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ProxNLP: a primal-dual augmented Lagrangian solver for nonlinear programming in Robotics and beyond

Mathematical optimization is the workhorse behind several aspects of modern robotics and control. In these applications, the focus is on constrained optimization, and the ability to work on manifolds (such as the classical matrix Lie groups), along with a specific requirement for robustness and speed. In recent years, augmented Lagrangian methods have seen a resurgence due to their robustness and flexibility, their connections to (inexact) proximal-point methods, and their interoperability with Newton or semismooth Newton methods. In the sequel, we present primal-dual augmented Lagrangian method for inequality-constrained problems on manifolds, which we introduced in our recent work, as well as an efficient C++ implementation suitable for use in robotics applications and beyond.

Paper Type -Recent Work [1] under review. (Extended with open-sourced implementation)

I. INTRODUCTION

The setting of optimization on manifolds is of great interest in the field of robotics, where generalized coordinates are naturally represented using Lie groups [START_REF] Murray | A Mathematical Introduction to Robotic Manipulation[END_REF]. Further, solvers for robotics need to account for physical constraints such as joint angle and torque limits as well as friction cones, but also for task-based constraints which could replace penalties or costs. Problems such as trajectory optimization or inverse dynamics with various task and physical constraints are naturally expressed as nonlinear programs (NLP).

A generic nonlinear program on a manifold M reads as follows:

min x∈M f (x) s.t. c(x) ∈ C (1) 
where c : M → R m is a (potentially nonlinear) mapping and C ⊂ R m is the constraint set.

Equality and inequality-constrained case: We consider the following generic problem, which captures most problems in nonlinear optimization, including in robotics:

min x∈M f (x) s.t. g(x) = 0, h(x) ⩽ 0. ( 2 
)
Most problems of interest in robotics can be expressed this way: dynamics as equality constraints, target reaching, obstacle avoidance and friction cones as inequality constraints.

Our proposed approach is based on the augmented Lagrangian method of multipliers [3]- [START_REF] Rockafellar | The multiplier method of Hestenes and Powell applied to convex programming[END_REF], and its primaldual variant [START_REF] Gill | A primal-dual augmented Lagrangian[END_REF]. It was first introduced in 1 provide an application to constrained numerical optimal control with a novel variant of the differential dynamic programming (DDP) algorithm. The applicability of augmented Lagrangians to equality-constrained DDP was recently investigated in the robotics literature [START_REF] Howell | ALTRO: A Fast Solver for Constrained Trajectory Optimization[END_REF], [START_REF] Kazdadi | Equality Constrained Differential Dynamic Programming[END_REF], with an extension to multiple-shooting implicit dynamics in [START_REF] Jallet | Implicit Differential Dynamic Programming[END_REF]. Overall, our key contribution is an open-source C++ solver for constrained optimization on manifolds for robotics, named proxnlp2 , which relies on a novel variant of the augmented Lagrangian method.

II. METHODOLOGY A. Generalized primal-dual augmented Lagrangians

This approach was first introduced for equality-constrained problems in [START_REF] Gill | A primal-dual augmented Lagrangian[END_REF]. We recently provided an extension to inequality-constrained problems in [START_REF] Jallet | Constrained Differential Dynamic Programming: A primal-dual augmented Lagrangian approach[END_REF] with an application to constrained DDP. This method was further applied to convex QPs in Bambade et al. [START_REF] Bambade | Prox-qp: Yet another quadratic programming solver for robotics and beyond[END_REF].

The classical (Hestenes-Powell-Rockafellar) augmented Lagrangian function for the problem (2) reads:

L µ (x; y e , z e ) = f (x)+ 1 2µ ∥g(x)+µy e ∥ 2 2 + 1 2µ ∥[h(x)+µz e ] + ∥.
(3) Augmented Lagrangians are known to be exact penalty functions for constrained optimization, as in their exists an estimate (ȳ, z) and penalty parameter μ > 0 such that a minimizer x * of L μ(•; ȳ, z) is a solution of [START_REF] Murray | A Mathematical Introduction to Robotic Manipulation[END_REF].

Method of multipliers: The method of multipliers algorithm consists in iteratively minimizing the augmented Lagrangian and taking a (projected) dual ascent step in the multipliers:

x l+1 = argmin x L µ (x; y l , z l ), y l+1 = y e + 1 µ g(x l+1 ) z l+1 = [z e + 1 µ h(x l+1 )] + (4) 
This process can also be seen as a proximal-point algorithm for the dual problem to the initial NLP [START_REF] Rockafellar | Augmented Lagrangians and Applications of the Proximal Point Algorithm in Convex Programming[END_REF].

Primal-dual function: The primal-dual augmented Lagrangian (pdAL) adds a penalty term for dual variables: At a nominal point (x k , y k , z k ), the primal-dual (quasi-)Newton step for ( 5) is given by a system of equations equivalent to

  H g ⊤ x P h ⊤ x g x -µI 0 P h x 0 -µP     δx δy δz   = -   ∇L(x k , y k ) g(x k ) + µ(y k -y e ) [h(x k ) + µz k ] + -µz e   (6)
where H approximates the Lagrangian Hessian ∇ 2 L, and P is a selection matrix for rows of the matrices corresponding to the active set of constraints A(x k ), defined as follows:

i ∈ A(x) ⇔ (h(x) + µz e ) i ⩾ 0. ( 7 
)
As shown in [START_REF] Gill | A primal-dual augmented Lagrangian[END_REF], this primal-dual step (δx, δy, δz) is a descent direction for the pdAL function [START_REF] Rockafellar | The multiplier method of Hestenes and Powell applied to convex programming[END_REF].

III. EXPERIMENTS

For solving generic NLPs, we recently implemented our method in a C++ software library named proxnlp. We use Eigen as our linear algebra backend [START_REF] Guennebaud | Eigen v3[END_REF]. We provide an interface for rigid-body dynamics and classical matrix Lie groups (e.g. SE(3)) using the Pinocchio [START_REF] Carpentier | The Pinocchio C++ library -A fast and flexible implementation of rigid body dynamics algorithms and their analytical derivatives[END_REF] library which also provides derivatives [START_REF] Carpentier | Analytical Derivatives of Rigid Body Dynamics Algorithms[END_REF]. We also provide Python bindings. Another C++ software package specifically dedicated to solving control problems using our variant of the DDP algorithm (exploiting the problem structure for increased efficiency) detailed in [START_REF] Jallet | Constrained Differential Dynamic Programming: A primal-dual augmented Lagrangian approach[END_REF] is currently under development.

a) Simple barycenter on manifold: proxnlp is able to operate on manifolds. We can quickly compute the barycenter of a few points: in this case our method reduces to Newton/Gauss-Newton iterations. See fig. 1 below. b) Double-pendulum: We implemented a simple double-pendulum problem as an NLP using proxnlp, Pinocchio and CasADi [START_REF] Andersson | CasADi: A software framework for nonlinear optimization and optimal control[END_REF], with a time step of ∆t = 30ms and desired convergence threshold of ϵ = 10 -4 . Here, the second-order derivatives of the dynamics are ignored in the Hessian computation. See fig. 2. c) Obstacle avoidance on UR10: This example from our recent preprint [START_REF] Jallet | Constrained Differential Dynamic Programming: A primal-dual augmented Lagrangian approach[END_REF] was implemented using our experimental code applying the method to DDP. See fig. 3. d) Pose generation on Talos: See figure 4. The cost function reads, for configuration q ∈ Q J(q) = 0.1∥q ⊖ q 0 ∥ 2 + 2.5∥R base (q) ⊖ R base (q 0 )∥ 2 + 10∥p lg (q) -p rg (q) -d∥ 2 (gripper dist.) + 2∥(p le,y (q), p re,y (q)) -(2, -2)∥ 2 (elbow y) 

+ ∥R lg (q) ⊖ R 0 ∥ 2 + ∥R rg (q) ⊖ R 1 ∥ 2 (hand orn.) (8 
∥f i ∥ 2 , (9) 
where θ, θ 0 are the joint angles of the robot (the pose without the base placement). The problem has the following constraints: • zero angular momentum at the CoM • the CoM altitude must be higher than the average foot altitude • contact forces sum to the robot's weight • contact forces satisfy the friction cone. Inverse geometry Solo-12 quadruped with a heightmap and accounting for contact forces.

M 2 ( 5 )

 25 µ (x, y, z; y e , z e ) def = L µ (x; y e , z e )+ 1 2µ ∥g(x) + µ(y e -y)∥ 2 2 + 1 2µ ∥[h(x) + µz e ] + -µz∥ 2Any stationary point (x * , y * , z * ) of M µ (•; y e , z e ) will satisfy the KKT conditions of the iteration (4) where y l+1 = y * .

Fig. 1 .

 1 Fig. 1. Barycenter of three 2D poses in the SE(2) Lie group.

Fig. 2 .

 2 Fig.2. Angle and torque trajectory of the double-pendulum system, as well as the primal-dual convergence criteria. The controls saturate the imposed limit for a duration of 200 ms.

Fig. 3 .

 3 Fig. 3. UR10 reach task. The yellow spheres around the end-effector and wrist links do not collide with the purple cylinders, and the waypoints are reached at the specified times.

  ) where d = (0, 0.03, 0) ⊤ , lg, rg mean left and right gripper, le, re mean left and right elbow, R base is the body base orientation. We have additional constraints: the right foot must be flat on the ground, the left foot must be ⩾ 40 cm above ground with p lf,xy ∈ [-0.05, 0.1] and a specific orientation, and the right gripper satisfies p rg,y ⩽ 0, p rg,z ∈ [-1.1, 1.2]. The costs and constraints are implemented using CasADi [15]. e) Solo inverse geometry with heightmap: See figure 5. The objective is to generate a feasible pose for the Solo-12 quadruped along with the 3D contact forces at the 4 feet: min q,{f } ∥θ -θ 0 ∥ 2 + 1 10 4 i=1

Fig. 4 .

 4 Fig. 4. Generated pose on the Talos robot.

Fig. 5 .

 5 Fig. 5.Inverse geometry Solo-12 quadruped with a heightmap and accounting for contact forces.

https://github.com/Simple-Robotics/proxnlp.
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