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Whole transcriptome analysis of human
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suggests a role of VEGFA gene as
modulator of fetal hemoglobin and
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response to hydroxyurea in β-type
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Abstract

Background: Human erythropoiesis is characterized by distinct gene expression profiles at various developmental
stages. Previous studies suggest that fetal-to-adult hemoglobin switch is regulated by a complex mechanism, in
which many key players still remain unknown. Here, we report our findings from whole transcriptome analysis of
erythroid cells, isolated from erythroid tissues at various developmental stages in an effort to identify distinct
molecular signatures of each erythroid tissue.

Results: From our in-depth data analysis, pathway analysis, and text mining, we opted to focus on the VEGFA gene,
given its gene expression characteristics. Selected VEGFA genomic variants, identified through linkage disequilibrium
analysis, were explored further for their association with elevated fetal hemoglobin levels in β-type hemoglobinopathy
patients. Our downstream analysis of non-transfusion-dependent β-thalassemia patients, β-thalassemia major patients,
compound heterozygous sickle cell disease/β-thalassemia patients receiving hydroxyurea as fetal hemoglobin augmentation
treatment, and non-thalassemic individuals indicated that VEGFA genomic variants were associated with disease severity in
β-thalassemia patients and hydroxyurea treatment efficacy in SCD/β-thalassemia compound heterozygous patients.

Conclusions: Our findings suggest that VEGFA may act as a modifier gene of human globin gene expression and, at the
same time, serve as a genomic biomarker in β-type hemoglobinopathy disease severity and hydroxyurea treatment efficacy.
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Introduction
Hemoglobin is the key tetramer oxygen transport
protein of red blood cells, composed of two pairs of
identical globin chains (namely, the α-like and β-like
chains). Different types of hemoglobin molecules are
produced during embryonic, fetal, and adult erythropoi-
esis at different hematopoietic sites (yolk sac, fetal liver,
and bone marrow, respectively) [34]. The differentiation
of erythroid progenitors into mature erythrocytes as well
as human globin expression needs to be strictly regu-
lated aiming to maintain sufficient oxygen levels in all
tissues [11, 20]. There are two developmental switches
that occur upon the switch from primitive to definitive
hematopoiesis and during the perinatal period. In the
latter case, human fetal globin genes (HBG1 and HBG2)
that are expressed at high levels during the fetal stage
are gradually downregulated, whereas human adult
(HBB and HBD) globin genes are reciprocally upregu-
lated. As a result, fetal hemoglobin (HbF) is expressed at
high levels during fetal development and gradually de-
clines to reach less than 2–3% of total hemoglobin levels
shortly after birth.
Hemoglobinopathies are the most common single gene

disorders and at the same time, one of the most devastat-
ing health problems worldwide, as their clinical pheno-
types vary from mostly asymptomatic to severe anemia.
Hemoglobinopathies are caused by quantitative (α- or β-
thalassemia) or qualitative (hemoglobin variants and sickle
cell disease, SCD) defects in hemoglobin production [5,
12]. Today, the most common therapeutic interventions
for β-type hemoglobinopathies include regular blood
transfusions, bone marrow transplantation, and transient
pharmacological reactivation of HbF to compensate for
the absent or deficient expression of adult hemoglobin.
Hydroxyurea or hydroxycarbamide (HU) is the only FDA-
approved drug for the treatment of SCD and β-
thalassemia patients that transiently increases/reactivates
HbF production and hence, ameliorates disease severity.
However, HU is less effective in β-thalassemia than in
SCD patients, while there is extreme inter-individual
variability among β-type hemoglobinopathy patients in
response to HU treatment [3, 23].
HbF production as well as the developmental switch

from fetal to adult hemoglobin are regulated by various
transcription factors and have been the focus of inten-
sive investigations, since our understanding of the
molecular mechanisms involved in fetal-to-adult globin
gene switching would provide useful insights for β-type
hemoglobinopathy therapeutics [19]. It has been pro-
posed that there is a complex interplay between cis-act-
ing elements within the human β-globin gene cluster
and transcription factors, such as MYB, BCL11A, KLF1
[39, 41], and others, that affect the rate of β-like globin
gene transcription. Also, previous studies suggest that

genomic loci residing outside the human β-globin gene
cluster act as modifier genes to HbF production and are
associated with elevated HbF levels and, as such, variable
disease severity in β-type hemoglobinopathy patients
and HU treatment response rate in SCD/β-thalassemia
compound heterozygous patients [18, 25].
We have previously shown that genomic variants in

the MAP3K5, KLF10, SIN3A, NOS1, ARG1, and ARG2
genes are associated with elevated HbF levels and, hence,
milder disease severity in β-type hemoglobinopathy
patients and HU treatment response rate in SCD/β-thal-
assemia compound heterozygous patients [4, 7, 17, 40].
Herein, we adopted a whole transcriptome analysis of
erythroid cells derived from human hematopoietic
tissues of various developmental stages to identify candi-
date genes that are differentially expressed at various de-
velopmental stages. Following our data analysis coupled
to pathway and linkage disequilibrium analyses, we show
that selected VEGFA genomic variants are associated
with β-thalassemia disease severity and HU treatment
efficacy in SCD/β-thalassemia compound heterozygous
patients, suggesting that VEGFA may be considered as a
modifier gene for HbF production.

Material and methods
Subjects
For the purpose of microarray-based whole transcrip-
tome analysis, we isolated and cultured erythroid pro-
genitor cells from human fetal liver (n = 4), umbilical
cord blood (n = 5), and adult peripheral blood (n = 4)
samples, all from unrelated individuals of Caucasian
origin. Human umbilical cord blood and fetal liver sam-
ples were collected and processed as described previ-
ously [24, 43, 44].
For tagSNP genotyping, we exploited a separate set of

individuals, namely β-thalassemia major patients, non-
transfusion-dependent thalassemia (NTDT) patients,
SCD/β-thalassemia compound heterozygous patients,
and ethnically matched healthy (non-thalassemic) indi-
viduals. β-thalassemia major patients differ from their
NTDT counterparts in terms of their clinical phenotype
and disease severity. In particular, β-thalassemia major
patients require lifelong regular transfusions to survive
and avoid disease complications, while NTDT patients
present mild anemia (hemoglobin levels ranging from
7.7 to 11.2 g/dl) and need less frequent or no blood
transfusions. The clinical phenotype of the NTDT
patients included in this study cannot be attributed to
α-globin gene variants (α-thalassemia) or hereditary
persistence of fetal hemoglobin (HPFH syndrome). SCD/
β-thalassemia compound heterozygous patients were
systematically administered HU and characterized as
“HU-responders” (plateau HbF levels above 20%) or
“HU non-responders” (plateau HbF levels below 20%),
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based on their HbF expression levels following drug
administration. All molecular, hematological, and clinical
data of patient cohorts have been described in our
previously published work [7, 15, 17, 32, 33, 40]. All
tagSNP genotyping samples are of Hellenic origin,
collected at the Patras University Hospital (Patras,
Greece), AHEPA University Hospital (Thessaloniki,
Greece), and Ippokrateio General Hospital of Thessaloniki
(Thessaloniki, Greece).

Whole transcriptome analysis
Microarray-based whole transcriptome analysis was per-
formed as described previously [4]. In brief, erythroid
progenitor cells from fetal liver, umbilical cord blood,
and adult peripheral blood samples were isolated and
cultured ex vivo. Total RNA was extracted, labeled, and
hybridized to the Affymetrix Human Genome Array v2.0
according to manufacturer’s instructions (Affymetrix
Inc., Santa Carla, CA, USA). Differential expression spe-
cifics were set by AltAnalyse. Probe sets were character-
ized and selected as significant, when their p value was
< 0.05. Cluster 3.0 was used for data clustering of the
short-listed probe sets [9] and JavaTree View Version
1.1.6r2 for data visualization [35]. A fold-change > 2 (FC
> 2) is indicative of gene upregulation, whereas a fold-
change < 2 (FC <2) corresponds to gene downregulation.

TagSNP selection and linkage disequilibrium analysis
TagSNP selection across the VEGFA gene was carried
out by the tagSNP picker program via the International
HapMap Project (HapMap data release 27, phase II +
III, February 2009, on NCBI36 assembly) and the LD
TAG SNP Selection (tagSNP) (National Institute of En-
vironmental Health Sciences) web-based tool. A tagged
pairwise method was used with an R-square cutoff value
of 0.8 and minor allele frequency (MAF) cutoff value of
0.2 [42, 45]. Pairwise linkage disequilibrium (LD) calcu-
lations were based on phase genotyped data (SNAP v2.2)
[22], utilizing the HapMap Phase II+III (release 28) [2]
and the 1000 Genomes Project (http://www.1000geno-
mes.org) dataset for Caucasians (CEU). Findings were
visualized on HaploView 4.2 and by using the LDmatrix
module on LDlink web tool [26].

Genotype analysis
Genomic DNA was extracted from whole blood leuko-
cytes collected from healthy individuals and patients
using the QIAamp Blood Kit (Qiagen GmbH, Hilden,
Germany). Polymerase chain reaction (PCR) was carried
out according to the KAPA2G Fast Hot Start protocol
(KAPA Biosystems, MA, USA). A detailed description
per tagSNP amplification conditions is available upon
request. PCR products were purified with NucleoSpin
Gel and PCR clean-up kit (Macherey-Nagel, GmbH,

Düren, Germany) and subjected to direct DNA sequence
analysis on an ABI Prim 3130xl DNA Analyser (Applied
Biosystems) using the Big Dye® Terminator v3.1 Cycle
Sequencing Kit (Applied Biosystems, CA, USA), accord-
ing to the manufacturer’s instructions.

In silico analyses
Pathway analysis was performed with STRING software
v9.1 (http://string-db.org). An emphasis was given to
text mining and predicted interactions, both direct
(physical) and indirect (functional). Venn diagrams were
drawn with VENNY v2.1 (http://bioinfogp.cnb.csic.es/
tools/venny/index.html). Gene ontology (GO) term ana-
lysis was performed with PANTHER classification system.
Molecular function and biological process subcategories
were subsequently identified [27]. For our downstream
analysis, and to further investigate the role of the VEGFA
tagSNPs in HU-mediated HbF production, we explored
their effect on splicing motifs (including the “accept” and
“donor” splice sites), the branch point and auxiliary
sequences that enhance (exonic splicing enhancers, ESE)
or repress (exonic splicing silencers, ESS) splicing. For
this, in silico prediction took place, using Human Splicing
Finder (http://www.umd.be/HSF3). This is a system that
has quickly become an international reference, as it
combines 12 algorithms [10].

Statistical analysis
Hardy-Weinberg equilibrium was explored by Pearson’s
goodness-of-fit chi-square (degree of freedom = 1), log-
likelihood ratio chi-square (degree of freedom = 1), and
exact test. De Finetti diagrams were also constructed
[37]. Genotype and allele frequencies were evaluated
using Fisher’s exact test. A two-tailed p value of < 0.05
was considered statistically significant. The R project for
statistical computing (R i386 3.2.1) was used.

Results
Transcription profiling of human hematopoietic tissues
during ontogenesis
Whole transcriptome analysis was performed to explore
the transcription profiles of human hematopoietic
tissues at different stages of ontogenesis. A unique mo-
lecular signature was obtained, consisting of genes that
were differentially expressed among tissues that express
(fetal liver, umbilical cord blood) HbF, do not express
HbF, or marginally express (adult peripheral blood) HbF.
Our comparative analysis includes three different data-
sets: (i) adult peripheral blood (low HbF) versus umbil-
ical cord blood (high HbF), (ii) adult peripheral blood
(low HbF) versus fetal liver (high HbF), and (iii) adult
peripheral blood (low HbF) versus umbilical cord blood
and fetal liver (high HbF).
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When the first comparison was considered, a total of
165 probe sets representing 133 unique genes were
differentially expressed (Additional file 1: Figure S1),
while the second comparison revealed 1239 probe sets
corresponding to 898 unique genes being differentially
expressed (Additional file 1: Figure S2). When compar-
ing all tissues (fetal liver and umbilical cord blood) that
express high HbF levels versus peripheral blood that
does not produce HbF, our analysis revealed 348 probe
sets, corresponding to 264 unique genes that were differen-
tially expressed among those tissues (Fig. 1). Data analysis
revealed a candidate gene signature of erythropoiesis during
human ontogenesis. Next, we focused on the comparison
of the gene signature profile of those hematopoietic tissues,
being most ontogenically distant, and thus, adult peripheral
blood was compared to fetal liver (dataset ii) and/or adult
peripheral blood was compared to umbilical cord blood
and fetal liver (dataset iii). As indicated in Fig. 2 and
Additional file 1: Tables S1 and S2, 103 genes were upregu-
lated and 50 genes were downregulated, when datasets (ii)
and (iii) were considered. Data were filtered on the basis of
current publicly available literature and experimental
evidence regarding gene-to-phenotype associations with β-
hemoglobinopathies. We have subsequently performed GO
term analysis. Pathway analysis and text mining were
carried out for the genes included in the most dominant
classifications of the GO term analysis. VEGFA was most

prevalent in “Binding” (GO: 0005488), “Cellular process”
(GO: 0009987), “Developmental process” (GO: 0002376)
and “Response to stimulus” (GO: 0050896).
VEGFA was found to be upregulated (FC > 2) in adult

peripheral blood (low HbF levels), when compared to
umbilical cord blood and fetal liver (high HbF levels).
VEGFA upregulation was even more profound, when
adult peripheral blood was solely compared to fetal liver.

TagSNPs across the VEGFA gene are associated with high
HbF levels
Three tagSNPs (rs3024997, rs2146323, and rs10434)
across the VEGFA gene were selected with MAF > 0.2%
(CEU population) and explored further for their associ-
ation with disease severity, attributed to high HbF levels.
rs3024997 (G>A) and rs2146323 (C>A) are localized
within intron 2, while rs10434 (A>G) within the 3′-un-
translated region (3′-UTR) of the VEGFA gene. Genotyp-
ing data of β-type hemoglobinopathy patients and healthy
(non-thalassemic) individuals of Hellenic origin are sum-
marized in Table 1 and Additional file 1: Tables S3 and S4.
A strong association for rs3024997 (G > A) with disease
severity became evident, when NTDT patients (mild
disease phenotype) and β-thalassemia major patients
(severe disease phenotype) were compared (p = 0.003),
and the same was true when NTDT patients versus non-
thalassemic individuals (p = 0.005) were considered. Since

Fig. 1 Differential gene expression when adult peripheral blood is compared to cord blood and fetal liver. A total of 264 genes were up- (FC > 2)
or downregulated (FC < 2), when tissues with low HbF expression levels were compared to their counterparts with high HbF expression levels.
Columns represent samples; rows are genes. Genes that were upregulated are depicted in red and genes that were downregulated are depicted
in green
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Fig. 2 Common and unique up- and downregulated genes during ontogenesis. a The number in each circle represents the number of
differentially expressed genes among the groups in question. Common and unique genes are shown. b PANTHER analysis outcomes (GO;
molecular function and biological process)

Table 1 Summary of our genotype analysis of β-type hemoglobinopathy patients of Hellenic origin and healthy (non-thalassemic) individuals

Study population Genotype frequency (%)

rs3024997 (G>A) rs2146323 (C>A) rs10434 (A>G)

G/G A/A G/A C/C A/A C/A A/A G/G A/G

Healthy individuals 34 21 45 60 9 31 18 31 51

β-thalassemia major patients 26 16 58 51 3 46 21 33 46

NTDT patients 47 6 47 33 11 56 21 29 50

HU responders 26 16 58 43 10 48 26 26 48

HU non-responders 35 12 53 63 17 20 25 29 46

The number of individuals per group (n) is indicated in parentheses per tagSNP: rs3024997 healthy individuals (n = 112), NTDT patients (n = 17), β-thalassemia
major patients (n = 112), HU responders (n = 19), HU non-responders (n = 26); rs2146323 healthy individuals (n = 115), NTDT patients (n = 18), β-thalassemia
major patients (n = 114), HU responders (n = 21), HU non-responders (n = 30); rs10434 healthy individuals (n = 72), NTDT patients (n = 14), β-thalassemia major
patients (n = 105), HU responders (n = 19), HU non-responders (n = 28)
HU hydroxyurea, NTDT non-transfusion-dependent thalassemia
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the hοmozygous genotype for the rare allele (A) is less
frequently found in NTDT patients, the presence of the A
allele could be correlated with low HbF levels (Fig. 3a).
rs2146323 (C > A) correlates well with disease severity
and HbF levels, when (i) NTDT patients versus β-thalas-
semia major patients (p = 0.009), (ii) NTDT patients ver-
sus non-thalassemic individuals (p = 0.0005), and (iii) β-
thalassemia major patients (p = 0.03) versus non-tha-
lassemic individuals were considered. Our findings for
the rare allele (A) suggest its association with high
HbF levels (Fig. 3b). rs10434 (A > G) did not reach
statistical significance, when genotype frequencies
among patients and healthy individuals were
compared.

TagSNPs across the VEGFA gene are associated with HU
treatment efficacy in SCD/beta-thalassemia compound
heterozygous patients
To explore if the selected tagSNPs across the VEGFA
gene could serve as pharmacogenomic biomarkers,
HU-responder and non-responder SCD/β-thalassemia
patients were genotyped. A strong association for
rs2146323 (C>A) with HU treatment efficacy (elevation
of HbF levels) became evident (p = 0.0002), while
neither of the rs3024997 (G>A) and rs10434 (A>G)
tagSNPs reached statistical significance. As shown in
Fig. 4 and Additional file 1: Table S4, pairwise LD calcu-
lations revealed that rs3024997 (G>A) and rs2146323
(C>A) are in complete LD (D′ = 1; R2 < 1).

Fig. 3 TagSNPs across the VEGFA gene are associated with disease phenotype (a) and HU treatment efficacy (b). a disease phenotype, rs3024997
(G>A; healthy individuals vs. NTDT patients p = 0.005; β-thalassemia major patients vs. NTDT patients p = 0.003) and rs2146323 (C>A; healthy individuals vs.
β-thalassemia major patients p = 0.03; healthy individuals vs. NTDT patients p = 0.0005; β-thalassemia major patients vs. NTDT patients p = 0.009). b HU
treatment efficacy, rs2146323 (C>A; HU responders vs. HU non-responders p = 0.0002). HU: hydroxyurea
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In silico analyses
According to the Human Splicing Finder prediction
algorithm, rs3024997 (G>A) was found to occur in a deep
intronic position, resulting on the activation of an intronic
cryptic acceptor site and thus, potential alteration of spli-
cing. Yet, the RESCUE ESE, EIEs, PESE Octamers, ESE
Finder-SRp40, and ESR Sequences prediction algorithms
suggest the creation of an exonic splicing enhancer,

probably, with no impact on splicing (Fig. 5). rs2146323
(C>A) causes no significant splicing motif alteration, sug-
gesting that the other co-inherited variants are possibly
the key in its association with high HbF levels.

Discussion
In humans, erythropoiesis as well as globin gene expression
occurs at different sites during the various developmental

Fig. 4 Pairwise linkage disequilibrium (LD) calculations for the tagSNPs of interest across the VEGFA gene (CEU). LD is measured as D′ and R2 (see
also Additional file 1: Table S2)

Fig. 5 In silico analysis of the role of rs3024997 on splicing. For rs3024997 (G > A), the Human Splicing Finder prediction algorithm supports the
activation of an intronic cryptic acceptor site and thus, potential alteration of splicing. Yet, the RESCUE ESE, EIEs, PESE Octamers, ESE Finder-SRp40,
and ESR Sequences prediction algorithms suggest the creation of an exonic splicing enhancer, probably, with no impact on splicing. The graphic
representation of the region confirms individual outcomes per algorithm considered, each one corresponding at a different color and length. For
more information on the data, please visit http://www.umd.be/HSF3/technicaltips.html
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stages in a time-specific manner (tissue- and development-
specific expression). Hemoglobin switch consists of two
separate events; the first event occurs early in endometrial
life (embryonic to fetal hemoglobin switch), whereas the
second one begins a few weeks before birth and ends ~
6 months after delivery (fetal-to-adult hemoglobin switch).
The understanding of the molecular mechanisms that gov-
ern hemoglobin switch holds a great promise for curing β-
type hemoglobinopathies [34].
We have previously demonstrated that several genes,

residing outside the human β-globin gene cluster, can be
held responsible as genes modifying HbF levels in β-type
hemoglobinopathy patients, reflecting on the disease se-
verity and HU treatment response [4, 7, 18, 40]. Herein,
we adopted a whole transcriptome analysis on tissues
that express high and low HbF levels in an effort to
identify a unique molecular signature corresponding to
high HbF levels.
Following whole transcriptome and pathway analysis,

coupled to text mining, we focused on the VEGFA gene
since it shows a consistent gene expression pattern in
most comparisons. We employed linkage disequilibrium
analysis to select VEGFA genomic variants to further
explore their association with elevated HbF levels in β-
type hemoglobinopathy patients. In humans,VEGFA (be-
longs to the family of vascular endothelial growth fac-
tors, VEGFs) is localized on chromosome 6p21.1 (14 kb),
consisting of 8 exons and 7 introns [21]. Studies in
knockout mice indicate the role of VEGFA in the de-
velopment of the vascular and hematopoietic tissues.
Casella et al. [6] found that VEGFA production is
crucial for the survival and differentiation of adult
hematopoietic stem cells (HSCs), while VEGFA has
been also shown to participate in hematopoiesis by an
internal autocrine loop mechanism and be associated
with adult HBB gene expression [13, 14]. Nakayama
et al. [31] have shown that VEGFA synergizes with
BMP-4 on the development of hematopoietic cells
[31]. The same authors reported that murine embry-
onic stem cells were white, when grown only in the
presence of BMP-4, becoming red, after the addition
of VEGFA (and stem cell factor (SCF)). A few years
later, Adelman et al. [1] showed that the BMP/BMPR/
Smad pathway induces the expression of KLF1 and
GATA-1 transcription factors during the differenti-
ation of embryonic bodies in mice, yet β-globin ex-
pression is only detected, when SCF and VEGFA were
present [1].
Consistent with this work, our previous findings indicate

that at the late stages of human ontogenesis, where HbF
levels are low,VEGFA mRNA levels are high. In particular,
VEGFA is upregulated in cultured erythroid progenitor cells
derived from adult peripheral blood (low HbF expression
levels), when compared to progenitors derived from fetal

liver or umbilical cord blood and fetal liver. Furthermore,
VEGFA is downregulated in erythroblasts, when compared
to early (BFU-Es) or late (CFU-Es) erythroid progenitors in
hematopoietic tissues expressing high levels of HbF (umbil-
ical cord blood and fetal liver, Kolovos P, unpublished).
Such findings support further the inverse correlation
between VEGFA and HbF levels that we observed during
ontogenesis.
High HbF levels may improve disease severity in β-

thalassemia and SCD, as β-globin deficiency is balanced by
γ-globin synthesis and HbF prevents the polymerization of
hemoglobin S, respectively [36]. Following the completion
of the Human Genome Project, family and genome-wide
association studies reported several SNPs that are associated
with high HbF levels or a high proportion of F cells in β-
type hemoglobinopathy patients, revealing a relatively large
number of genetic modifiers of HbF expression [18, 19].
Today, although several compounds that transiently

induce HbF levels (5-azacitidine, dexitabine) have been
studied, HU is the only FDA-approved sickle cell disease
and β-thalassemia treatment. HU is a cytotoxic antineo-
plastic agent that was initially administered to patients
with myelodysplastic diseases and immune deficiencies
as it is an inhibitor of ribonucleotide reductase, an
enzyme necessary for DNA synthesis and repair. The
drug mechanism towards the induction of HbF is not
fully known. In β-thalassemia patients, HU administra-
tion leads to a 2- to a ~ 9-fold increase in γ-globin
mRNA levels [30]. Inter-individual variability remains an
issue and several studies concur that genomic variants
residing in genes not only within, but also outside the
human β-globin gene cluster, correlate with disease
severity and HU treatment efficacy [18, 25].
Interestingly, our whole transcriptome analysis re-

vealed that among those genes with a similar, to VEGFA,
expression profile, there are genes previously described
to be correlated with differentially produced HbF levels
and with response to HU treatment in β-type
hemoglobinopathy patients [7, 16, 25].
Following our whole transcriptome analysis, we

focused on VEGFA gene variants and genotyped non--
transfusion-dependent β-thalassemia patients, β-
thalassemia major patients, and healthy (non-thalasse-
mic) individuals as well as a cohort of compound hetero-
zygous SCD/β-thalassemia patients receiving HU as HbF
augmenting therapy. rs3024997 (G>A) was found to be
strongly associated with low HbF levels and the severe
phenotype of β-thalassemia major. A strong association
was also observed between rs2146323 (C>A) and high
HbF levels in NTDT patients and hence, a milder
clinical phenotype of the disease. rs2146323 (C>A) may
also serve as a pharmacogenomic biomarker for HU
treatment efficacy. rs10434 (A>G) did not reach statis-
tical significance. Small sample size remains a major
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limitation in all studies focusing on HU treatment
individualization, including ours, especially for NTDT
patients, due to the scarcity of such patients. Herein,
Fisher’s exact test was chosen as the most appropriate
test to guarantee type I error control, taking into
account small sample sizes (Fisher’s exact test is consid-
ered more accurate than the chi-square test or G-test of
independence in such cases). Yet, the lack of association
for rs10434 due to small sample sizes cannot be
excluded. VEFGA genomic variants have also been found
in asymptomatic individuals with high HbF levels (un-
published), suggesting a possible role of VEGFA in
increasing HbF levels.
According to the outcome of our in silico analyses,

rs3024997 (G>A) was found to occur in a deep intronic
position, resulting on the activation of an intronic cryp-
tic acceptor site and thus, potential alteration of splicing.
Yet, the RESCUE ESE, EIEs, PESE Octamers, ESE
Finder-SRp40, and ESR Sequences prediction algorithms
suggested the creation of an exonic splicing enhancer,
which has probably no impact on splicing. rs2146323
(C>A) causes no significant splicing motif alteration,
suggesting that the other co-inherited variants are
possibly the key in its association with high HbF levels.
No doubt, coupled to the bioinformatics predictions
described, functional analysis needs to be performed,
such as functional minigene analysis and exon-tiling
microarrays to confirm the role of these variants as
predicted in silico [8, 28, 29, 38].
Our study has a number of limitations. First of all, we

have not managed to isolate fetal tissues from enough
number of individuals to replicate our findings and this
is subject to future work that is currently ongoing.
Secondly, the sample size of the subsequent follow-up
study was equally small, due to the lack of sufficient
number of well-characterized β-thalassemia/SCD as well
as NTDT patients, which are scarce and truly unique to
find. Our results are, nevertheless, indicative for future
replication work to validate the suggested role of VEGFA
as possible modifier of HbF levels in adult life.

Conclusion and future perspectives
Human hemoglobin switching still remains a great challenge,
when β-type hemoglobinopathy management is considered.
In a similar context, HbF production has attracted great
interest over the last 50 years towards the amelioration of
disease symptoms of β-type hemoglobinopathy patients. Tak-
ing into account that HU treatment efficacy exhibits great
inter-individual variability, identification, and subsequently
validation and clinical implementation of pharmacogenomic
biomarkers hold promise for optimum patient stratification
and disease management. Herein, our transcriptomics
approach provided insights into the differential expression
profiles of different erythroid tissues during human

ontogenesis and suggested that VEGFA genomic variants
serve both as genomic biomarkers for β-thalassemia disease
severity and pharmacogenomic biomarkers for HU treatment
efficacy in β-type hemoglobinopathy patients. In other words,
a dual role is implied for VEGFA in erythropoiesis and HbF
induction, which needs to be further investigated, if the
molecular mechanism that delineate human hemoglobin
switching is to be better defined and genome-based stratifica-
tion of β-type hemoglobinopathy patients for HU treatment is
to become reality. Notably, not all genomic loci that have been
reported to increase HbF levels could be considered as phar-
macogenomic biomarkers of HU treatment efficacy, as the
clinical features in question, albeit related, are likely controlled
by different molecular mechanisms. These findings, in con-
junction to previous work conducted by our group and others,
hold promise for the identification of pharmacogenomic bio-
marker for HbF-augmenting therapy, requiring carefully
designed prospective clinical studies conducted by large multi-
center consortia that include experienced clinicians and
researchers from major clinical and academic centers.
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