
ProxNLP: a primal-dual augmented Lagrangian solver
for nonlinear programming in Robotics and beyond

Wilson Jalleta,b,*, Antoine Bambadeb,c, Nicolas Mansarda and Justin Carpentierb

Abstract— Mathematical optimization is the workhorse be-
hind several aspects of modern robotics and control. In these
applications, the focus is on constrained optimization, and the
ability to work on manifolds (such as the classical matrix
Lie groups), along with a specific requirement for robustness
and speed. In recent years, augmented Lagrangian methods
have seen a resurgence due to their robustness and flexibility,
their connections to (inexact) proximal-point methods, and
their interoperability with Newton or semismooth Newton
methods. In the sequel, we present primal-dual augmented
Lagrangian method for inequality-constrained problems on
manifolds, which we introduced in our recent work, as well
as an efficient C++ implementation suitable for use in robotics
applications and beyond.

Paper Type – Recent Work [1] under review. (Extended with
open-sourced implementation)

I. INTRODUCTION

The setting of optimization on manifolds is of great inter-
est in the field of robotics, where generalized coordinates are
naturally represented using Lie groups [2]. Further, solvers
for robotics need to account for physical constraints such as
joint angle and torque limits as well as friction cones, but
also for task-based constraints which could replace penalties
or costs. Problems such as trajectory optimization or inverse
dynamics with various task and physical constraints are
naturally expressed as nonlinear programs (NLP).

A generic nonlinear program on a manifold M reads as
follows:

min
x∈M

f(x)

s.t. c(x) ∈ C
(1)

where c : M→ Rm is a (potentially nonlinear) mapping and
C ⊂ Rm is the constraint set.

Equality and inequality-constrained case: We consider
the following generic problem, which captures most prob-
lems in nonlinear optimization, including in robotics:

min
x∈M

f(x) s.t. g(x) = 0, h(x) 6 0. (2)

Most problems of interest in robotics can be expressed this
way: dynamics as equality constraints, target reaching, ob-
stacle avoidance and friction cones as inequality constraints.

Our proposed approach is based on the augmented La-
grangian method of multipliers [3], [4], [5], and its primal-
dual variant [6]. It was first introduced in1 [1] where we

a LAAS-CNRS, 7 Avenue du Colonel Roche, F-31400 Toulouse, France
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provide an application to constrained numerical optimal
control with a novel variant of the differential dynamic pro-
gramming (DDP) algorithm. The applicability of augmented
Lagrangians to equality-constrained DDP was recently inves-
tigated in the robotics literature [7], [8], with an extension
to multiple-shooting implicit dynamics in [9].

Overall, our key contribution is an open-source C++
solver for constrained optimization on manifolds for robotics,
named proxnlp2, which relies on a novel variant of the
augmented Lagrangian method.

II. METHODOLOGY

A. Generalized primal-dual augmented Lagrangians

This approach was first introduced for equality-constrained
problems in [6]. We recently provided an extension to
inequality-constrained problems in [1] with an application to
constrained DDP. This method was further applied to convex
QPs in Bambade et al. [10].

The classical (Hestenes-Powell-Rockafellar) augmented
Lagrangian function for the problem (2) reads:

Lµ(x; ye, ze) = f(x)+ 1
2µ‖g(x)+µye‖22+ 1

2µ‖[h(x)+µze]+‖.
(3)

Augmented Lagrangians are known to be exact penalty
functions for constrained optimization, as in their exists an
estimate (ȳ, z̄) and penalty parameter µ̄ > 0 such that a
minimizer x∗ of Lµ̄(·; ȳ, z̄) is a solution of (2).

Method of multipliers: The method of multipliers al-
gorithm consists in iteratively minimizing the augmented
Lagrangian and taking a (projected) dual ascent step in the
multipliers:

xl+1 = argmin
x
Lµ(x; yl, zl),

yl+1 = ye + 1
µg(xl+1)

zl+1 = [ze + 1
µh(xl+1)]+

(4)

This process can also be seen as a proximal-point algorithm
for the dual problem to the initial NLP [11].

Primal-dual function: The primal-dual augmented La-
grangian (pdAL) adds a penalty term for dual variables:

Mµ(x, y, z; ye, ze)
def
= Lµ(x; ye, ze)

+ 1
2µ‖g(x) + µ(ye − y)‖22 + 1

2µ‖[h(x) + µze]+ − µz‖22
(5)

Any stationary point (x∗, y∗, z∗) ofMµ(·; ye, ze) will satisfy
the KKT conditions of the iteration (4) where yl+1 = y∗.

2https://github.com/Simple-Robotics/proxnlp.
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B. The primal-dual Newton step

At a nominal point (xk, yk, zk), the primal-dual
(quasi-)Newton step for (5) is given by a system of equations
equivalent to H g>x Ph>x
gx −µI 0
Phx 0 −µP

δxδy
δz

 = −

 ∇L(xk, yk)
g(xk) + µ(yk − ye)

[h(xk) + µzk]+ − µze


(6)

where H approximates the Lagrangian Hessian ∇2L, and P
is a selection matrix for rows of the matrices corresponding
to the active set of constraints A(xk), defined as follows:

i ∈ A(x)⇔ (h(x) + µze)i > 0. (7)

As shown in [6], this primal-dual step (δx, δy, δz) is a
descent direction for the pdAL function (5).

III. EXPERIMENTS

For solving generic NLPs, we recently implemented our
method in a C++ software library named proxnlp. We use
Eigen as our linear algebra backend [12]. We provide an
interface for rigid-body dynamics and classical matrix Lie
groups (e.g. SE(3)) using the Pinocchio [13] library which
also provides derivatives [14]. We also provide Python bind-
ings. Another C++ software package specifically dedicated
to solving control problems using our variant of the DDP
algorithm (exploiting the problem structure for increased
efficiency) detailed in [1] is currently under development.

a) Simple barycenter on manifold: proxnlp is able to
operate on manifolds. We can quickly compute the barycen-
ter of a few points: in this case our method reduces to
Newton/Gauss-Newton iterations. See fig. 1 below.
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Fig. 1. Barycenter of three 2D poses in the SE(2) Lie group.

b) Double-pendulum: We implemented a simple
double-pendulum problem as an NLP using proxnlp,
Pinocchio and CasADi [15], with a time step of ∆t = 30ms
and desired convergence threshold of ε = 10−4. Here, the
second-order derivatives of the dynamics are ignored in the
Hessian computation. See fig. 2.

c) Obstacle avoidance on UR10: This example from
our recent preprint [1] was implemented using our experi-
mental code applying the method to DDP. See fig. 3.
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Fig. 2. Angle and torque trajectory of the double-pendulum system, as well
as the primal-dual convergence criteria. The controls saturate the imposed
limit for a duration of 200ms.

Fig. 3. UR10 reach task. The yellow spheres around the end-effector and
wrist links do not collide with the purple cylinders, and the waypoints are
reached at the specified times.

d) Pose generation on Talos: See figure 4. The cost
function reads, for configuration q ∈ Q
J(q) = 0.1‖q 	 q0‖2

+ 2.5‖Rbase(q)	Rbase(q0)‖2

+ 10‖plg(q)− prg(q)− d‖2 (gripper dist.)

+ 2‖(ple,y(q), pre,y(q))− (2,−2)‖2 (elbow y)

+ ‖Rlg(q)	R0‖2 + ‖Rrg(q)	R1‖2 (hand orn.)
(8)

where d = (0, 0.03, 0)>, lg, rg mean left and right gripper,
le, re mean left and right elbow, Rbase is the body base
orientation. We have additional constraints: the right foot
must be flat on the ground, the left foot must be > 40 cm
above ground with plf,xy ∈ [−0.05, 0.1] and a specific
orientation, and the right gripper satisfies prg,y 6 0, prg,z ∈
[−1.1, 1.2]. The costs and constraints are implemented using
CasADi [15].

e) Solo inverse geometry with heightmap: See figure 5.
The objective is to generate a feasible pose for the Solo-12
quadruped along with the 3D contact forces at the 4 feet:

min
q,{f}

‖θ − θ0‖2 + 1
10

4∑
i=1

‖fi‖2, (9)

where θ, θ0 are the joint angles of the robot (the pose
without the base placement). The problem has the following
constraints:



Fig. 4. Generated pose on the Talos robot.

• zero angular momentum at the CoM
• the CoM altitude must be higher than the average foot

altitude
• contact forces sum to the robot’s weight
• contact forces satisfy the friction cone.

Fig. 5. Inverse geometry Solo-12 quadruped with a heightmap and
accounting for contact forces.
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