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Abstract

This work presents the dynamical and thermal behaviors of a turbulent
natural convection flow occurring in a cubic cavity with an inner and par-
tially heated obstacle. The top, bottom, front and back walls of the cavity
are adiabatic and the other side walls are at imposed uniform temperature.
Velocity and temperature measurements are carried out using Particle Image
Velocimetry and micro-thermocouples. Boundary layer flows are observed in
both vertical channels. A recirculating zone, in the upper part of the heated
channel, breaks the linearity of the thermal stratification found in the lower
part of the channel and it also disturbs heat transfers. A boundary layer
instability of Tollmien-Schlichting type and the subsequent formation of an
oscillating buoyant jet are analyzed. The presence of internal gravity waves
in the thermally stratified heated channel are highlighted.
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Nomenclature

A aspect ratio
f frequency, Hz
g gravitational acceleration, m.s−2

Hobs obstacle height (reference length), m
L cavity length, m
Nu(Z) local Nusselt number, Nu(Z) = ∂θ

∂Y × Hobs
L

Pr Prandtl number, Pr = ν/α

RaHobs
Rayleigh number based on obstacle height, RaHobs

=
gβ∆TH3

obs
να

Stk Stokes number, Stk =
ρd2vref
18µl

S stratification parameter, S = ∂θ
∂Z

T temperature, K
T0 reference temperature, T0 =

1
2(Th + Tc), K

U, V, W dimensionless velocities (scaled by α
√
RaH/H)

x, y, z physical cartesian coordinates, m
X, Y, Z dimensionless coordinates, (X,Y, Z) = (x, y, z)/L

Greek symbols

α thermal diffusivity, m2.s−1

β thermal expansion coefficient, K−1

∆T temperature difference between the isothermal walls, ∆T = Th − Tc, K
ε emissivity
θ dimensionless temperature, θ = (T − T0)/∆T
λ thermal conductivity, W.m−1.K−1

µ dynamic viscosity, kg.m−1.s−1

ν cinematic viscosity, m2.s−1

ρ density, kg.m−3

σX standard deviation, (units of X)
ΦX power spectral density, (units of X)2.Hz−1

Ω dimensionless pulsation
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Subscripts and superscripts

bv Brunt-Väisälä
c cold
h hot
obs obstacle
ref reference value
X ′ X fluctuation (X ′ = Xi −X where Xi is an instantaneous quantity

and X is its time averaged value)

Abbreviations

DHC Differentially Heated Cavity

1. Introduction

Natural convection in closed and confined spaces takes place in a wide
variety of industrial configurations : ranging from a car’s underhood to the
cooling system of nuclear power plants. Within this range of specific desi-
gns, the high Rayleigh numbers often encountered lead to turbulent regimes.
Numerical simulations, usually carried out in industrial context with RANS
models to achieve adapted computation time, crudely lack of accuracy in the
determination of the flow and the heat transfers. The case of enclosed cavities
with obstacle is often encountered in actual applications. However, turbulent
phenomena, occurring in such a situation, remain challenging. In order to ta-
ckle these issues, a simplified configuration is defined which allows to analyze
natural convection flows being representative of flow regimes encountered in
industrial contexts and especially in the underhood of cars. In this study,
a cubic and partially heated obstacle is placed into a cubic enclosure. As it
will be later depicted in the results section of the paper, the flow inside the
heated channel has some similarities with both flows along vertical heated
plates and differentially heated cavity flows.
Natural convection along a vertical heated plate has been first investigated
theoretically and experimentally by Schmidt et al. [1] in laminar regime. Os-
trach [2] specified the theory and compared it to experiments for various
Prandtl numbers. A boundary layer type flow is found for Grashof numbers
large enough and correlations for heat transfers are determined. When the
Grashof number is increased up to a critical value along the heated vertical
plate, the flow can become unsteady. Dring and Gebhart [3] highlighted a
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filtering frequency mechanism discussed later in this paper. The unsteady
flow will eventually lead to turbulence (Jaluria et al. [4]).

Turbulent flows inside differentially heated cavities (DHC) have also been
studied both numerically and experimentally. For instance, Mergui et al. [5]
or Salat et al. [6] investigated a cubic differentially heated cavity of Rayleigh
number up to Ra = 5.34×109. A separated boundary layers flow is observed.
More recently, Belleoud et al. [7, 8] investigated a differentially heated cavity
with aspect ratio A ≈ 4 (cavity’s height over cavity’s width) for Rayleigh
number based on the cavity height Ra = 1.2 × 1011. Turbulent quantities
have been analyzed and compared with numerical results (Trias et al. [9])
with good agreements. The influence of an obstacle inside an enclosure was
mostly studied numerically. House et al. [10] studied the effect of an obstacle
conductivity and length in a DHC. They found that, for obstacle sizes large
enough but not too large, heat transfers are decreased (respectively enhan-
ced) in the enclosure when the ratio of the obstacle conductivity over the
fluid conductivity is large (respectively small). Bhave et al. [11] studied the
impact of a centered adiabatic obstacle inside a DHC and looked for an obs-
tacle size where heat transfers are optimized. For Pr = 0.71 heat transfer
can be increased by 4% when the ratio of the obstacle area over the ca-
vity area is near the size of the existing stagnant core of the cavity without
obstacle. Other cavity shapes as, for instance, E-enclosure [12] or H-shaped
cavities [13] have been investigated using ISPH numerical methods. Liu and
Phan-Thien [14] investigated more specifically the radiation effect of a heated
obstacle in a DHC. The wall emissivity ϵ can play an important role on heat
transfers ; the part of thermal radiation over the total heat transfer can reach
30% when ϵ = 0.9 and the obstacle is sufficiently heated. Ha and Jung [15]
pinpointed 3D effects when studying the conjugate heat transfer of a heated
and conducting obstacle inside a DHC. Variation of the local Nusselt Number
along the transverse direction are highlighted and induced by the conducting
obstacle. Those numerical studies are still limited to laminar flow. The lack
of experimental studies analyzing turbulent heat and fluid flows within an
enclosure including an obstacle is a clear motivation for the present paper.

2. Experimental set-up

2.1. Cavity description
The setup consists in a partially side-heated cubic obstacle (referred later

as "obstacle") of length Hobs = 0.80m centered inside a cubic cavity (referred
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a) b)

c)

Figure 1 – a) 2D scheme of the experimental set-up and of the mean flow. b) 3D scheme
of the experimental set-up and of the mean flow. c) Picture of the experimental set-up

later as "cavity") of inner edge length L = 1.00m (see Fig. 1.a and 1.b). In
such a geometry, a distance l = 10 cm between the inner obstacle and the
surrounding cavity is then achieved.
The cavity walls are either isotherm or adiabatic. Two heat exchangers in alu-
minium (conductivity : λ = 174 W.m−1.K−1, emissivity : ϵ = 0.10) impose a
temperature Tc = Tamb on two vertical cavity side walls (see Fig. 1.c) thanks
to thermostated baths. The top and bottom horizontal walls of the cavity
are made of 10 cm-thick extruded polystyrene (λ = 0.035W.m−1.K−1) and
are then considered as adiabatic. They are also covered with low-emissivity
aluminum sheets (ϵ = 0.08) to minimize the radiation effects. The front and
rear walls of the cavity are 6mm-thick glass panels which enable flow vi-
sualization. Extruded polystyrene blocks are maintained in front of the glass
panels to keep them thermally insulated. A window is preserved for flow vi-
sualization and measurements.
The inner partially heated obstacle is held by four polymer rods which re-
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duce conduction heat transfer (λ = 0.25W.m−1.K−1). They are placed at
each obstacle ends to limit flow disturbances in the mid-depth plane where
measurements are carried out. The obstacle is made up of two 4 cm-thick
aluminium plates (λ = 174W.m−1.K−1). One of the plate is heated by a
heating wire at Th = Tc + ∆T . Those two plates are the obstacle side walls
which are in front of the cavity side walls maintained at Tc. Between those
two plates are a Rockwool panels succession along with Ertalon and POM-
C plates. The temperature is thus decreasing from the heated plate up to
the other obstacle side wall. That other wall preserves the whole mechanical
strength. Front, rear, top and bottom walls are covered with 4mm POM-C
plates keeping good surface condition. Those plates are also covered with
low-emissivity aluminum sheets (ϵ = 0.08).
The temperature difference between the heated plate of the inner obstacle
and the cavity side wall is maintained at ∆T = Tc − Tf = 32K±0.3K. This
is the temperature difference between those two vertical isothermal plates
that creates air motion inside the cavity. A Rayleigh number, based on the
height Hobs of the inner obstacle used in this study is RaHobs

=
gβ∆TH3

obs

αν
=

1.37(±0.1) × 109 , with α the thermal diffusivity, ν the kinematic viscosity
and β the compressibility coefficient. x,y and z axis are made dimensionless
with respect to L.

Note that the ambient temperature in the experimental hall, isothermal
plate temperatures of the cavity (imposed by the two thermostated baths) as
well as the temperature of the 6 surfaces of the inner obstacle are continuously
monitored to ensure suitable and well-known boundary conditions. 1 Pt100
probe and 69 type-K thermocouples are calibrated and used for this purpose.
Data are recorded via a data acquisition unit agilent 34972A at a frequency
of 1

60
Hz.

2.2. Velocities measurements
Velocities were measured using PIV (Particle Image Velocimetry) mea-

surement technique. A smoke generator produces particles used as the flow
tracers. Those tracers are paraffine oil particles with a diameter d ≈ 5 µm
leading to a Stokes number Stk =

ρpd2vref
18µl

= 6.2 × 10−4 where ρp is the
density, µ is the dynamic viscosity and Vref = α

Hobs

√
RaHobs

is a typical
scale velocity for natural convection [16]. The particles can be considered as
good air tracers for natural convection flow since Vg

Vmax
≈ 1.5 × 10−3 where
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Vg = d2g(ρp−ρair)

18µ
is the settling velocity and Vmax is the maximum velocity

encountered in the flow. The laser sheet is generated by a pulsed Nd:YAG
laser (2×50 mJ@100Hz). The particles are visualized with a CMOS camera,
2560× 2160pixels2 (Fig. 2). The pixel pitch size is 7 µm and the field size is
120× 105mm2. 5000 pairs of images are acquired at 25Hz and the time bet-
ween two frames is ranging between 1000 µs and 8000 µs depending on the
zone analyzed and the associated velocity of the flow. Image processing is
carried out with LaVision PIV algorithm to obtain velocity vectors. The al-
gorithm proceeds with interrogation area size ranging from 64×64 to 32×32
pixels2 with 50% of overlapping. For each zone, statistics over the vertical and
horizontal velocities are analyzed. The components (U, V,W ) of the velocity
are made dimensionless with respect to Vref previously defined. See table 1
for the velocity uncertainty.

2.3. Temperature measurements
Temperature measurements were carried out in the vertical mid-depth

plane at X = 0.50 with a type K micro-thermocouple (diameter = 12.7 µm).
The cold junction is placed inside an aluminium block of large inertia. This
block is placed in the experimental hall at T = Tamb and its temperature is
regularly measured with a PT100 probe (±0.1K). This type-K thermocouple
is mounted on two pins of 100µm joined on a rod, out of the vertical mid-
depth plane (X = 0.50) in order to minimize the intrusive effects (Fig. 3). For
the same reasons, this rod is placed downstream of the flow and 45◦ orien-
ted regarding the flow direction. A displacement device allows the rod to
move along the Y and Z axes with a 100µm increment (±6.5 µm). For each
measurement, the acquisition frequency is set at 6Hz and the acquisition
time is 10minutes to ensure statistical convergence. Moreover, the micro-
thermocouple cut-off frequency is 20Hz which is one order of magnitude
greater than the maximum flow frequency. The temperature measurements
are presented in terms of θ = T−T0

∆T
where T0 =

Th+Tc

2
is the reference tempe-

rature.
Uncertainties for both the temperature and velocity are reported in the

following table :

u(θ) u(W )
±0.038 ±0.004

Table 1 – Velocity and temperature uncertainties
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Figure 2 – PIV set-up

Figure 3 – Temperature measurement set-
up

2.4. Heat fluxes measurements
Heat fluxes are locally measured on the heated plate at T = Th and the

cavity side wall at T = Tc in the vertical mid-depth plane at X = 0.50.
They are quantified using the wall Nusselt number which corresponds to the
dimensionless temperature gradient at the wall :

Nu =
Hobs

L
× ∂θ

∂Y

∣∣∣∣
wall

(1)

In order to compute the Nusselt number, the micro-thermocouple is pro-
gressively moved away from the wall by 100 µm increments until a maximum
distance from the wall of 800 µm in order to remain into the linear zone of the
temperature profiles. For each position, a temperature acquisition is made
at a frequency of 40Hz and an acquisition time of 10minutes. The Nusselt
number is then determined with the slope of the curve at the origin obtained
by ANOVA on at least 5 points. A Nusselt number is validated only when
the correlation coefficient on the slope exceeds R2 > 0.995. The confidence
interval at 95% is then computed using the Student’s law (n being equal to
the number of considered points and n ≥ 5) :
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Nu− t0.025,n−2

√
σ̂2

Dxx

≤ Nu ≤ Nu+ t0.025,n−2

√
σ̂2

Dxx

with Dxx =
1

Hobs
2

∑
i

(Yi − Ȳ )2 ; σ̂2 =
1

n− 2

∑
i

(θi − θ̂i)
2

(2)

where t0.025,n−2 is the quantile of order 97.5% for n-2 degrees of freedom
of the Student’s law, .̂ and .̄ refer respectively to the estimator and the mean.

3. Results

3.1. Dynamical behavior of the flow around the cavity
Velocity measurements were carried out in the vertical mid-depth plane

(at X = 0.5). The setup is divided into three zones in order to facilitate its
description (see Fig. 1.a) :

— Zone A : the vertical differentially heated channel (X = 0.5, Y ∈
[0; 0.1] and Z ∈ [0; 1])

— Zone B : the top horizontal channel (X = 0.5, Y ∈ [0.1; 0.9] and
Z ∈ [0.9; 1])

— Zone C : the vertical unheated channel. (X = 0.5, Y ∈ [0.9; 1] and
Z ∈ [0; 1])

The dynamical behavior of the flow will be analyzed in the following sections
via dimensionless velocity fields and horizontal or vertical dimensionless ve-
locity profiles around the cavity.

3.1.1. Velocity measurements in the heated channel (Zone A)
A developing boundary layer flow along the hot plate at temperature Th

can be observed in zone A (Fig. 4). In Fig. 5, the profiles of W , the vertical
component of the mean velocity, show that the maximum velocity, located
inside the boundary layer, as well as the thickness of this layer increase with
Z. When the flow reaches Z = 0.9, it divides into two parts. It either flows
into the top horizontal channel (zone B), or towards the cold plate at Tc.
There, the flow can either go downward along the cold plate where a boun-
dary layer is developing, or join the top recirculation area (Fig. 4). It is worth
mentioning that the recirculation area at the top of the zone A will be of pri-
mary importance regarding the thermal analysis that will be discussed later
in section 3.2.1.
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Figure 4 – Norm of the mean dimensionless velocity field and streamtraces ( ) for zone
A

At Z = 0.893 and Y > 0.08 (end of the hot boundary layer), positive va-
lues of the horizontal component of the mean velocity V , observed on the
profile (see Fig. 5 (right)), exhibit the onset of the deviation of the mean jet
flow towards the horizontal channel observed in the top part of the zone A
(Z > 0.9, Fig. 4). The profile of the vertical component of the mean velocity
W , at Z = 0.5 (Fig. 5 (left)), depicts well the developed boundary layers
along both the hot and cold plates. They do not have the same intensity as
the absolute maximum velocity into the cold boundary layer is more than
three times less than the one in the hot boundary layer (Wcmax = 0.10 com-
pared to Whmax = 0.32). As already outlined, it is because a part of the
heated flow goes into zone B, thus breaking the flow symmetry. When the
descending flow reaches Z = 0.1, it can either fuel the forming hot boundary
layer, or flow into the lower horizontal channel. There is also a flow coming
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Figure 5 – Vertical (left) and horizontal (right) mean dimensionless velocity profiles along
the cavity (zone A). Vertical bars ( ) are of length 2σw (left) or 2σv (right). Please note
the different vertical scales.

from the lower horizontal channel and following the developing hot boundary
layer. This flow comes from the mean flow depicted in figure 1.a. At Z = 0.1,
the profiles of the horizontal (V ) and vertical (W ) mean velocity components
show the origin of the boundary layer flow observed along the hot plate. An
incoming horizontal flow (V<0) coming from the lower channel feeds the ver-
tical developing hot boundary layer and induces a thicker boundary layer in
that area. Note that it is then a rather different case from the boundary layer
theory assuming a zero velocity near the leading edge of the heated vertical
plate. In the end, it comes out that there is a weak interaction between the
hot and cold boundary layers into the majority of zone A. In fact, the profiles
of the horizontal component, V , of the mean velocity are close to 0 all along
the cavity for 0.1 < Z < 0.8.
The RMS velocity fluctuations are quantified in figure 5 via the vertical bars.
Most of the vertical velocity fluctuations are located inside the boundary
layers with greater values in the hot boundary layer. On the contrary, the
fluctuations of the horizontal velocity are mostly near the outer cold boun-
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dary layer. It shows that the cold boundary layer fluctuates more horizontally
than the hot one. At Z = 0.893, the fluctuations of the horizontal velocity
are greater all along Y because of the recirculation area effects.

3.1.2. Velocity and temperature measurements in the horizontal channel (zone
B)

As described in zone A, a part of the flow leaving the hot side of the
obstacle goes to the top horizontal channel (Fig. 6). The horizontal mean

Figure 6 – Norm of the mean dimensionless velocity field and streamtraces ( ) for zone
B as well as upper parts of zones A and C.

velocity profiles at Y = 0.15 (Fig. 7) show an horizontal wall jet along the
upper wall of the cavity. From Y = 0.15, this wall jet thickens until the middle
of the channel (Y = 0.5) and its maximum velocity decreases. Figure 6 shows
a very low velocity zone from Y = 0.5 to Y = 0.8 next to the upper face of the
obstacle. In this range, the horizontal mean velocity profiles next to the upper
face of the obstacle display flat shapes. A clockwise-rotating recirculation
area, fueled by the later described oscillating buoyant jet, drives the flow
near to the upper face of the obstacle from Y ≈ 0.3 to lower values of Y . It
results, in that area, in a reversal wall flow (see Fig. 7, Y = 0.25).

Regarding the temperatures, it can be observed that the profiles are
quite flat for most Z and all along the top horizontal channel. Upstream,
at Y = 0.15 and at the upper face of the obstacle (Z ≈ 0.90), a non-
adiabatic behavior for the temperature profile can be observed. This is cau-
sed by the proximity of the vertical heated plate (located at Z = 0.90 and
0.10 ≤ Y ≤ 0.14). Downstream, at Y = 0.85, a similar observation can be
made, the flow going to the vertical unheated channel (zone C) gets close to
the unheated aluminium plate (located at 0.86 ≤ Y ≤ 0.90 and Z = 0.90).
As it is hotter than the plate, a heat exchange between the fluid and the plate
occurs at this location. In other locations (Y = 0.25, Y = 0.50 or Y = 0.75),
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Figure 7 – Mean horizontal dimensionless velocity and mean dimensionless temperature
profiles for zone B ; θ (◦) ; V (×)

wall temperature profiles (Z = 0.90 or Z = 1) exhibit a behavior which is
close to the typical one observed in the vicinity of adiabatic surfaces.

3.1.3. Velocity measurements in the unheated channel (Zone C)
The mean velocity field (Fig. 8) shows the path of the flow coming from

the top horizontal channel (Zone B).
At the top of the zone C (Z ∈ [0.90; 1]), the flow coming from zone

B, either goes towards the vertical plate maintained at Tc (at Y = 1), or
flows back to the obstacle side (at Y = 0.90). In fact, at this elevation, both
surfaces are colder than the flow (as it will be detailed later, in section 3.2.2).
It results in a descending wall flow along both plates. At Z = 0.893, the
profile of the horizontal component, V , of the mean velocity (Fig. 9) exhibits
positive values, which confirms that the whole flow entering in zone C is
coming from the top horizontal channel.

It also results in RMS fluctuations at this elevation which are significant.
The vertical component, W , of the mean velocity in the upper part of the
channel (Z > 0.50) confirms the development of two descending vertical
boundary layers although the maximum velocity in the boundary layer at the
cavity cold plate, at Tc, is three times greater than the one at the obstacle’s
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Figure 8 – Norm of the mean dimensionless velocity field and streamtraces ( ) for zone
C

side. Actually, it keeps part of its momentum from the top horizontal channel.
This boundary layer has a quite similar trend as the cold boundary layer of
zone A. It looses velocity and thickens as Z decreases. The flow deviates
to the bottom horizontal channel when it reaches Z < 0.10. In figure 8,
it can be observed that the boundary layer behavior on the obstacle’s side
(Y ≈ 0.9) differs considerably. The flow is descending along the obstacle side
until Z ≈ 0.65 where it impinges an ascending vertical boundary layer flow.
In the impact area (Z ∈ [0.60; 0.70]), the flow leaves the wall horizontally
and goes through the central zone to join the cold plate of the cavity and its
developing boundary layer. This direction change is located at the elevation
where the obstacle boundary layer flow has the same temperature as the
central zone (see section 3.2.2). For Z ∈ [0.10; 0.65], the flow is ascending
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Figure 9 – Vertical (left) and horizontal (right) mean dimensionless velocity profiles along
the cavity (zone C). Vertical bars ( ) are of length 2σw (left) or 2σv (right). Please note
the different vertical scales.

along the obstacle. The boundary layer is in fact fuelled by both a cold
reversed flow from the bottom horizontal channel and the flow coming from a
recirculating zone observed in the lower part of the channel. This recirculating
zone is formed by the temperature difference between the cold plate and the
obstacle for Z < 0.65.
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3.2. Thermal behavior
3.2.1. Thermal stratification and heat transfers (Zone A)

Temperature profiles into the heated channel have been plotted in figure
10 for several elevations.
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Figure 10 – Mean dimensionless temperature profiles for different Z in zone A. Vertical
bars ( ) are of length 2σθ.

Firstly, these profiles depict that thermal boundary layers are developing
on both the cold and hot plates constituting this vertical differentially heated
channel. Secondly, the temperature increases in the core zone as Z increases.
The central zone is stratified in temperature. Focusing on this variation,
the mean temperature profile along the vertical central line, X = 0.50 and
Y = 0.05, were plotted in figure 11.

The evolution is linear for Z ∈ [0.10; 0.50]. The stratification parameter

S(Z) = ∂θ
∂Z

∣∣∣∣
Y=0.05

, which is the vertical temperature gradient in the linear

zone ([0.10; 0.50]), is equal to S = 0.29. This value is surprisingly lower than
common values obtained for differentially heated cavity (see Belleoud [8] for
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Figure 11 – Vertical profile of the mean dimensionless temperature at Y = 0.05

instance). Actually, as previously explained, a part of the hot flow leaves zone
A (the heated channel) to zone B (top horizontal channel) rather than going
towards the cold plate as it is the case for a closed cavity. It results in a lower
increase of temperature into the core of zone A. The vertical temperature
gradient, ∂θ

∂Z
(Z), increases substantially from 0.29 for Z ∈ [0.10; 0.50] to 0.70

for Z ∈ [0.50; 0.80]. This trend is explained by the growing influence of the top
recirculation area on the core flow as Z increases. The linear variation of the
stratification is thus broken. Due to the recirculation area, the temperature
fluctuations quantified by σθ are also greater as Z increases.

In order to study the heat transfer in zone A, Nusselt numbers (Eq. 1)
as well as associated confidence interval (Eq. 2) were measured along the hot
and cold plates (respectively Figs. 12 and 13).

Along the hot plate (Y = 0.1, Z ∈ [0.10; 0.90]), the Nusselt number is
strictly decreasing when Z increases (see Fig. 12). Indeed, the hot boundary
layer thickens and the fluid heats up. It results in a diminution of the heat
transfer with the plate. At Z < 0.20, the Nusselt spatial variations are steeper
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due to the twofold influence of the cold flows coming from both the cold
plate and the lower horizontal channel (see Fig. 4). Thus, the temperature
difference is highly increased and so are the heat transfers. The fluctuations
of the Nusselt number at Z ≥ 0.80, are probably due to the disturbances
coming from the cold flow driven by the top recirculation area.
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Figure 12 – Nusselt numbers along the heated vertical plate (Zone A, Y = 0.1, Z ∈
[0.10; 0.90], X = 0.50)

The Nusselt numbers on the cold plate at Tc (Y = 0, Z ∈ [0; 1]) (Fig. 13)
are decreasing when Z decreases. Indeed, the temperature difference between
the plate and the fluid reduces : the fluid cools down as it flows downward and
thus the heat transfers decrease. This decrease is steeper for Z ∈ [0.55; 0.70] ;
This trend is explained by the influence of the top recirculation area (for
Z ≥ 0.6, see Fig. 4).
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Figure 13 – Nusselt numbers along the cold plate (Zone A, Y = 0, Z ∈ [0; 1], X = 0.50)
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3.2.2. Temperature measurements (Zone C)
Horizontal profiles of temperature in the unheated channel have been

plotted in figure 14. A thermal boundary layer is developing along the cold
plate at Tc (Y = 1, Z ∈ [0; 1]). Its thickness tends to increase. On the other
side (Y = 0.90, Z ∈ [0.1; 0.9]), two opposite wall flows are observed (Fig. 8)
and are strongly connected with the temperature difference between the fluid
and the wall (Fig 14).
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Figure 14 – Mean dimensionless temperature profiles for different elevations, Z, in zone
C. Vertical bars ( ) are of length 2σw,v.

At Y = 0.90 and for Z = 0.89 and Z = 0.70, a boundary layer-like
temperature profile can be observed with the fluid being hotter than the
obstacle. On the contrary, for Z = 0.50, Z = 0.30 and Z = 0.10, a boundary
layer-like temperature profile develops with the fluid being colder than the
obstacle. In fact, a part of the flow coming from the upper horizontal channel
cools down along the wall of the obstacle. When it reaches the temperature of
the obstacle (for Z ∈ [0.50, 0.70]) it heads towards the colder plate (at Tc and
Y = 1). This phenomenon is reversed for the lower Z on the obstacle. The
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cold flow coming from the lower recirculating zone and the lower horizontal
channel (Fig. 8) moves up along the obstacle wall (Y = 0.90) before reaching
its temperature for Z ∈ [0.50, 0.70]. It then heads again towards the cold
plate. Note that the zone (Y = 0.90 ,Z ∈ [0.50, 0.70]) corresponds to the
zone where both opposite boundary layer-like flows impinge (Fig. 8).

As for zone A, the temperature of the core of the channel decreases with
Z and a thermal stratification is observed. Figure 15 shows the vertical tem-
perature profile in the middle of the unheated channel (Y=0.95, Z ∈ [0; 1]). A
linear variation is observed until Z = 0.5. For Z > 0.5, the vertical tempera-
ture gradient is increased. This increase confirms the flow behavior mentioned
before and the observed crossing flow through the core of the channel (Fig. 8).
In fact, the flow above the division at Z ≈ 0.65 is hotter because it mainly
comes from the top horizontal channel (i.e. zone B).

Figure 15 – Vertical profile of the mean dimensionless temperature at Y = 0.95 for zone
C
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3.3. Instabilities analysis (zone A)
3.3.1. Low frequency

Occurrence of internal waves in differentially heated cavities has been
widely studied [17, 18]. They are found more easily into the stratified cores
of the cavities. Thorpe [19] showed that those waves are linked with the
Brunt-Väisälä frequency which is defined as :

fbv =
1

2π

√
gβ∆TS

L
(3)

For aspect ratios large enough, the frequency of the first modes is ap-
proximately equal to fbv. Figure 16 shows the power spectral density for the
vertical velocity fluctuation W ′ (W ′ = Wi−W where Wi is the instantaneous
vertical velocity and W is the vertical mean velocity), at different elevations,
Z, in the lower half of the heated channel (zone A). The power spectral
density is defined as ΦX = 1

fsnacq
|X̂|2 where X̂ is the Fourier transform of

the quantity X, fs is the sampling frequency and nacq is the number of ac-
quisitions. For each Z, a low frequency stands out and fits with the order
of magnitude of fbv. Indeed, regarding this study configuration, equation 3
yields fbv ≈ 0.10Hz.
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Figure 16 – Power spectral density for W ′ at different Z and Y = 0.05
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3.3.2. Oscillating buoyant Jet
In zone A, the boundary layer flow leaves the hot plate at Z = 0.90 and

Y = 0.10 inducing a buoyant jet. This buoyant jet oscillates horizontally
either towards zone A or zone B (Fig. 17).

Figure 17 – Norm of the instantaneous velocity. Screenshots are taken at different times
around the jet located near the top edge of the heated plate (zone A).

Figure 18 shows the power spectral density of the horizontal fluctuations
for a point located in this oscillating jet at Z = 0.94 and Y = 0.09.

It can be observed from spectral analysis that the value of the main oscil-
lating frequency of this buoyant jet is centered around 2Hz. This frequency
comes from a boundary layer instability that will be studied in the next
section (3.3.3). The other smaller frequencies can be attributed to internal
gravity waves, studied in the previous section, along with the growing com-
plexity of the flow at this elevation.

Figure 19 shows the mean temperature evolution at different elevations,
Z, in and around this oscillating jet. The maximum of the mean temperature
is to be found into the jet for Z = 0.901 (just above the obstacle top corner)
and for Y ≈ 0.098. This maximum decreases with Z increasing. In fact,
when the jet leaves the hot plate, the flow is not heated anymore and the jet
progressively widens. The jet flattens until Z = 0.983 where it drives the flow

24



Figure 18 – Power spectral density for V ′ at Z = 0.94 and Y = 0.09 (located in the
oscillating buoyant jet)

either towards the horizontal channel or towards the cold plate (as shown in
Fig. 6).
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Figure 19 – Mean temperature centered around the jet at different elevations Z
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3.3.3. Boundary layer instability
The occurrence of a frequency was observed both into the jet and the hot

boundary layer flow. The power spectral density of the horizontal velocity
fluctuation V ′ at Z = 0.65 and Y = 0.09 (Fig. 20) enables to identify this
frequency which is approximately equal to 2Hz.

Figure 20 – Power spectral density for V ′ at Z = 0.65 and Y = 0.09

Gebhart and Jaluria [16] extensively studied the evolution of a propaga-
ting downstream periodic wave along heated vertical plates with both iso-
thermal or uniform heat flux surface conditions. Solving the Orr-Sommerfield
equations, Dring and Gebhart [3] showed that this periodic wave is amplified
downstream and filtered into a single frequency. It will be later confirmed
experimentally by Mahajan and Gebhart [20] and Qureshi and Gebhart [21].
This frequency value does not depend on the position along the vertical plate
and Gebhart and Jaluria [16] proposed this characteristic pulsation :

Ω =
2πf

ν

(
ν2

gβ∆T ∗

)2/3

(4)

where ∆T ∗ is the temperature difference between the plate temperature
and the temperature far away from it. With numerous numerical and experi-
mental results (Hieber and Gebhart [22], Polymeropoulos and Gebhart [23],
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Godaux and Gebhart [24]), Gebhart and Mahajan [25] were able to draw
asymptotic Prandtl-dependant solutions, in particular for Pr ∈ [0.1, 100] :

Ω = 0.315Pr−0.065 (5)

More recently, developing perturbations along isothermal vertical plates
were studied by Zhao et al. [26, 27, 28, 29]. They have also observed a growing
perturbation of high frequency (that does not depend on the vertical posi-
tion along the plate) which is acknowledged as the characteristic frequency.
For Pr = 0.7, they obtained the following correlation for the dimensional
characteristic frequency (Hz) :

fc = 0.07

(
gβ∆T ∗

α

)2/3

ν1/3 (6)

This correlation can be rewritten according to Gebhart’s definition of the
dimensionless characteristic pulsation :

Ω = 2π × 0.07Pr2/3 (7)

Table 2 shows the characteristic pulsation determined asymptotically by
Gebhart (Eq. 5), the one determined by Zhao (Eq. 6) for Pr = 0.7 and the one
from the present study (Eq. 4). In our case, ∆T ∗ is the temperature difference
between the temperature plate and the mean temperature in the center of the
heated channel between Z = 0.10 and Z = 0.90 (Fig. 11). This temperature
choice is motivated by the horizontal shape of the temperature profiles in
the cavity center (Fig. 10) and it appears here to be a suitable way to define
∆T ∗ with respect to Gebhart’s definition. Although configurations slightly
differ, the pulsation obtained is close to the ones obtained by Gebhart and
Zhao and differs only by a maximum of 11%. Furthermore, a possible range
for Ω can be determined which takes into account the stratified medium and
is Ω ∈ [0.31; 0.47].

From the spectral analysis of the velocity fluctuations, the amplitude Az

of the oscillating frequency can be obtained. Figure 21 shows the normalized
amplitude of the oscillating frequency obtained at Y = 0.09 for several ele-
vations Z. This amplitude is normalized by the assumed neutral amplitude
of the oscillating frequency along the vertical plate A0. The neutral ampli-
tude chosen here, is the amplitude where the disturbance is first detected
(Z0 ≈ 0.4). The spectrum amplitude is determined with an fft algorithm
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Ω
Gebhart [25] 0.32

Zhao [28] 0.35
present study 0.36

Table 2 – Comparison of the characteristic pulsation Ω (Eqs. 4, 5 and 6) for Pr = 0.71
and f = 2Hz

applied on the normalized horizontal velocity fluctuations (v′/Uc(z)) with
Uc(z) =

√
gβ∆T ∗(z − 0.1) (here 0.1 refers to the elevation of the heated

plate leading edge). Uc(z) allows to account for the fluctuations growth in-
duced by the base flow (Dring and Gebhart [3]).
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Figure 21 – Disturbance amplitude evolution. (.) experimental data ; (–) exponential
fitted curve (γ ≈ 6)

There is a quite good agreement with the linear stability theory which
predicts [3] :

Az

A0

= e
−

∫ z
z0

αi dz (8)
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where A0 is the disturbance neutral amplitude, AZ the disturbance am-
plitude at Z farther downstream and αi the spatial amplification rate of the
disturbance. Note that the theory predicts the amplitude evolution for an in-
jected perturbation. In our case, the neutral amplitude chosen is only based
on observation and cannot be accurately the neutral amplitude described by
the theory [30]. However, the criterion used for denoting the instability of
the flow is αi < 0. For increasing Z, the criterion in the present study is then
respected and leads to an unstable flow in the hot boundary layer and its
vicinity.

Considering enclosed spaces, Janssen and Henkes [31, 32], Le Quéré and
Behnia [17] and Kishor et al. [33] likewise observed the occurrence of tra-
velling waves inside differentially heated cavities with multiple aspect ratios
and angles. In particular, Xin and le Quéré [34] provided critical angular
frequencies for the most unstable modes in differentially heated cavities with
vertical aspect ratio between 1 and 8. Their results show travelling waves
frequencies which are of the same order of magnitude than the one observed
in the present study. Those frequencies are determined for a critical Rayleigh
number which is one order smaller than the one of the present case. It can
be added that the high frequency in the present study does not stand out in
the cold boundary layer while it does and stays identical in the differentially
heated cavities for any aspect ratios.

3.3.4. Turbulence
The understanding of turbulence development is still a challenge. This

is why different ways to describe it have been carried out over the years.
One of them is based on the behavior of the fluctuations spectra. Over a
heated vertical plate, during the transition to turbulence, the spectrum is
centered around the boundary layer characteristic frequency defined earlier.
The turbulence developing downstream leads to an energy distribution from
large to smaller scales. Considering the frequencies, it means that their is
an upper broadening of the fluctuations spectra [35]. Figure 22 shows the
cumulative power spectra of three points taken along the hot boundary layer,
at Y = 0.09.

For the point located at the beginning of the transition (at Z ≈ 0.50) al-
most all the energy is concentrated into frequencies smaller than the filtered
frequency (2Hz). During the transition, at Z = 0.65 , there is a slight broa-
dening around the characteristic frequency meaning that there is a start of
energy distribution to the neighbouring frequencies. Farther downstream, at
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Figure 22 – Cumulative power spectra for W ′. (•) datas at Z = 0.80 ; (◦) Z = 0.65 ; (×)
Z = 0.50

Z = 0.80, the energy is more widely distributed over a large frequency range.
In particular, a substantial increase of the energy distribution for frequencies
greater than the filtered frequency is observed. It means that the energy has
been transferred from large eddies to smaller ones. Moreover, a large part of
the energy is still concentrated around the filtered frequency (the gradient
around 2Hz is higher than for smaller frequencies). While the spectrum is
broadening, it means that the process of selective frequency amplification
still remains. Through the developing spectrum, an "inertial subrange" can
arise. It means that the gradient of the spectral density remains constant
over a certain range of wave numbers. Lumley [36] showed that it is possible
to substitute the wave numbers by the frequencies for small enough turbu-
lence scales and velocity gradients. Considering buoyancy-driven flows, it has
been shown that the power spectral density decays with a slope of −3 for a
quite large frequency range [16]. Figures 23 and 24 show the power spectral
density versus the frequency for two points downstream along the hot plate
(Y = 0.1). At Z = 0.65, during the transition, the energy decay towards
frequencies superior to the filtered frequency is non-linear. On the contrary,
at Z = 0.80, a slope of −3 is observed which confirms the presence of a large
inertial subrange starting near the characteristic frequency which is also the
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start of the upper frequencies broadening.

Figure 23 – Power spectral density for W ′ at Z = 0.65 and Y = 0.09

Figure 24 – Power spectral density for W ′ at Z = 0.8 and Y = 0.09
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4. Conclusions and perspectives

We have studied a turbulent natural convection flow whose Rayleigh num-
ber is similar to those encountered in industrial applications like the unde-
rhood of cars. Understanding the complex flow behavior around an inner
heated obstacle in an enclosed space is a crucial issue for industries which
rely on optimized heat transfers to ensure their materials thermal resistance.

The dynamical and thermal behavior of a flow in an enclosed cavity with
a partially heated obstacle is studied in the work. The heated channel is
thermally stratified and a recirculating zone is observed in its upper part.
The recirculating zone disturbs the linearity of the stratification and the
heat transfers on both the hot and cold plates. Leaving the heated plate of
the obstacle, the flow takes the form of an oscillating jet. The occurrence of a
travelling wave along the heated plate and internal gravity waves in the core
of the heated channel is shown. The boundary layer instability frequency is a
of Tollmien-Schlichting type and has been found experimentally around 2Hz.
It is in good agreement with the linear stability theory on a heated vertical
plate. Remarkably, this is also the frequency of the oscillating jet.

The gravity wave frequency is approximately equal to the Brunt-Väisälä
frequency. Turbulence develops downstream with an upper broadening of the
fluctuation spectrum over the travelling wave frequency. An inertial zone of
−3 slope appears over the filtered frequency.

It is worth mentioning that data provided in this paper can be useful for
further validations of numerical codes used when turbulent flows where domi-
nant buoyancy forces are encountered. In addition, the boundary conditions
considered in this study are stationary. A perspective for this investigation
is to apply unsteady boundary conditions to the heated plate. Actually, this
could help to simulate unsteady cases encountered in industrial systems as
car engines, after for instance a sudden stop of the car, when the engine is
no longer cooled by a forced external flow.
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Appendix

Vertical profiles of the mean horizontal dimensionless velocity in the cen-
ter of the heated channel (Y = 0.05) and in the center of the unheated
channel (Y = 0.095) are plotted on figure 25.

(a) at Y = 0.05 (zone A) (b) at Y = 0.95 (zone C)

Figure 25 – Vertical profiles of the mean dimensionless horizontal velocity in the center
of both the heated and unheated channels (zone A and C)
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