) where V is a locally free OM -
module of finite rank, and ∇ is a morphism of C-sheaves from V[⋆D] to Ω1

M ⊗ V[⋆D] satisfying the
Leibniz identity ∇(fs) = d(f)s + f∇(s) for any s ∈ V(U) and f ∈ OM [⋆D](U) (U is an open subset of
M).

If (L,∇) and (L′,∇) are two meromorphic connections related by L =
r

⊕
i=1
OMsi, L′ =

r

⊕
i=1
OM ti and

ti =
r

∑
j=1
qjisj for a meromorphic matrix Q on M , then the matrices A and A′ respectively associated to

the basis (si)i=1,...,r and (ti)i=1,...,r are related by the gauge-transformation formula :

A′
= Q−1dQ +Q−1AQ (1)

where d stands for the deRham derivative.
A meromorphic affine connection on (M,D) is a meromorphic connection ∇ on TM with poles

supported at D. The torsion of a meromorphic affine connection ∇ on (M,D) is the meromorphic
section T∇ of Ω1

M ⊗End(TM) defined by :

T∇(X)(Y ) = ∇X(Y ) − ∇Y (X) − [X,Y ]TM (2)

Let (M,D) be a pair and r ≥ 1 be an integer. Recall that mapping a holomorphic rank r vector
bundle V over M to the locally free rank r OM -module E of local holomorphic sections of V is an
equivalence of categories. It maps a isomorphism Ψ̂ ∶ V1 Ð→ V2 of vector bundles with associated sheaves
of sections E1,E2, covering an isomorphism ϕ ∶M1 Ð→M2 of complex manifolds, to the isomorphism Φ
of OM -modules between E1 and ϕ∗E2 defined by :

Φ ∶ E1(U) Ð→ ϕ∗E2(U)

s Ð→ Ψ̂ ○ s ○ ϕ−1 (3)

where U is an open subset of M .

Definition 2.2. A couple (ϕ,Φ) as above will be called a isomorphism of vector bundles between E1
and E2. More generally, we define a isomorphism of meromorphic bundles by replacing the sheaves of
holomorphic sections by the corresponding of meromorphic sections with poles at D1 and D2.

Let ∇1, ∇2 be two meromorphic connections on E1,E2 with poles supported at D1,D2. We say that
an isomorphism of meromorphic vector bundles (ϕ,Φ) preserves the connections iff :

(ϕ,Φ)
⋆
∇2 = ∇1 (4)

where (ϕ,Φ)⋆∇2 is the pullback of ∇2 through (ϕ,Φ) defined by the commutative diagram :

E1
(ϕ,φ)⋆∇2 //

φ

��

Ω1
M1

⊗ E1[⋆D1]

ϕ∗(E2[⋆D2])
ϕ∗∇2

// ϕ∗Ω1
M2

⊗ ϕ∗(E2[⋆D2])

(dϕ)∗⊗φ−1

OO
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where we denoted ϕ∗ the pullback in the sheaf theoretic sense and dϕ the differential in the sheaf theoretic
sense.

A flat meromorphic connection ∇ on E with poles at D is a meromorphic connection such that the
subsheaf of horizontal sections ker(∇) on M ∖D defined by :

∀U ⊂M ∖D, ker(∇)(U) = {s ∈ E(U) ∣∇(s) = 0} (5)

is a local system (see [9]).
We recall that there is an equivalence of categories between the category of local systems of rank r on

M ∖D with arrows being the isomorphisms, and the category of representations ρ ∶ π1(M ∖D,x) Ð→K
(for any x ∈ M ∖D, and K is a C-vector space of dimension r) with arrows being the isomorphisms of
representations. Once a point x ∈ M ∖D is choosen, this equivalence is obtained by associating to the
local system K, the monodromy map Monx(K) ∶ π1(M ∖D,x) Ð→ Aut(Kx) (see [9]).

2.2 Atiyah sequence of the frame bundle
The frame bundle of a locally free OM -module E of rank r is the holomorphic GLr(C)-principal bundle
E

p
Ð→M whose fiber at x ∈M is the set of isomorphisms Cr ≃ E(x). Here E(x) = Ex/mx stands for the

fiber of E at x.
We recall that for any complex Lie group P and a holomorphic P -principal bundle E p

Ð→M , there is
a notion of P -linearization for a OE-module V : this is a family (φb)b∈P of isomorphisms φb ∶ V ≃ r∗bV
(where rb is the right action of P ) with nice properties (see [14]). A OE-module equipped with a
P -linearization is said to be P -equivariant. In this context, there is an equivalence between the P -
equivariant locally free OE-modules and the locally free OM -modules, and between the P -equivariant
morphisms and the morphisms between the corresponding OM -modules (see []). For any representation
ρ ∶ P Ð→ GL(V), and any holomorphic P -principal bundle E p

Ð→M , we denote by E(V) the OM -module
associated with the OE-module OE ⊗V, where the P -linearization (φb)b∈P is given by φb = r∗b ⊗ ρ(b−1).
We call it the representation module associated with E and V. For any isomorphism Ψ ∶ E1 Ð→ E2
of holomorphic P -principal bundles covering ϕ ∶ M1 Ð→ M2, the representation isomorphism of
associated vector bundles corresponding to Ψ is the isomorphism

Ψ(V) ∶ E1(V) Ð→ ϕ∗E2(V) (6)

associated to the P -equivariant isomorphism Ψ∗ ⊗ IdV of trivial OE-modules.

Definition 2.3. Let V be a representation of a complex Lie group P . Let E1
p1
Ð→ M1 and E2

p1
Ð→ M2

be two holomorphic P -principal bundles, and D1,D2 be respectively two divisors of M1 and M2. An
isomorphism Ψ ∶ E1∣M1∖D1 Ð→ E2∣M2∖D2 of holomorphic P -principal bundles is V-meromorphic between
(M1,D1) and (M2,D2) iff the representation isomorphism Φ = Ψ(V) restricts to an isomorphism Φ ∶

E1(V)[⋆D1] Ð→ ϕ∗E2(V)[⋆D2] (see 6).

In particular, mapping holomorphic GLr(C)-principal bundles E over M to the associated represen-
tation modules E(Cr)gives an equivalence of categories. A pseudo-inverse is given by mapping a locally
free OM -module E of rank r to its frame bundle E.

Consider p = Lie(P ) which is the adjoint representation of P . Let At(E) be theOM -module associated
with the P -equivariant locally free OE-module TE equipped with the P -linearization induced by the
infinitesimal action of P on E : it is called the Atiyah bundle of E, and fits into the short exact
sequence :

0 // E(p)
ι // At(E)

q // TM // 0 (7)

where ι is the morphism associated with the P -equivariant mophism which to any A ∈ OE ⊗ p associates
the corresponding fundamental vector field on E, and q is the one associated with the P -equivariant
morphism dp ∶ TE Ð→ p∗TM .

The previous equivalence implies that P -equviariant meromorphic one forms on E, with poles at D̃ =

p−1(D), and values in V are in bijection with morphisms β ∶ At(E)[⋆D] Ð→ E(V)[⋆D], or equivalently
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with sections of At(E)⊗E(V)[⋆D]. This correspondance restricts to a bijective correspondance between
:

● The set of morphisms β as above vanishing on the image of ι in (7), equivalently sections of
Ω1
M [⋆D] ⊗E(V)

● The set of meromorphic one forms ω̃ on (E, D̃) with values in V vanishing on ker(dp)

3 Holomorphic branched Cartan geometries and the Killing con-
nection

In this section, we fix a pair (M,D) where M is of complex dimension n. We define meromorphic
Cartan geometries, and the subcategory of branched holomorphic Cartan geometries. We describe their
infinitesimal automorphisms as sections for a meromorphic connection either on a trivial module over the
principal bundle of the geometry, or on the corresponding module over the base manifold. We introduce
the subcategory of totally geodesic meromorphic Cartan geometries : in the next section, we will see that
their infinitesimal automorphisms are univaluated, in a sense that will be defined.

3.1 Meromorphic and holomorphic branched Cartan geometries
First, we have to define the models for Cartan geometries :

Definition 3.1. A complex Klein geometry of dimension n ≥ 1 is a couple (G,P ) where G is a complex
Lie group, and P is a complex Lie subgroup with dim(G) − dim(P ) = n.

Let (G,P ) be as in Definition 3.1 and let P ′ = ker(ad) where ad ∶ P Ð→ GL(g/p) is the representation
induced by the ajdoint representation. Then any choice of a basis for g/p identifies Q = P /P ′ with a
linear complex subgroup, and TG/P with the module G(g/p) associated to the P -principal bundle E and
the representation g/p. Thus, the complex manifold G/P comes equiped with a holomorphic reduction
G ×
P
Q of its holomorphic frame bundle R1(G/P ), i.e a holomorphic Q-structure : namely G/P ′.
This is in fact only due to the presence of a holomorphic 1-g-form with special properties on the total

space of the holomorpihc P -principal bundle GÐ→ G/P , namely the Maurer-Cartan form ωG of G. We
can consider curved versions of theses objects, for which the previous fact still holds. Authorizing the
one form to have poles on the P -principal bundle, we obtain their meromorphic analogues :

Definition 3.2. Let (G,P ) be a complex Klein geometry with dim(G/P ) = n and (M,D) be a pair. A
meromorphic (G,P )-Cartan geometry is a couple (E,ω0) where E p

→ M is a holomorphic P -principal
bundle, and ω0 is a meromorphic 1-g-form on E, with poles on D̃ = p−1(D), such that :

(i) For any x ∈M ∖D, ι⋆xω0 coïncides with the Maurer-Cartan form ωE,x (see above).

(ii) ω0 is P -equivariant.

(iii) For any e ∈ E ∖ D̃, ω0(e) is an isomorphism between TeE and g.

Namely, if (E,ω0) is a meromorphic (G,P )-Cartan geometry on (M,D), then there is an isomorphism
of OM∖D-modules between TM ∖D and the module E(g/p)∣M∖D associated with E. We obtain as above
a holomorphic reduction of R1(M ∖D) to Q, which prolongates to a holomorphic Q-reduction Ẽ of the
bundle of frames of E = Ẽ(g/p) where Ẽ = E ×

P
Q. The isomorphism of OM∖D-modules is the restriction

of an isomorphism of OM [⋆D]-modules between TM[⋆D] and E[⋆D].
They form a category :

Definition 3.3. Let (G,P ) be a complex Klein geometry and (M,D),(M ′,D′) be two pairs with dim(M) =

dim(M ′) = dim(G/P ). Let (E,ω0) and (E′, ω′0) be respectively two meromorphic (G,P )-Cartan geome-
tries on (M,D) and (M ′,D′). An isomorphism between (E,ω0) and (E′, ω′0) is an isomorphism of
holomorphic P -principal fiber bundles Ψ ∶ E ∖ D̃

∼
→ E′ ∖ D̃′ such that Ψ⋆ω′0 = ω0.
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The following object is central in the study of Cartan geometries :
Definition 3.4. Let (E,ω0) be a meromorphic (G,P )-Cartan geometry on (M,D). Its curvature func-
tion is the meromorphic function kω0 on E with values in W = g∗ ∧ g∗ ⊗ g and defined by :

kω0 = dω0 ○ (ω
−1
0 ∧ ω−1

0 ) + [, ]g (8)

where [, ]g is the Lie-bracket of g identified with an element of W.
Fix a Klein geometry (G,P ) and choose a basis (ei)i=1,...,N of g, with (ei)i=1,...,n spanning a supple-

mentary g− of p. Denote by (e∗i )i=1,...,N the dual basis of g∗.
Definition 3.5. Let (E,ω0) be a meromorphic (G,P )-Cartan geometry on (M,D). The meromorphic
functions :

γki,j = e∗k ○ kω0(ei, ej) (9)
are called the structure coefficients of (E,ω0).

A natural subcategory of the meromorphic (G,P )-Cartan geometries on pairs is the following :
Definition 3.6. A branched holomorphic (G,P )-Cartan geometry on a pair (M,D) is a meromorphic
(G,P )-Cartan geometry (E,ω0) on (M,D) such that ω0 extends as a holomorphic one form on E.

An important feature of these objects for the classification is the existence of a holomorphic connection
on the adjoint vector bundle. Indeed, let (E,ω0) be a branched holomorphic (G,P )-Cartan geometry
on (M,D), and EG = E ×

P
G the extension of the holomorphic P -principal bundle E to the group G. By

definition, EG is the quotient of the product E ×G by the action of G given by (e, g) ⋅ h = (e ⋅ h,h−1g).
Consider the G-equivariant holomorphic one form ω on E ×G with values in g given by :

ω = ad(π2) ○ π
⋆
1ω0 + π

⋆
2ωG (10)

where π1, π2 are the projections on each factor and ωG is the Maurer-Cartan form of G. It is straight-
forward to verify that for any A ∈ g0, ω( ddt ∣t=0(e, h) ⋅ expG(tA)) = 0, i.e the vectors tangent to the fibers
of

πG ∶ E ×GÐ→ EG (11)
are in the kernel of ω. Thus, ω induces a holomorphic one form on EG.
Definition 3.7. The holomorphic G-principal connection ω̃ on EG induced by ω is the tractor-connection
of (E,ω0). We denote by ∇ω0 the corresponding holomorphic connection on EG(g) = E(g) (see Proposi-
tion 5.0.1).

The pullback p∗E(g) is the trivial module V = OE ⊗ g.
Lemma 3.1. The pullback p⋆∇ω0 is d −Ad(ω0) where d is the deRham diffential on the trivial module
V, Ad(ω0) is the section of Ω1

E ⊗End(g) = Ω1
E ⊗End(V) defined by :

X¬Ad(ω0)(s) = [ω0(X), s]g

for any holomorphic vector field X of E and section s of V. In particular, its curvature is Rp⋆∇ω0 =

Ad(dω0) +Ad(ω0 ∧ ω0).
Proof. Since the ω0-constant vector fields on E span TeE at any e ∈ E ∖ D̃, we can choose Ã = ω−1

0 (A) for
A ∈ g as a holomorphic vector field on E ∖ D̃. Let s be any section of V(U), U ⊂ E ∖ D̃ an open subset.
By definition of ∇ω0 and the remarks preceding Definition 3.7, we have :

Ã¬p⋆∇ω0(s) = (A − Â)¬d(s̃)

where s̃ is the unique G-equivariant section of OE×G⊗g which coïncides with s in restriction to E ⊂ E×G,
A is the unique G-invariant meromorphic vector field whose restriction to E coïncides with Ã, and Â

is the holomorphic vector field tangent to the fibers of E × G
π1
Ð→ E such that π⋆2ωG(Â) = A. Indeed,

A − Â is the unique vector field which belongs to ker(ω) and projects to Ã via π1 ∶ E ×G Ð→ E. Now,
A¬d(s̃) coïncides with Ã¬d(s) in restriction to E, while Â¬d(s̃) = [A, s]g because s̃ is G-equivariant. The
first formula follows. For the curvature, it corresponds to the classical computation of the curvature in a
trivialisation of a vector bundle.



3 HOLOMORPHIC BRANCHED CARTAN GEOMETRIES AND THE KILLING CONNECTION 6

3.2 Meromorphic extension of the tangent sheaf
We now describe an object induced by any meromorphic Cartan geometry.
Definition 3.8. Let (M,D) be a pair.

1. A meromorphic extension of (M,D) is a couple (φ0,E) where E is a locally free OM -module and
φ0 ∶ TM[⋆D] Ð→ E[⋆D] is an isomorphism of OM -modules.

2. A holomorphic extension of (M,D) is a meromorphic extension (φ0,E) such that φ0(TM) ⊂ E.

3. The category F (resp. F0) of meromorphic extensions (resp. holomorphic extensions) over pairs is
defined as follow. An arrow between two meromorphic extensions (φ0,E) and (φ′0,E

′) over (M1,D1)
and (M2,D2) is a an isomorphism (ϕ,Φ) of meromorphic bundles (resp. of vector bundles, see
Definition 2.2) between E and E ′ such that the following diagram commutes :

TM1
φ0 //

dϕ

��

E[⋆D1]

Φ
��

ϕ∗TM2
ϕ∗φ′0

// ϕ∗E ′[⋆D1]

(12)

4. The category obtained by restricting to meromorphic extensions of (M,D) and to isomorphisms of
meromorphic bundles of the form (IdM ,Φ) is denoted by FM,D (resp. F0

M,D).
Definition 3.9. Let (M,D) be a pair.

1. Let E p
Ð→M be a holomorphic P -principal bundle and D̃ = p−1(D). A meromorphic solderform on

(E, D̃) is a P -equivariant meromorphic 1-Cn-form θ0 on E, with poles supported at D̃, vanishing
on ker(dp), and such that θ0(e) is surjective for any e ∈ E ∖ D̃. A couple (E, θ0) is called a
meromorphic solder form over (M,D)

2. An arrow between two meromorphic solderforms (E, θ0) and (E′, θ′0) over (M1,D1) and (M2,D2)
is an isomorphism of holomorphic P -principal bundles Ψ̃ ∶ E Ð→ E′ such that θ0 = Ψ̃⋆θ′0. This
defines the category D of meromorphic solderforms over pairs.

Proposition 3.0.1. The map which to any meromorphic solder form (E, θ0) over (M,D) (Defini-
tion 3.9) associates the meromorphic extension (φ0,E) where φ0 ∶ TM[⋆D]

∼
Ð→ E[⋆D] is the isomorphism

which corresponds to θ0 (see remarks preceding Definition 5.1), extends to an equivalence of categories
m ∶ D Ð→ E.
Proof. If Ψ̃ ∶ E Ð→ E′ is an arrow between two objects (E, θ0) and (E′, θ′0) of the category of solderforms
over (M,D), we define m(Ψ̃) = Φ as the image of Ψ̃ through the equivalence of ??. Consider the images
(φ0,E) and (φ′0,E) of (E, θ0) and (E′, θ′0). Since θ′0 = Ψ̃⋆θ0, by definition, Φ○φ0 = φ

′
0 so m is a essentially

surjective functor. Since it is the restriction of the equivalence of categories described in subsection 2.2,
it is an equivalence of categories.

Now let (E,ω0) be any meromorphic (G,P )-Cartan geometry on (M,D). Then the meromorphic one
form πg/p ○ ω0 obtained by projecting ω0 on g/p is P -equivariant for the quotient adjoint action on g/p,
and pointwise surjective on E ∖ p−1(D). Moreover, its kernel contains ker(dp). In view of the Atiyah
sequence with poles at D (see Equation 7), it thus corresponds to a morphism of OM -modules :

φ0 ∶ TM[⋆D] Ð→ E[⋆D] (13)

where we set E = E(g/p). By construction, φ0 is an isomorphism of meromorphic bundles and (E , φ0) is
thus a meromorphic extension on (M,D).
Definition 3.10. The meromorphic extension (E , φ0) obtained as above is the meromorphic extension
induced by (E,ω0). We denote by f the map from the set of meromorphic (G,P )-Cartan geometries
on pairs to the set of meromorphic extensions which maps (E,ω0) to its induced meromorphic extension
(E , φ0). This extends as a functor f between the corresponding categories.
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3.3 Infinitesimal automorphisms as horizontal sections
Important objects in the study of meromorphic Cartan geometries are the following :

Definition 3.11. Let (E,ω0) be a meromorphic (G,P )-Cartan geometry on (M,D). An infinitesimal
automorphism of (E,ω0) is a holomorphic vector field X on an open subset U ⊂M ∖D, lifting to a vector
field X on p−1(U) such that φt⋆Xω0 = ω0. We write killlocM,ω0

for the subsheaf of TM ∖D whose sections
are the local infinitesimal automorphisms, and killlocE,ω0

for the subsheaf of TE ∖ D̃ whose sections are the
lifts of sections of killlocM,ω0

.

In order to study the sections of killlocM,ω0
, it is convenient to identify them with horizontal sections for a

meromorphic connection on a trivial module over E. This is a classical approch for general meromorphic
parallelisms (see for example [4]). Indeed, let’s denote by T the torsion of the flat meromorphic connection
∇0 whose horizontal sections are the ω0-constant vector fields on E. Then :

Proposition 3.0.2. Let (E,ω0) be a meromorphic (G,P )-Cartan geometry on (M,D).

1. The sheaf killlocE,ω0
coïncides with the sheaf ker(∇recω0

) of horizontal sections for the reciprocal con-
nection ∇rec defined by :

∇
rec
X = ∇

0
X + T (X, ⋅) (14)

for any local vector field X.

2. The connection ∇recω0
is invariant by the P -linearization (drb)b∈P corresponding to the action of

principal P -bundle.

Proof. 1. See Lemma 3.2 in [4].

2. This straightforwardly follows from the fact that the torsion of ∇0 is P -invariant by definition.

Definition 3.12. The Killing connection of a meromorphic (G,P )-Cartan geometry (E,ω0) on (M,D)

is the meromorphic connection (V,∇ω0) where V = OE ⊗ g and

∇
ω0 = Φ−1

ω0
∇
rec

where Φω0 is the isomorphism of OE[⋆D̃]-modules between TE[⋆D̃] and V[⋆D̃].

Hence, killE,ω0 and killM,ω0 are respectively local systems on E ∖ D̃ and M ∖D.

As explained in the introduction, our goal is to classify quasi-homogeneous meromorphic Cartan
geometries (E,ω0). This hypothesis is satisfied whenever the base manifold M has only constant mero-
morphic functions (see [10]). In this case, there exists a point x0 ∈M and n independent germs of Killing
vector fields for (E,ω0). We want to see for a sufficient condition for these germs to come from global
Killing vector fields, i.e for the following property to be satisfied :

Definition 3.13. Let (E,ω0) be a meromorphic (G,P )-Cartan geometry on a pair (M,D). It satisfies
the extension property of infinitesimal automorphisms if and only the local system killM,ω0 on M ∖ D
extends as a local system k ⊂ TM on M .

3.4 Distinguished foliations and totally geodesic meromorphic Cartan ge-
ometries

We will restrict our attention on the following subcategory of meromorphic Cartan geometries. Let
(E,ω0) be a meromorphic (G,P )-Cartan geometry on (M,D), and A ∈ g ∖ {0}. Since ω0 induces an
isomorphism of meromorphic bundles between TE[⋆D̃] andOE[⋆D̃]⊗g, there exists a unique distribution
of rank one (thus integrable) TA ⊂ TE with the following property :

ω0(TA) ⊂ OE[⋆D̃]A (15)
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We will call it the A-distinguished foliation of (E,ω0), and a leaf Σ will be called a A-distinguished
curve for (E,ω0).

Definition 3.14. A meromorphic (G,P )-Cartan geometry (E,ω0) on a pair (M,D) is holomorphically
totally geodesic iff for a dense subset W ⊂ D̃, and any e0 ∈W , there exists A ∈ g ∖ p and a smooth leaf Σ
of TA (Equation 15) with Σ ∩ D̃ = {e0}.

The following lemma show that it suffices to check the existence of one distinguished curve Σ as in
Definition 3.14 for each irreducible component D̃α of D̃ :

Lemma 3.2. Let (E,ω0) be a meromorphic (G,P )-Cartan geometry on a pair (M,D), with D a smooth
irreducible divisor. Let e0 ∈ D̃ = p−1(D), and suppose there exists A ∈ g ∖ p and a leaf Σ of TA through e0
s.t. Σ ∩ D̃ = {e0}. Then there exists a holomorphic foliation of an open neighboorhood U of x0 = p(e0)
whose leaves (Σx)x∈U are holomorphic A-geodesics of (E,ω0) satisfying Σx ∩D = {x0(x)}. Moreover,
there exists a dense subset W ⊂D ∩U such that for any x0 ∈W , Σx0 is a smooth submanifold of U .

Proof. Let’s prove the first statement. Since there is a leaf Σ of TA through e0, there exists an open
neighboorhood Ũ of e0 s.t. TA∣Ũ is a regular foliation, and defined by a non vanishing holomorphic vector
field ZA on Ũ .

The condition that Σ∩ D̃ is a discrete set of points in D̃ is equivalent to ZA(e0) /∈ Te0D̃. Denoting by
z1 an equation of Ũ ∩ D̃, this means (see [5]) :

dimCOE,e0/⟨LZA
(z1), z1⟩e0 < ∞ (16)

Up to restriction of Ũ , for any e ∈ Ũ there is an isomorphism of vector spaces ρe between OE(Ũ) and OE,e
associating to any holomorphic function its germ at e. Evidently, ρe restricts as an isomorphism between
the subspaces ⟨LZA

(z1), z1⟩(Ũ) and ⟨LZA
(z1), z1⟩e. Thus, the function e ↦ dimCOE,e/⟨LZA

(z1), z1⟩e is
constant on Ũ . In particular, by the above remark, any leaf Σ′ of TA∣Ũ satisfies Σ′ ∩ D̃ = {e1, . . . , ek}. Up
to restriction of Ũ , we can assume k = 1. In particular, the leaf Σe of TA∣Ũ through e ∈ Ũ intersects D̃ in
an unique point e′0(e).

Now, let U = p(Ũ and pick any holomorphic section σ of E over U with values in Ũ . Then the family
(Σx′0)x′0∈D∩U of holomorphic curves defined by :

Σx′0 = p(Σx′0) (17)

defines a holomorphic foliation on U , whose leaves are holomorphic geodesics for (E,ω0). By construction,
they satisfy the required property.

The second statement follow straightforwardly from the fact that, for any x0 ∈ D ∩ U , the tangent
sheaf TΣx0 is the restriction TA∣Σx0

. Since TA is a locally free submodule of TU when restricted to te
complement of a codimension 2 open subset, the statement follows.

Moreover, locally, the isomorphism class of totally geodesic meromorphic Cartan geometries and the
one of holomorphic totally geodesic Cartan geometries on a pair (M,D) coïncide :

Lemma 3.3. Let (M,D) be a pair and (G,P ) be a complex Klein geometry with dim(G/P ) = dim(M).
Let (E,ω0) be a totally geodesic meromorphic (G,P )-Cartan geometry on (M,D), and denote by W ⊂

D the corresponding dense subset. Then for any x0 ∈ W , there exists a neighboorhood U of x0 in
M , a holomorphically totally geodesic meromorphic (G,P )-Cartan geometry (E′, ω0) on (U,D) and an
isomorphism Ψ ∶ E∣U∖D Ð→ E′∣U∖D between (E∣U , ω0) and (E′, ω′0).

Proof. Pick x0 ∈ W . By definition, there exists A ∈ g ∖ {0}, and a meromorphic A-distinguished curve
γ̃ ∶ D(0, ε) Ð→ E with p ○ γ̃(0) = x0 and p ○ γ̃(t) /∈ D for t ≠ 0. Denote by Σ the image of γ = p ○ γ̃, which
is a smooth one dimensional submanifold of M by definition of W . Thus, there are local coordinates
(u1, . . . , un) on an open neighboorhood U of x0 such that Σ is the common zero loci of u2, . . . , un. This
enables to consider a section σ of E over U ∖D, with the property σ ○γ = γ̃, by assuming σ to be constant
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(with respect to any holomorphic section σ0 ∶ U Ð→ E) on level sets of (u2, . . . , un). A such section is g-
meromorphic on (U,D), in the sense that the induced trivialisation ψσ(g) ∶ E(g)∣U∖D Ð→ OU∖D⊗g maps
theOU -submodule j∗E(g)[⋆D] (where j ∶ U∖D ↪ U is the inclusion) to theOU -submodule j∗OU [⋆D]⊗g.
Moreover, if X is a meromorphic vector field on U with pole at D ∩ U , then the unique P -invariant
holomorphic vector field X̂ on p−1(U ∖D) satisfying X̂ ○ σ = Tσ(X) extends as a meromorphic vector
field on p−1(U). Indeed, it suffices to check it for X = ∂

∂u1
, for which it follows from X̂ ∣Σ = h ○ pω−1

0 (A)

with h a holomorphic function on U , and the equivariancy of ω0.
We then define the trivial holomorphic P -principal bundle E′ = U × P , with canonical holomorphic

section σ′0 and the isomorphism of holomorphic P -principal bundles Ψ ∶ E∣U∖D Ð→ E′∣U∖D defined by

Ψ ○ σ = σ′0

Then the unique holomorphic (G,P )-Cartan connection on E′∣U∖D satisfying Ψ⋆ω′0 = ω0 extends as a
meromorphic Cartan connection on E′. Indeed, (σ′0)⋆ω′0 = σ⋆ω0 is a meromorphic one form on U by the
above remarks. Moreover, the intersection of te smooth submanifold Σ′ = σ′0(Σ) with E′∣U∖D coïncide
with Ψ(Σ) by construction, thus Σ′ is a A-distinguished curve. This means that Σ is a holomorphic
geodesic for (E′, ω′0), which ends the proof.

Lemma 3.4. Let (E,ω0) be a regular meromorphic parabolic geometry on (M,D), with model (G,P ).
Suppose (E,ω0) is holomorphically totally geodesic and let W be the corresponding dense subset of D.
Then for any x0 ∈ D, there exists e0 ∈ p−1(x0), a vector A ∈ g−1 ∖ {0} and a leaf Σ of TA through e0
satisfies Σ ∩ D̃ = {e0}.

Proof.

4 Infinitesimal automorphisms of meromorphic parabolic ge-
ometries

A classical result in riemaniann geometry states that any Killing vector field X for a riemannian metric
g is a Jacobi field : for any geodesic γ, its scalar product g(X(γ(t)), γ′(t))) with the velocity of γ is
constant. There is a natural generalization of riemannian metrics to the holomorphic category, and the
corresponding objects are equivalent to torsionfree holomorphic affine connections preserving a holomor-
phic reduction to the orthogonal group. The holomorphic version of the previous result can be seen as a
result on some torsionfree holomorphic affine Cartan geometries (see Corollary 5.1). In this section, we
will see a general result for meromorphic Cartan geometries. In particular, this will imply that the local
system of infinitesimal automorphisms for any totally geodesic regular meromorphic parabolic geometry
prolongates as a local system on the whole base manifold.

4.1 Regular meromorphic parabolic geometries
A complex parabolic Klein geometry is a complex Klein geometry (G,P ) where G is a complex semi-
simple Lie group, and P a parabolic subgroup. Ameromorphic parabolic geometry is a meromorphic
(G,P )-Cartan geometry for some complex parabolic Klein geometry. We refer the reader to [7] for a
detailed introduction.

With the subgroup P is associated a grading (gi)i∈Z of the Lie algebra g = Lie(G), meaning [gi1 ,gi2]g ⊂
gi+j for any indices i1, i2 ∈ Z. We call it the parabolic graduation associated with P . It induces a

grading of any representation of G, in particular W = (
2
⋀g∗−) ⊗ g is graded by homogeneous degrees

Wl, and we denote by πl the corresponding projections.
The parabolic degree of (G,P ) is the smallest positive integer k ≥ 1 such that gi = {0} for any

∣i∣ > k. The subspaces p = Lie(P ) and the subspace

g− =
1
⊕
i=−k

gi (18)
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are clearly subalgebras of g. For any i ∈ {−k, . . . , k}, we will denote gi = ⊕
i′≥i

gi′ , inducing a filtration

(gi)i=−k,...,k of g.
By a result of C. Chevalley, we can always pick a basis (eij)i=−k,...,k

j=1,...,ni

of g, such that (eij)j=1,...,ni is a

basis for gi for any i ∈ {−k, . . . , k}, and [ei1j1
, ei2j2

]g is either 0 or ei1+i2j for some j ∈ {1, . . . , ni1+i2}. We will
refer to it as a graded basis of g for (G,P ).

The homogeneous space G/P associated with a complex parabolic Klein geometry (G,P ) bears the
following holomorphic geometric structures. Its tangent bundle is filtered by subbundles (T −iG/P )i=1,...,k
where T −iG/P is the projection of ω−1

G (gi) through the map TpG/P , where pG/P ∶ GÐ→ G/P is the natural
projection. The Lie bracket of holomorphic vector fields on G/P induces a Lie bracket of holomorphic
vector bundle on the corresponding graded bundle gr(TG/P ). The Lie algebra bundle thus obtained is
locally isomorphic to (U × g−, [, ]g−).

The regular meromorphic parabolic geometries are the infinitesimal versions of this model.
More precisely, these are meromorphic (G,P )-Cartan geometries (E,ω0) on (M,D) for which the homo-
geneous component πl(kω0) of degree l of the Cartan curvature vanishes identically whenever l ≤ 0 (see
above). This amounts to the following property. Let T −iM[⋆D] be the image of ω−1

0 (g−i)[⋆D̃] through
Tp. This gives a filtration of TM[⋆D̃], and (E,ω0) is regular if and only if the Lie bracket of vector
fields on M induces a structure of Lie algebras bundle on the graded gr(TM ∖D), locally isomorphic to
(U × g−, [, ]g−).

4.2 Bott connections and infinitesimal automorphisms of Cartan geometries
Now, we come back to a general complex Klein geometry (G,P ). Let (M,D) be a complex pair of
dimension n ≥ 1, and (E,ω0) be a meromorphic (G,P )-Cartan geometry on it. Fix A ∈ g ∖ {0} and
consider the holomorphic foliation TA from Equation 15. To any such holomorphic foliation is associated
a TA-partial holomorphic connection ∇TA on TE/TA, the Bott-connection of TA, defined as follow. Let
X be a holomorphic vector field on U ⊂ E, [X] its class in TE/TA(U), and Z ∈ TA(U). Then :

Z¬∇TA([X]) = [[Z,X]TE] (19)

Let t ∈ C and V ⊂ U such that the flow φ = φtZ is well defined on V . Then clearly dφ(TA) ⊂ φ∗TA, so φ
induces a morphism [dφ] of OV -modules defined by the commutative diagram :

TV
dφ //

q

��

φ∗Tφ(V )

φ∗q

��
TV /TA [dφ]

// φ∗Tφ(V )/TA

(20)

By the formula (19), the horizontal sections for ∇TA are the [X] which are invariant by the isomorphisms
of holomorphic vector bundle (φ, [dφ]) defined as before.

It will be more convenient to work with the images of meromorphic vector fields on E through the
isomorphism Φω0 between TE[⋆D̃] and V[⋆D̃], where V = OE ⊗ g. We will write :

K = Φω0(killE,ω0) (21)

for the corresponding local system on E∖D̃. Clearly, the image of TA[⋆D̃] is VA = OE[⋆D̃]A. The class of
a section s of V[⋆D̃](U) (where U ⊂ E is an open subset) in V/VA[⋆D̃] will be denoted by [s]V/VA

. Since
Φω0 induces an isomorphism of OE-modules between TE/TA[⋆D̃] and V/VA[⋆D̃] , for any Z ∈ TA(U),
the morphism [dφ] defined by (20) corresponds to an isomorphism

dφ ∶ V/VA[⋆D̃]∣V Ð→ φ∗V/VA[⋆D̃]∣φ(V ) (22)

and thus an isomorphism (φ, dφ) of meromorphic bundles.
The isomorphism of meromorphic bundles Φω0 (see above) maps TA[⋆D̃] to VA[⋆D̃], and we denote

by Φω0 ∶ TE/TA[⋆D̃] Ð→ V/VA[⋆D̃] the isomorphism induced by Φω0 . Then :
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Lemma 4.1. Let s be a section of K on an open subset U ⊂ E ∖ D̃. Then its class [s]V/VA
is invariant

by any isomorphism of meromorphic bundles (φ, dφ) constructed as above.

Proof. Let X be any holomorphic vector field on U ⊂ E, and [X] its class in TE/TA. By definition, for
any ZA = hÃ (where h is a meromorphic function on U and Ã = ω−1

0 (A)) we have :

0 = [Ã,X]TE

= 1
h
[ZA,X]TE mod TA[⋆D̃](U)

(23)

In other words, the classes of dφ(X) and φ∗X in TE/TA[⋆D̃], well defined on U ∩φ(U), coïncides i.e
s is invariant by (φ, dφ).

Now, we suppose M to be simply connected. We wish to prove the extension property for (E,ω0)
(Definition 3.13). We will use the following general fact on meromorphic Cartan geometries :

Proposition 4.0.1. Let (G,P ) be a complex Klein geometry, and (M,D) be a pair with dim(M) =

dim(G/P ). Let (E,ω0) be a meromorphic (G,P )-Cartan geometry on (M,D). Let x0 ∈ D belonging
to an unique irreducible component Dα, and suppose that there exists A ∈ g ∖ p and a A-geodesic Σ for
(E,ω0) such that Σ∩Dα = {x0}. Then there exists a neighboorhood U of x0 with the following properties:

1. Let s be a section of K on V ⊂ p−1(U). Then the image µ ∈ GL(Ve) of any loop at e ∈ V in
p−1(U ∖ D̃) by the local monodromy of K (at e) satisfies : [µ(se)]V/VA

= [se]V/VA
.

2. For any section s of K on p−1(U ∖D), [s]V/VA
extends as a section of V/VA[⋆D̃](p−1(U)). In other

words j∗πV/VA
(K) ⊂ V/VA where j is the inclusion of E ∖ D̃ in E and πV/VA

the morphism which
map s to its class [s]V/VA

.

Proof. 1. It is a classical result that the image KA = πV/VA
(K) of the local system K on E ∖ D̃ is a

local system on E ∖ D̃. The image µA ∈ GL((KA)e) of any loop of E ∖ D̃ at e is given by :

πV/VA
○ µ = µA ○ πV/VA

(24)

By the correspondance between local systems and their monodromy, it is thus sufficient to prove
that KA is a constant sheaf on a open subset Ũ ∖ D̃ where Ũ is a neighboorhood of e0 ∈ p

−1(x0).
By Lemma 3.3, we can suppose, without loss of generality, that Σ is a holomorphic geodesic for
(E,ω0). By Lemma 3.2, there exists an open neighboorhood Ũ0 of some point e0 ∈ p−1(x0) such
that any leaf of TA∣Ũ0

intersects D̃ in exactly one point. Equivalently, there exists a holomorphic
nonvanishing vector field Z defining TA∣Ũ0

such that φtZ(e′0) /∈ D̃ for any e′0 ∈ D̃ ∩ Ũ0 and t ≠ 0 with
∣t∣ small enough. Pick a point e = φ−tZ (e0) of the leaf Σ through e0, which does’nt belong to D̃.
Thus, there is a simply connected neighboorhood V of e such that KA is a constant sheaf, and thus
admits a basis [s1]V/VA

, . . . , [sr]V/VA
.

By the Lemma 4.1, the family dφ([s1]V/VA
), . . . , dφ([sr]V/VA

), where dφ is the morphism (22), is a
basis of φ∗KA(φ(V )∖D̃). Then KA∣φ(V ) is a constant sheaf. The open neighboorhood U = p(φ(V ))

of x0 thus satisfies the required property.

2. Since(22) is an isomorphism of meromorphic bundles, we have proved in 1. that the local sys-
tem KA = πV/VA

(K) extends as a constant sheaf, included in V/VA[⋆D̃]∣p−1(U) since (φ, dφ) is an
automorphism of meromorphic bundles for V/VA.
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4.3 Affine and degree one parabolic models
We know apply Proposition 4.0.1 to prove the extension property for infinitesimal automorphisms of some
totally geodesic meromorphic (G,P )-Cartan geometries. More precisely, we let (G,P ) be a complex
parabolic Klein geometry of dimension n ≥ 2 and degree k = 1 (see subsection 4.1), or the complex affine
Klein geometry of dimension n ≥ 2. For the first model, we denote by g−1⊕g0⊕g1 the parabolic graduation
associated with P (see subsection 4.1). For the second one, g−1 will stand for the abelian subalgebra of
infinitesimal generators for the translations in Cn.

These two kind of models are of special interest beacause P acts transitively on P(g/p) through
the projectivized quotient adjoint action. Indeed, if (G,P ) is a degree one parabolic model, for any
A ∈ g−1 ∖ {0}, Ad(g0)[A] must span g−1, since g is semi-simple and g−1 is an abelian subalgebra. If
(G,P ) is the affine model, the isotropy group P = GLn(C) clearly acts transitively on g−1.

By the above remarks, for any A ∈ g−1 ∖ {0}, there exists a basis (ei)i=1,...,n of the abelian subalgebra
g−1 ⊂ g = Lie(G) , and n elements b1, . . . , bn ∈ P such that

ad(b−1
i )[A] ∈ Cei (25)

for 1 ≤ i ≤ n.

Lemma 4.2. Let (E,ω0) be a meromorphic (G,P )-Cartan geometry on (M,D), and let x0 ∈D belonging
to a unique irreducible component Dα. Suppose there exists a geodesic Σ for (E,ω0) with Σ ∩D = {x0}.
Then, for any 1 ≤ i ≤ n, there exists a ei-geodesic Σi for (E,ω0) with Σi ∩D = {x0}.

Proof. By Lemma 3.3, we can suppose, without loss of generality, that Σ is a A-holomorphic geodesic
for A ∈ g− ∖ {0}. Thus, there exists e0 ∈ p−1(x0) and a A-distinguished smooth complex curve Σ with
p(Σ) = Σ and Σ ∩ D̃ = {e0}. Let b1, . . . , bn ∈ P as in (25). By equivariancy of ω0, for any 1 ≤ i ≤ n, the
bi-translated Σi of Σ is a ei-distinguished smooth complex curve, with Σi ∩ D̃ = {e0 ⋅ bi}. By Lemma 3.2,
there is an open neighboorhood Ui of e0 ⋅ bi in E such that for any e ∈ Ui, the leaf Σi of Tei ∣Ui through e
intersects D̃ in an unique point e′0. In fact, Ui ∩ p−1(x0) is a Zariski-dense subset of the fiber p−1(x0), so
that Ṽx0 =

n

⋂
i=1
Ui ∩ p

−1(x0) is a Zariski dense subset of p−1(x0). Pick any e′0 ∈ Ṽ . Then by construction,

for any 1 ≤ i ≤ n there is a ei-distinguished smooth curve Σ′
i with Σ′

i ∩ D̃ = {e′0}. Their projections Σ′
i

throuhg p are ei-geodesics for (E,ω0), and the proof is thus achieved.

Corollary 4.1. Let (E,ω0) be a totally geodesic meromorphic (G,P )-Cartan connection on (M,D),
with M simply connected. Then :

1. (E,ω0) satisfies the extension property for the infinitesimal automorphisms.

2. Suppose moreover that (E,ω0) is branched holomorphic on (M,D). Then any section s of ker(∇κω0
)(U),

where U ⊂ E is an open subset, is a section of V(U).

Proof. 1. Since the complement of a codimension 2 subset ofM has the same fundamental group asM ,
and in vertue of the equivalence between local systems and representations of the fundamental group,
it suffices to find a codimension 1 subsetW ofD, pick a point x0 on an unique irreducible component
Dα of D ∩W , and show the existence of a neighboorhood U of x0 in M such that the restriction
of ker(∇κω0

) to p−1(U ∖ D) extends as a local system on p−1(U), included in TE[⋆D]∣U . The
property on killM,ω0 is clearly invariant under isomorphisms of meromorphic Cartan geometries, so
we assume, without loss of generality, that (E,ω0) is holomorphically totally geodesic (Lemma 3.3).
Pick x0 ∈ W ∩ Dα, where W is the dense subset in D of Definition 3.14. Thus, there exists a
holomorphic geodesic Σ of (E,ω0) with Σ ∩D = {x0}. We now apply Lemma 4.2 to obtain, for
any 1 ≤ i ≤ n, a holomorphic ei-geodesic Σi with Σi ∩D = {x0}. More precisely, the proof of the
lemma implies the existence of e0 ∈ p

−1(x0) such that the ei-distinguished curve Σi projecting onto
Σi satisfies Σi ∩ D̃ = {e0}. Using the Proposition 4.0.1 for each geodesic, we obtain neighboorhoods
Ui of x0 such that the restriction of the local system πV/Vei

(ker(∇κω0
)) to p−1(Ui) is a constant

sheaf.
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Let U =
n

⋂
i=1
Ui. Since e1, e2 are independant vectors of g, the morphism of OE-modules :

πV/Ve1
⊕ πV/Ve2

∶ V[⋆D̃] Ð→ V/Ve1[⋆D̃] ⊕ V/Ve2[⋆D̃] (26)

is an isomorphism onto its image. Thus, it restricts to ker(∇κω0
) as an isomorphism of C-sheaves

onto its image, a subsheaf of the local system πV/Ve1
(ker(∇κω0

))⊕πV/Ve2
(ker(∇κω0

)). By the above
remark, this local system is a constant sheaf when restricted to p−1(U). Thus, the same is true for
ker(∇κω0

), i.e (E,ω0) satisfies the extension property for the infinitesimal automorphisms.

2. Since (E,ω0) is a branched holomorphic Cartan geometry, the isomorphism of meromorphic bundles
(22) is in fact an isomorphism of holomorphic vector bundles from V/VA to itself. Applying this
remark to A = e1 and A = e2, we obtain that the image of ker(∇κω0

) through πV/Ve1
and πV/Ve2

respectively extends as subsheaves of V/Ve1 and V/Ve2 on E. Since the morphism (26) clearly
restricts to a morphism between V and V/Ve1 ⊕ V/Ve2 , this proves the assertion.

4.4 Parabolic geometries of higher degree
Now, we let (G,P ) be a complex parabolic Klein geometry of degree k > 1, and denote by g−k⊕. . .g0⊕. . .gk
the parabolic graduation. We refer the reader to [7] for the definitions and a complete introduction on
this subject.

The group P no longer acts transitively on P(g/p). Instead, we use the principal result of [6] which
implies the following :

Lemma 4.3. Let (E,ω0) be a regular meromorphic (G,P )-Cartan geometry on a pair (M,D). Then
there exists a morphism of C-sheaves :

L ∶ Vg−k
[⋆D̃] Ð→ V[⋆D̃] (27)

with the following properties :

(i) Let π−k ∶ V[⋆D̃] Ð→ Vg−k
[⋆D̃] be the projection on Vg−k

with respect to Vg−k+1[⋆D̃]. Then π−k ○ L =

IdVg
−k
.

(ii) The restriction of L ○ π−k to ker(∇κω0
) is the identity on ker(∇κω0

).

Proof. The Theorem 4 in [6] is exactly the regular version of this lemma, i.e when D is empty. Its
proof uses only differential operators constructed with the de Rham differential on trivial modules, and
morphisms of modules obtained by tensorizing a linear map with the identity on holomorphic functions.
Thus, it straightforwardly extends to the meromorphic category since such operators preserves the sheaves
of meromorphic sections.

Corollary 4.2. Let (E,ω0) be a regular meromorphic (G,P )-Cartan geometry on a pair (M,D). Suppose
that for any irreducible component Dα of D, there exists A ∈ g− ∖ g−k and a A-geodesic Σ of (E,ω0) with
Σ ∩Dα = {x0}. Then (E,ω0) satisfies the extension property for the infinitesimal automorphisms.

Proof. The property of regularity is invariant under isomorphisms of meromorphic Cartan geometries,
so we assume as in the proof of Corollary 4.1 that (E,ω0) is holomorphically totally geodesic without
losing any generality. We pick x0 ∈ W ∩Dα, where W is the dense subset of D in Definition 3.14 and
Dα the unique irreducible component of D containing x0, and prove that ker(∇κω0

) extends as constant
C-subsheaf of V[⋆D̃] when restricted to some neighboorhood p−1(U) of e0 ∈ p

−1(x0).
By definition of W , there exists A ∈ g− ∖ g−k and a A-holomorphic geodesic Σ of (E,ω0) with Σ∩D =

{x0}, and thus a leaf Σ of TA with Σ∩D̃ = {e0} for some e0 ∈ p
−1(x0). We now apply the Proposition 4.0.1

to the A-holomorphic geodesic Σ. Since k > 1, CA and g−k are independant subspaces in g. Thus, the
projection π−k(ker(∇κω0

)) extends as a constant C-subsheaf of Vg−k
[⋆D̃] on a neighboorhood U of e0. The

image of a constant sheaf by a morphism of C-sheaves is a constant sheaf, so by Lemma 4.3, ker(∇κω0
)

extends as a constant C-subsheaf of V[⋆D̃] on U . The proof is then achieved.
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5 Application to the classification of meromorphic affine con-
nections

5.1 Equivalence between meromorphic principal connections and meromor-
phic connections

We now prove the equivalence between meromorphic connections on a locally free OM -module E and
meromorphic principal connections on its frame bundle E. It straightforwardly restricts as an equiv-
alence between meromorphic connections preserving a holomorphic reduction E1 ⊂ E to a subgroup
P ⊂ GLr(C), and meromorphic P -principal connections on E1. In the regular setting, this was first
proved by C.Erhesmanh ([13]) using the formalism of horizontal lifts for paths, and reformulated in an
equivariant way by M. Atiyah ([1]). We adopt the point of view of M. Atiyah in order to extend the
result to the meromorphic category.

The starting point is that for P = GLr(C), there is a canonical isomorphism ([1], Proposition 9) :

E(p) = End(E) (28)

There is a bijection between the set of meromorphic connections ∇ on E and the one of OM -linear
splittings δ ∶ E[⋆D] Ð→ J1(E)[⋆D] of the exact sequence of C-sheaves :

0 // Ω1
M [⋆D] ⊗ E // J1(E)[⋆D] // E[⋆D] // 0 (29)

Let σ ∶ U Ð→ E be a holomorphic section of the holomorphic frame bundle. This corresponds to a basis
(s1, . . . , sr) of E∣U , and we denote in the following lines by d the pullback of the de Rham differential
through the corresponding isomorphism E∣U ≃ O⊕r

U . The former equivalence is given by ∇ = d−δ. Indeed,
this clearly defines a meromorphic connection, and if ∇ is a meromorphic connection on E∣U , then δ1 = d−∇
is a morphism of OU -modules from E∣U [⋆D] to Ω1

U [⋆D] ⊗ E∣U , and we obtain a splitting δ = (IdE∣U , δ1)
of (29).

Definition 5.1. A meromorphic principal connection on a holomorphic GLr(C)-principal bundle E p
Ð→

M with poles at D̃ = p−1(D) (shortly on (E, D̃)) is a meromorphic one form ω̃ on E with values in p,
which is P -equivariant and such that ω̃ coïncides with the Maurer-Cartan form of P when restricted to
any fiber p−1(x) ⊂ E.

Using the correspondance for equivariant one forms as in subsection 2.2, a meromorphic P -principal
connection on (E, D̃) is equivalent to a morphism β ∶ At(E)[⋆D] Ð→ E(p)[⋆D] such that ι○β = IdAt(E),
where ι is defined in (7). Its kernel defines a splitting

τ ∶ TM[⋆D] Ð→ At(E)[⋆D] (30)

of (7), which uniquely determines β. The following lemma straightforwardly follows from the equiva-
lence described before between equivariant morphisms of modules over principal bundles and morphisms
between the corresponding modules over the base manifolds :

Lemma 5.1. Let (M1,D1) and (M2,D2) be two pairs of same dimension. Let Ψ̃ ∶ E1 Ð→ E2 be
an isomorphism of holomorphic P -principal bundles over M1 and M2 covering a morphism of pairs
ϕ ∶M1 Ð→M2 (i.e ϕ(D1) = D2). Let ω̃2 be a meromorphic principal connection on (E1, D̃1) where D̃1
is the preimage of D1 (resp. ω̃1 = Ψ̃⋆ω̃1), and τ1 (resp. τ2) be the splitting as in (30). Then the diagram
below is commutative :

TM1
τ1 //

dϕ

��

At(E1)[⋆D1]

p1∗dΨ̃
��

ϕ∗TM2
ϕ∗τ2

// ϕ∗At(E2)[⋆D1]

(31)

where p1 is the footmap of E1.
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Denote by d̃ the usual de Rham differential on OE[D̃]⊗V. Since the P -linearization (φVb )b∈P preserves
the subsheaf of constant functions with values in V on E, the pushforward p∗d̃ restricts to p∗d̃ ∶ E Ð→
p∗Ω1

E ⊗ E . This defines a meromorphic connection ∇ on E by :

∇ = τ¬p∗d̃ (32)

where d̃ is defined above and ¬ stands for the contraction by a vector field.

Proposition 5.0.1. Mapping a meromorphic principal connection (E, ω̃) over (M,D) to the meromor-
phic connection (E ,∇) on (M,D) defined by (32) induces an equivalence of categories between :

● The category of principal meromorphic (resp. holomorphic) connections over pairs, where the arrows
are the Cr-meromorphic isomorphisms (Definition 2.3 of principal bundles between pairs preserv-
ing the principal connections (resp. isomorphisms of holomorphic principal bundles preserving the
principal connections)

● The category of meromorphic (resp. holomorphic) connections on (M,D) with isomorphisms of
meromorphic bundle (resp. holomorphic vector bundles, see Definition 2.2) preserving connections
(in the sense of (4)).

Proof. Let’s first prove that this maps induces a functor. Let Ψ̃ ∶ E1 Ð→ E2 be an isomorphism of
meromorphic principal connections between (E1, ω̃1) and (E2, ω̃1) over (M,D) and (E1,∇1) and (E2,∇2)
obtained as in (32). Let (ϕ,Φ) be the associated isomorphism of vector bundles (see (3)). Fix any open
subset U ⊂M1 and a basis (si)i=1,...,r of E1∣U and denote by (ϕ∗ti)i=1,...,r its image through Φ. Denote by
(s̃i)i=1,...,r and (t̃i=1,...,r) respectively the corresponding equivariant functions on p−1

1 (U) and p−1
2 (ϕ(U)).

Thus t̃i = s̃i ○ Ψ̃ by definition of Φ. By definition of Φ−1ϕ⋆∇2, we can compute :

Φ−1ϕ⋆∇2(si) = (IdΩ1
M1

⊗Φ−1)[dϕ¬(ϕ∗∇2(ϕ
∗ti))] (33)

Using the definition of ∇1 and ∇2, and Lemma 5.1, we get :

Φ−1ϕ⋆∇2(si) = (IdΩ1
M1

⊗Φ−1)[(ϕ∗τ2 ○ dϕ)¬ϕ∗p2∗d̃2(t̃i))]

= τ1¬(p1∗d̃1t̃i ○ Ψ̃)

= ∇1(si)

(34)

where we denoted by d̃1 and d̃2 the usual deRham differentials on OE1 ⊗Cr and OE2 ⊗Cr. Hence we can
map Ψ̃ to the vector bundle isomorphism (ϕ,Φ) which preserves the linear meromorphic connections ∇1
and ∇2.

Now, we construct the pseudo-inverse. Let (E ,∇) be a meromorphic connection over a pair (M,D).
Denote by E its frames bundle. Let x ∈ M and U be a neighbhoorhood equipped with a holomorphic
section σ ∶ U Ð→ E. Denote by (s1, . . . , sr) the corresponding basis of E∣U . The section σ induces a
splitting TE∣p−1(U) = p∗TU ⊕ ker(dp) which is P -equivariant, hence a splitting

At(E)∣U = TU ⊕E(p)∣U (35)

We denote by τ0 the splitting of the exact sequence (7) restricted to U induced by (35), and by d the
pullback of the deRham differential through the trivialization associated with (si)i=1,...,r. Let δ = ∇ − d,
which vanishes on the image of E(p) through ι (see (7)). Its kernel thus define a morphism Θ ∶ TU Ð→
At(E)∣U [⋆D], and we obtain a splitting

τ = τ0 +Θ (36)

of (7) over U . From the remarks above, this is equivalent to a meromorphic principal connection ω̃U on
p−1(U) with poles at D̃ ∩ p−1(U).
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Now, let U,U ′ be two open subset and (si)i=1,...,r and (s′i)i=1,...,r be two basis of E∣U and E∣U ′ corre-
sponding to holomorphic sections σ,σ′ of E on U and U ′. Let d and d′ be the corresponding de Rham
differentials, then :

d − d′(s′i) = d(s
′
i) = d(

r

∑
j=1
b−1
ji sj) =

r

∑
j=1

(bd0(b
−1

))jis
′
j (37)

where b is the meromorphic function on U ∩U ′ with values in P such that σ′ = σ ⋅ b, and d0 is the usual
de Rham differential on p-valued functions. Denote by τ and τ ′ constructed as before. Thus :

τ ′ − τ = [(σ, b⋆ωP )] (38)

Thus ∇′ − ∇ = d′ − d + τ ′ − τ = 0 and the corresponding meromorphic principal connections ω̃ and ω̃′

coïncide over p−1(U ∩ U ′). We obtain a global meromorphic principal connection ω̃ on (E, D̃) inducing
∇ as in (32).

If (ϕ,Φ0) is an isomorphism of vector bundles preserving the meromorphic connections ∇1,∇2, then
from subsection 2.2 it induces an isomorphism Ψ̃ of holomorphic principal bundles between E and E′.
Since the action of P on Cr is free, by definition of ∇1 and ∇2 we get that ϕ∗τ2 = τ1 ○dϕ. By Lemma 5.1
we obtain Ψ̃⋆ω̃2 = ω̃1.

5.2 Equivalence between meromorphic affine connections and meromorphic
affine Cartan geometries

In this subsection, we consider the complex affine group G of dimension n ≥ 1, and the complex linear
group P ⊂ G. The restricted adjoint representation ad ∶ P Ð→ GL(g) splits as the sum of two irreducible
representations g− , the subalgebra corresponding to the infinitesimal generators for the translations in
Aff(Cn), and p = Lie(P ). Consequently, if E p

Ð→ M is a holomorphic P -principal bundle and ω0 is a
meromorphic (G,P )-Cartan connection on (E, D̃), then it splits as the sum :

ω0 = θ0 ⊕ ω̃ (39)

of a meromorphic solderform θ0 on (E, D̃) (see Definition 3.9) and a meromorphic P -principal connection
ω̃ on (E, D̃).

Consider the category Fconn whose objects are triples (φ0,E ,∇) formed by a meromorphic exten-
sion (φ0,E) over a pair (M,D) and a meromorphic connection (E ,∇) on (M,D), and the arrows are
the isomorphisms of vector bunlde (see subsection 2.2) preserving the meromorphic connections (see
(4)). Define the map f from the category Gaff of meromorphic (G,P )-Cartan geometries on (M,D)

to Fconn as follows. If (E,ω0) is an object of Gaff , consider the meromorphic solderform (E, θ0) (see
Definition 3.9) defined by (39), and ∇ the meromorphic connection on E = E(Cn) associated with ω̃ (see
Proposition 5.0.1).

Now, consider the subcategory G0
aff of Gaff whose objects are holomorphic branched (G,P )-Cartan

geometries, together with their isomorphisms. Consider a subcategory Fconn,0 of Fconn obtained by
intersecting with F0 (Definition 3.8).

Proposition 5.0.2. Let (M,D) be a pair. The map f extends as an equivalence of categories between
Gaff (resp. G0

aff ) and Fconn (resp. Fconn,0).

Proof. Let Ψ ∶ E Ð→ E′ is an arrow between two meromorphic (G,P )-Cartan geometries (E,ω0) and
(E′, ω′0) over (M1,D1) and (M2,D2) , and (φ0,E ,∇) and (φ′0,E

′,∇′
) their images through f . So Ψ is

a morphism of holomorphic rincipal bundles between the frame bundles and we define f(Ψ) = (ϕ,Φ) as
the image of Ψ through the equivalence described in subsection 2.2. By construction, since Ψ⋆ω′0 = ω0,
we have Ψ⋆θ′0 = θ0 and Ψ⋆ω̃′ = ω̃. The first condition implies that (ϕ,Φ) is an arrow of meromorphic
extensions (Definition 3.8), while the second one implies that it preserves the meromorphic connections ∇
and ∇′ (see Lemma 5.1). Hence, f is a functor. Since it is the restriction of the equivalence of categories
from Proposition 3.0.1, we obtain an equivalence of categories.
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Let (φ0,E ,∇) be an object of FconnM,D . Then :

∇ = φ−1
0 ∇ (40)

defines a meromorphic affine connection on (M,D), we will call it themeromorphic affine connection
induced by (φ0,E ,∇). Thus, there is a functor

µ ∶ Fconn Ð→ A (41)

to the category A of meromorphic affine connections on pairs.

We denote by T∇ the torsion of ∇ (Equation 2). There is the analagous notion of g−-torsion for an
object (E,ω0) of Gaff on (M,D). It is the P -equivariant meromorphic function τω0 on E with values in

Wg− =
2
⋀(g−)∗ ⊗ g− defined as the projection of the Cartan curvature kω0 of (E,ω0) (see Definition 3.4)

on Wg− respective to
2
⋀(g−)∗ ⊗ p.

Let (E,ω0) be an object of Gaff on a pair (M,D) and (φ0,E ,∇) its image through the equivalence
in Proposition 5.0.2. Let ∇ be the meromorphic affine connection on (M,D) induced by this object (see
above). Identify the g−-torsion τω0 ○ (ω0 ∧ Idg−) with a meromorphic one form on (E, D̃) with values
in g∗− ⊗ g− = End(Cn). Let τω0 be the section of Ω1

M [⋆D] ⊗End(E)[⋆D] corresponding to τω0 through
the equivalence preceding Definition 5.1. Identify it with a section of Ω1

M ⊗End(TM)[⋆D] through the
isomorphism φ0 ∶ TM[⋆D] Ð→ E[⋆D]. Then :

Lemma 5.2. The two sections τω0 and T∇ defined as above coïncides.

Proof. It suffices to prove the statement for the restriction (E∣M∖D, ω0) and ∇∣M∖D over M ∖D, in the
holomorphic categories. We refer to [16], Theorem 5.1.

The vanishing of the torsion is clearly preserved by the isomorphisms of Gaff and we define Gnormaff

as its subcategory whose objects are meromorphic (G,P )-Cartan geomtries whose torsion vanishes iden-
tically. We define Anorm as the subcategory of A whose objects are meromorphic affine connections on
pairs whose torsions identically vanish.

Finally, let’s remark that for any object (E , φ0,∇) of Fconn,0, the meromorphic affine connection (40)
restricts as a holomorphic connection on the submodule E . We then define :

Definition 5.2. The category A0 is the subcategory of A whose objects are the meromorphic affine
connections on (M,D) preserving a locally free OM -module E with TM ⊂ E ⊂ TM[⋆D], in the above
sense. Its objects are called holomorphic branched affine connections.

Lemma 5.3. Let ∇ be a holomorphic branched affine connection on (M,D). Then the submodule E ⊂
TM[⋆D] from Definition 5.2 is unique.

Proof. Let E be the bundle of holomorphic frames for E , and ω̃ be the meromorphic principal connection
on R1(M) corresponding to ∇ (Proposition 5.0.1). Suppose there exists another rank n locally free
submodule E ′ of TM[⋆D] such that ∇ restricts to a holomorphic connection on E ′, and let ω̃′ be the
corresponding holomorphic princpal connection on its bundle of holomorphic frames E′.

Pick a point x ∈ M , and a neighbhoorhood U of x in M with two basis (s1, . . . , sn) of E∣U and
(t1, . . . , tn) of E ′∣U . Denote by σ,σ′ the holomorphic sections of R1(M ∖ D) on U ∖ D corresponding
respectively to these basis, and b be the unique holomorphic function on U ∖D with values in GLn(C)

such that σ′ = σ ⋅ b. Thus, σ′⋆ω̃ = σ⋆ω̃ = 0, so that :

b⋆ωGLn(C) = σ
′⋆ω̃ − σ⋆ω = 0 (42)

Hence, b prolongates on U as a holomorphic funcion. This being true for any x ∈M , we obtain that the
two prolongations E and E′ of R1(M ∖D) coïncide, i.e E = E ′.
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Corollary 5.1. The composition of the equivalence from Proposition 5.0.2 and the map given by (41)
gives an equivalence of categories between Gaff (resp. G0

aff ) and A (resp. A0). It restricts as an
equivalence between Gnormaff and Anorm.

Recall that, given any meromorphic affine connection ∇ on (M,D), a local holomorphic vector field
X on an open subset U ⊂ M is a Killing field for ∇ iff the pullback of ∇ by its flows is again ∇. We
denote by kill∇ the subsheaf of TM ∖D whose sections are the Killing field for ∇. By Corollary 5.1, we
obtain :

Lemma 5.4. If (E,ω0) is an object of Gaff on a pair (M,D), and ∇ the corresponding meromorphic
affine connection on (M,D), then killM,ω0 = kill∇.

5.3 Totally geodesic branched affine connections in algebraic dimension zero
Now, we will give some application of the results of section 4 to the classification of affine meromorphic
connections on some simply connected complex compact manifolds M . Most of them are adaptations of
the arguments used in the proof of the principal theorem in [3], using the results of this article.

Theorem 5.1. Let (M,D) be a pair, with M a simply connected complex compact manifold. If (M,D)

bears a quasihomogeneous and totally geodesic meromorphic affine connection ∇, then it admits a mero-
morphic parallelism (X1, . . . ,Xn), such that Xi is a Killing vector field for ∇ when restricted to M ∖D.

Proof. Let (E,ω0) be the meromorphic affine Cartan geometry on M corresponding to ∇ (see Corol-
lary 5.1). By the Corollary 4.1, it satisfies the extension property of infinitesimal automorphisms, i.e the
local system kill∇ on M ∖D extends as a local system K on M , with K ⊂ TM[⋆D]. Since M is simply
connected, this is a constant sheaf on M . Since ∇ is assumed quasihomogeneous, we can pick x ∈M and
a OM,x-basis X1,x, . . . ,Xn,x of (TM)x formed by germs of Killing fields for ∇. These germs are thus
restrictions of global meromorphic vector fields X1, . . . ,Xn whose restrictions to M ∖D are elements of
kill∇(M ∖D). Since their germs at x are independants, there exists a Zariski-dense open subset M ∖ S
such that the restrictions of X1, . . . ,Xn to any subset U ⊂M ∖ S are independant elements of TM(U),
i.e (X1, . . . ,Xn) is a meromorphic parallelism on M .

Corollary 5.2. Let M be a compact complex manifold with finite fundamental group, and whose mero-
morphic functions are constants. Then M doesn’t bear any totally geodesic branched holomorphic affine
connection.

Proof. Suppose that ∇ is a totally geodesic branched holomorphic affine connection on (M,D), denote by
E the submodule of TM[⋆D] from Lemma 5.3. Complete the meromorphic parallelism (Xi)i=1,...,n from
Theorem 5.1 into a basis (Xj)j=1,...,r for the global meromorphic Killing fields of ∇. A meromorphic
parallelism is a rigid geometric structure (see [12]), so by the Theorem 2 of [11], the juxtaposition of
(Xj)j=1,...,r and ∇ is quasihomogeneous. Since ∇ satisfies the extension property for the Killing vector
fields (Corollary 4.1) and M is simply connected, we obtain a meromorphic parallelism (X

′
i)i=1,...,n such

that the restriction of each X ′
i toM ∖D is a Killing field for ∇ and commutes with each Xj . In particular,

each X ′
i is a C-linear combination of the (Xj)j=1,...,r, so (X

′
i)i=1,...,n are commuting meromorphic vector

fields.
Now, let pick any Gauduchon metric on M ([15]) and let’s prove that the degree deg(E) of E with

respect to this metric is zero. Let (E,ω0) be the branched holomorphic affine Cartan geometry on (M,D)

corresponding to ∇ (Corollary 5.1). Then E = E(g/p) = E(g)/E(p) by definition of (E,ω0), and since
P = GLn(C), we have deg(E(p)) = 0 (see [2], Corollary 4.2).

We must then prove that deg(E(g)) = 0. For, it is sufficient to prove that C1(R∇ω0 ) vanishes
identically, where C1 is the trace on End(E(g)) and ∇ω0 is the tractor connection (see Definition 3.7).
We will prove that the meromorphic one form ηi = X ′

i¬C1(R∇ω0 ) vanishes identically on M for any
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1 ≤ i ≤ n. By Lemma 3.1, we have :

p⋆ηi = X̃ ′
i¬C1(Rp⋆∇ω0 ) = dC1(Ad(si))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
η̃0

i

+ X̃ ′
i¬Ad(ω0 ∧ ω0)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
η̃1

i

(43)

where X̃ ′
i is the lifting of X ′

i to E and si = ω0(X
′
i).

The meromorphic one form η̃0
i is exact and P -equivariant. By a classical result on exact invariant forms

on connected Lie groups, the restriction of η̃0
i to any fiber of E p

Ð→M corresponds to a homomorphism
χ ∶ P Ð→ C. Because P = GLn(C), any such homomorphism is trivial, so that η̃0

i vanishes on the
fibers of E p

Ð→ M . Thus, it is the pullback of a meromorphic exact one form η0
i on M . Moreover, by

Corollary 4.1, si is a holomorphic section of V on E, so that η̃0
i is a holomorphic one form. Thus, η0

i is an
exact holomorphic one form on a simply connected compact complex manifold, i.e vanishes everywhere.

Now, let’s prove that η̃1
i = p

⋆ηi vanishes everywhere. Consider EG = E×G
piG
Ð→ E and the holomorphic

tractor connection ω̃ on it (Definition 3.7). Using the splitting TEG = ker(ω̃) ⊕ ker(dπG), the pullback
η̂1
i = π

⋆
Gη̃

1
i uniquely decomposes as a sum :

η̂1
i = η̂

H
i ⊕ η̂i (44)

with η̂Hi a G-invariant meromorphic one form on EG, vanishing on ker(ω̃), and η̂Vi vanishing on ker(ω̃).
In particular, η̂Hi is the pullback of ηi through the composition pG = p○πG, so that η̂Vi vanishes everywhere.
Now, using Corollary 4.1, η̃1

i is a holomorphic one form, so that ηi is a holomorphic one form on M .
Using the Lie-Cartan formula, we have :

dηi(X
′
j ,X

′
k) = LX′

j
ηi(X

′
k) − LX′

k
ηi(X

′
j) − ηi([X

′
j ,X

′
k]TM) (45)

Since the only meromorphic functions on M are the constants, we obtain LX′

j
ηi(X

′
k) = LX′

k
ηi(X

′
j) = 0,

and since the meromorphic vector fields (X ′
i)i=1,...,n commute, ηi is a closed holomorphic one form.

Since M is simply connected and compact, ηi vanishes everywhere. This proves that C1(R∇ω0 ) vanishes
everywhere, i.e deg(E(g)) = 0.

Hence, deg(E) = 0. Let s1, . . . , sn be the images of X ′
1, . . . ,X

′
n through the morphism φ0, where (φ0,E)

is the holomorphic extension image of (E,ω0) as in Proposition 5.0.2. Since si = ω0(X̃
′
i) is a section of

V(E) for any 1 ≤ i ≤ n from Corollary 4.1, each si is a section of E(M). Since they are independant,

the holomorphic section
i=1
n

⋀ si of det(E) is not identically vanishing, thus det(E) is trivial and
i=1
n

⋀ si never
vanishes. It therefore forms a basis of E on M , and the dual sections s∗1, . . . , s∗n are holomorphic sections
of E∗ on M . We obtain a branched holomorphic (Cn,{0})-Cartan geometry (M,η) on (M,D), where :

η =
n

⋀
i=1

(s∗i ○ φ0) ⊗ ei (46)

where (ei)i=1,...,n is the canonical basis of Cn. Because the η-constant vector fields (X ′
i)i=1,...,n commute,

it is a flat branched holomorphic Cartan geometry. Since M is simply connected and compact, there is
a holomorphic submersion dev ∶M Ð→ Cn. This is impossible by the maximum principle, so M cannot
bear any totally geodesic branched holomorphic affine connection.
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