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Introduction

Sleep apnea is one of the most frequent chronic disease affecting one billion people worldwide and associated with cardiometabolic comorbidities and an increased risk of mortality [START_REF] Lévy | Obstructive sleep apnoea syndrome[END_REF] [START_REF] Benjafield | Estimation of the global prevalence and burden of obstructive sleep apnoea: a literature-based analysis[END_REF]. It is characterized by the occurrence of frequent and abnormally distributed episodes of stoppage (apnea) or significant reduction (hypopnea) of respiratory airflow lasting at least ten seconds [START_REF] Mannarino | Obstructive sleep apnea syndrome[END_REF].

Complete (apneas) or partial (hypopneas) airflow reduction occur during sleep ended by micro-arousals producing sleep fragmentation. The nature of the events can be obstructive (pharyngeal collapses) and is then characterized by the preservation of thoracic and abdominal movements. Airflow cessation or reduction can also be of central origin, characterized by a reduction of respiratory centers drive and is associated with the absence of thoracic and abdominal movements [START_REF] De Groote | Detection of obstructive apnea events in sleeping infants from thoracoabdominal movements[END_REF]. Hypopnea is defined by a partial airflow reduction (30% or 50% depending on the scoring rules) of more than 10 seconds, followed by a micro-arousal or an oxygen desaturation of at least 3%.

The severity of SAS is assessed by the Apnea-Hypopnea Index (AHI), which is the number of abnormal respiratory events per hour of sleep or recording, according to the following criteria [START_REF] Billiard | Les troubles du sommeil[END_REF]:

• AHI less than 5: absence of the syndrome • AHI between 5 and 15: mild syndrome • AHI between 15 and 30: moderate to severe syndrome • AHI greater than 30: severe syndrome Polysomnography (PSG) is the gold standard method used in sleep laboratories or at home, for the reference diagnosis of sleep disorders, including SAS. It is a multi-parametric assessment, which simultaneously records data from several channels such as electroencephalography (EEG), electrocardiography (ECG), airflow, oxygen saturation and respiratory movements measured by Respiratory Inductance Plethysmography (RIP) [START_REF] Bloch | Polysomnography: A systematic review[END_REF]. For the diagnosis of SAS, PSG recordings are manually scored to quantify the Apnea-Hyponea Index (AHI). This is time consuming and requires human expertise with a preferential use of airflow measured by a nasal cannula, thoracic and abdominal respiratory movements (RIP) and oxygen saturation to score and characterize apneas and hypopneas.

Considering the high prevalence and burden of sleep apnea [START_REF] Benjafield | Estimation of the global prevalence and burden of obstructive sleep apnoea: a literature-based analysis[END_REF], the current diagnosis tools are inappropriate to face the size of the problem. In laboratory, PSG is a complex and costly diagnostic process, with long waiting lists with inequalities in access to care [START_REF] Punjabi | The Epidemiology of Adult Obstructive Sleep Apnea[END_REF]. These long waiting lists are due to the congestion of sleep centers and the long and specialized time required to score polysomnographic recordings.

In this context, in recent years, several studies have proposed the use of machine learning or deep learning methods for the automatic detection and scoring of sleep apnea ( [START_REF] Varon | A Novel Algorithm for the Automatic Detection of Sleep Apnea from Single-Lead ECG[END_REF], [START_REF] Song | An Obstructive Sleep Apnea Detection Approach Using a Discriminative Hidden Markov Model From ECG Signals[END_REF], [START_REF] Li | A method to detect sleep apnea based on deep neural network and hidden Markov model using singlelead ECG signal[END_REF], [START_REF] Mostafa | SpO2 based sleep apnea detection using deep learning[END_REF], [START_REF] Nikkonen | Artificial neural network analysis of the oxygen saturation signal enables accurate diagnostics of sleep apnea[END_REF] and [START_REF] Almazaydeh | A Neural Network System for Detection of Obstructive Sleep Apnea through SpO2 Signal[END_REF]). The study [START_REF] Almazaydeh | A Neural Network System for Detection of Obstructive Sleep Apnea through SpO2 Signal[END_REF], for example, proposed the use of a neural network model using oxygen saturation features for the detection of positive SAS patients and showed an accuracy of 93.3%. However, a high proportion of these studies used the same database for feeding their models (Physionet Apnea-ECG Database [START_REF] Penzel | The apneaECG database[END_REF]). In addition, several devices for sleep apnea screening have also been proposed in the recent years in order to facilitate the screening process such as the WatchPAT TM developed by Itamar Medical LTD [START_REF] Garg | Home-based Diagnosis of Obstructive Sleep Apnea in an Urban Population[END_REF], the ApneaLink TM , developed by ResMed [START_REF] Nigro | Comparison of the automatic analysis versus the manual scoring from ApneaLink device for the diagnosis of obstructive sleep apnoea syndrome[END_REF] or the HealthPatch TM developed by VitalConnect [START_REF] Selvaraj | Automated prediction of the Apnea-Hypopnea Index using a wireless patch sensor[END_REF]. The validation of HealthPatch TM proposed by Nandakumar Selvaraj and Ravi Narasimhan in 2015 showed promising results of classification of subjects with an AHI > 15 with an accuracy of 89.4% using an integrated system combining one accelerometer and an ECG lead in a specific hardware solution supported by a machine learning approach.

In the present study, we proposed the use of accelerometry-derived respiratory index (ADR) system composed of two accelerometers patched on the subject's chest. The use of accelerometry in sleep monitoring had been suggested, for example in [START_REF] Morillo | An accelerometer-based device for sleep apnea screening[END_REF], [START_REF] Bucklin | An inexpensive accelerometer-based sleep-apnea screening technique[END_REF] or [START_REF] Sweeney | Identification of sleep apnea events using Discrete Wavelet Transform of respiration, ECG and accelerometer signals[END_REF]. This kind of system could help to reduce the sensors congestion and facilitate the screening process and the conditions of use. However, none of these studies gave access to an airflow estimation which is of major interest in SAS detection.

The solution proposed in this study included an airflow estimation algorithm based on the thoracic and abdominal efforts measured by the two accelerometers. This algorithm has already been validated during sleep period without abnormal events in our previous study [START_REF] Bricout | Adaptive Accelerometry Derived Respiration: Comparison with Respiratory Inductance Plethysmography during Sleep[END_REF] and results demonstrated the good feasibility of the use of an adaptive ADR method for respiration monitoring in this context.

The present paper is then the logical continuation of [START_REF] Bricout | Adaptive Accelerometry Derived Respiration: Comparison with Respiratory Inductance Plethysmography during Sleep[END_REF] by proposing a pathophysiological validation of this ADR technology in patients referred for SAS suspicion. The aim is to use a machine learning approach for the validation of the proposed device by evaluating its ability to detect abnormal events using specific and explanatory physiological features. These features have first been extracted and tested on an airflow signal from the nasal cannula, the gold-standard sensor for airflow monitoring in PSG. An automatic AHI estimation based on a classification model has then been implemented. Several inputs from PSG were used in addition to the ADR system in order to validate this approach in a polysomnographic context and compare ADR to the reference nasal cannula.

Materials and Methods

Sleep Study Data Acquisition

A sleep study protocol was considered and included 28and untreated volunteer SAS subjects at the sleep laboratory of Grenoble University Hospital for an overnight polysomnography. They provided written information consent and the study was approved by the relevant ethics committee (CHU Grenoble Alpes). The AHI had a range of 1.4 -74.8 and a mean ± standard-deviation of 14.6±12.2. The BMI had a mean value ± standard-deviation of 25.5±4.8 kg/m².

Subjects were equipped with classical complete PSG system and an ADR accelerometry system. The Deltamed 32-channel PSG system (EEG Brainbox 1042, Natus, Pleasanton, California, USA) was used to collect the standard PSG data at a sampling frequency of 256Hz. Among PSG signals, thorax and abdomen cross sectional area changes (noted RIPTHO and RIPABD) were recorded thanks to Respiratory Inductance Plethysmography (RIP). Nasal airflow (noted AIRFLOWPSG) was measured by the nasal cannula, cardiac activity (noted ECG) was measured by an electrocardiogram, and oxygen saturation (noted SpO2) was measured by a finger pulse oximeter. The ADR system consisted in two accelerometers (STMicroelectronics, LIS344ALH, 3 axes, Analog), placed on the thorax and on the abdomen of the subject. Accelerometers data noted [X,Y,Z]THO and [X,Y,Z]ABD were synchronously collected with the PSG data at 256Hz (imposed by the Natus system).

The data processing included then the succession of several steps as illustrated in Fig 1 and described in the sections below. All developments were implemented in Matlab (Mathworks, R2018b).

Data Labeling

After data acquisition, a first step of formatting and data labeling was applied. Annotations scored by a unique sleep expert for each recording allowed the extraction of the start time, the end time and the type of every abnormal events (obstructive sleep apneas and hypopneas, mixed and central sleep apneas).

Overnight recordings were segmented into different epoch durations (noted EpochDuration) of 60, 150 or 300 seconds. Every epoch was then labeled depending of the absence (negative) or presence (positive) of at least one abnormal event inside the window or a ubiquitous event with at least 50% of its duration inside the considered epoch, as illustrated in Fig 2 . The value of 60 seconds is based on the important amount of studies using 60s segmentation epoch, in particular those using Physionet Apnea-ECG Database [START_REF] Penzel | The apneaECG database[END_REF]. The value of 150 seconds is based on the validation study of the HealthPatch TM [START_REF] Selvaraj | Automated prediction of the Apnea-Hypopnea Index using a wireless patch sensor[END_REF]. The value of 300 seconds is based on a physiological assumption that Heart-Rate Variability (HRV) features are relevant when extracted from at least 5 minutes' window [START_REF]Task Force of the European Society of Cardiologyandthe North American Society of Pacing and Electrophysiology[END_REF]. Furthermore, sleep respiratory events are annotated by experts using 5 minutes' window

Preprocessing

Each signal of interest (called input in the following) was preprocessed to make them suitable for machine

Data Labeling Preprocessing Features Extraction

Features Engineering (2), as described in detail in [START_REF] Bricout | Adaptive Accelerometry Derived Respiration: Comparison with Respiratory Inductance Plethysmography during Sleep[END_REF]. A Principal Component Analysis (PCA) of [X,Y,Z]THO and [X,Y,Z]ABD was computed to calculate the column eigenvector [μTHO βTHO γTHO] (resp. [μABD βABD γABD] ) that explains the majority of the variance on each compartment.

LOOCV Training

AHI Calculation

= . + . + . (1) = . + . + . (2) 
A volume estimation VADR (resp. VRIP) was estimated using a linear combination of thoracic and abdominal efforts (resp. thoracic and abdominal cross-sectional variation changes) such as described in ( 3) and ( 4) [START_REF] Eberhard | Comparison between the respiratory inductance plethysmography signal derivative and the airflow signal[END_REF].

= τ. + . (3) = τ. + . (4) 
α and τ were set to 2 and 1 such as proposed in [START_REF] Carry | Evaluation of Respiratory Inductive Plethysmography: Accuracy for Analysis of Respiratory Waveforms[END_REF]. AIRFLOWADR and AIRFLOWRIP were then computed as the derivate of VADR and VRIP respectively.

On the other hand, ECG was band-pass filtered between 5Hz and 30Hz to remove artefacts and physiological noises. Two inputs were extracted from ECG signal. The first was the 4Hz interpolated signal of RR intervals (noted RRI) and the second was the 4Hz interpolated signal of QRS amplitude (noted QRSAMP) such as recommended in [START_REF]Task Force of the European Society of Cardiologyandthe North American Society of Pacing and Electrophysiology[END_REF] and described in [START_REF] Singh | Sampling frequency of the RR-interval time-series for spectral analysis of the heart rate variability[END_REF]. QRS complexes were detected using the Pan and Tompkins algorithm [START_REF] Pan | A real-time QRS detection algorithm[END_REF] [START_REF] Sedghamiz | Matlab Implementation of Pan Tompkins ECG QRS detector[END_REF].

After preprocessing, the inputs available, proposed in the model and used for features engineering, were AIRFLOWPSG (resp. AIRFLOWADR, AIRFLOWRIP), SpO2, RRI and QRSAMP.

Features extraction and Features engineering

Specific features were extracted from each input in every epoch. Table 1, Table 2, Table 3 and Table 4 enumerate the features extracted from respiratory inputs [START_REF] Selvaraj | Automated prediction of the Apnea-Hypopnea Index using a wireless patch sensor[END_REF] (AIRFLOWPSG, AIRFLOWADR, and AIRFLOWRIP), from RRI [START_REF] Selvaraj | Automated prediction of the Apnea-Hypopnea Index using a wireless patch sensor[END_REF], from QRSAMP [START_REF] Selvaraj | Automated prediction of the Apnea-Hypopnea Index using a wireless patch sensor[END_REF] and from SpO2 [START_REF] Xie | Real-Time Sleep Apnea Detection by Classifier Combination[END_REF] respectively. Features were then normalized for each subject. The number of occurrences that SpO2 level declines at least x below the baseline and lasts at least y seconds Neighborhood Components Analysis (NCA) [START_REF] Goldberger | Neighbourhood components analysis[END_REF] was implemented using a stochastic gradient descent to calculate the weight of every features used for the classification.

As shown in Table 1, three respiratory features (NPRate, ERate and VarDispMetric) were specifically developed in order to increase the physiological meaning of the model and improve the sensitivity and specificity of the detection.

Since ventilation is defined as a pseudo-periodic phenomenon, the detection of abnormal events could be therefore based on the evaluation of the non-periodicity of the signal. For that purpose, the respiratory signals were segmented into window of 20s with an overlap of 90%. In each window, a Normalized Auto-Correlation (NAC) was calculated such as described in [START_REF] Tiago | Augmentative Communication Based on Realtime Vocal Cord Vibration Detection[END_REF] for acoustic signals. The amplitude of the NAC lag zero is considered as reference. The first local maximum of the NAC in positive lags side in the window was detected and compared to the reference. If it was higher than 80% of the lag zero amplitude, the window was considered as periodic such as illustrated in Fig 3 .c), for a negative 20swindow (without abnormal events). On the contrary, if lower than 80%, the window was considered as nonperiodic, such as illustrated in As mentioned in the introduction, abnormal events are defined as an airflow reduction that leads to a local diminution of the energy contained in the signal. In each 20sec-window, the energy of the signal (noted E) was calculated as the first sample of the Normalized Auto-Correlation signal as already mentioned above. If the energy is lower than an empiric threshold (0.2 such as illustrated in Fig 4 ), the window was considered as abnormal. ERate was therefore defined as the rate of window with low energy variance during the epoch. 

Classification and AHI Calulcation

Detection of positive epochs using LOOCV

Training and classification were performed using a Leave-One-Out Cross Validation (LOOCV) approach. On one iteration, twenty-seven subjects were considered for training and the model was tested on the remaineing subject to detect positive epochs i.e. epoch with least one abnormal event. Positive Epoch per Hour (PEHEST) were then calculated for each subject as the number of positive epochs out of the time of sleep provided by sleep expert scoring. Several classifiers were implemented and tested (such as Support Vectors Machine using Linear, Polynomial and Gaussian approach or Linear Discriminant Analysis) but RUSBoosted Trees (Random Undersamplig) [START_REF] Seiffert | RUSBoost: A Hybrid Approach to Alleviating Class Imbalance[END_REF] was the classifier with the best approach in terms of class imbalance management, computing time and classification performance.

AHI Estimation

After the calculation of PEHEST, a regression method was used such as proposed in [START_REF] Selvaraj | Automated prediction of the Apnea-Hypopnea Index using a wireless patch sensor[END_REF]. The regression rule & '()*+$,-. was then applied to PEHEST in order to calculate AHIEST.

Performance evaluation

Several performance indicators were proposed in order to evaluate the detection of positive epochs and therefore the screening of sleep apnea syndrome based on a AHI higher than 15. This threshold was chosen to separate subjects with no syndrome or a mild syndrome (13 subjects over the 28 subjects of the database) from subjects with a moderate or severe syndrome (15 subjects over the 28 subjects of the database).

The first indicator was the mean F1-Score ± standard deviation for each subject for the performance of the detection of positive epochs, such as defined in [START_REF] Billiard | Les troubles du sommeil[END_REF] where the Recall is defined in [START_REF] Varon | A Novel Algorithm for the Automatic Detection of Sleep Apnea from Single-Lead ECG[END_REF] and Precision in [START_REF] Li | A method to detect sleep apnea based on deep neural network and hidden Markov model using singlelead ECG signal[END_REF]. The higher the F1-Score, the better the performance. 

The second indicator was the mean Bias ± standard deviation between the estimated AHI and AHI from PSG for each subject, such as defined in [START_REF] Bloch | Polysomnography: A systematic review[END_REF]. The closer the bias is to 0, the higher the performance.

>8;89 = # $% 1 # '$ (6)
The following indicators were the accuracy, sensitivity and specificity, extracted from the screening confusion matrix, such as illustrated in Fig 7 . These three indicators also reflected the performance of the estimation of AHIEST in comparison to AHIPSG. Accuracy (Acc), Sensitivity or Recall (Sen) and Specificity (Spe) were calculated such as defined in ( 7), ( 8) and ( 9) respectively. The Precision was calculated for the measure of the F1-Score such as defined in [START_REF] Li | A method to detect sleep apnea based on deep neural network and hidden Markov model using singlelead ECG signal[END_REF].

=

@ + @A @ + @A + 0 + 0A [START_REF] Punjabi | The Epidemiology of Adult Obstructive Sleep Apnea[END_REF] 26: = @ @ + 0A (= 63;<<) 2D6 = @A @A + 0 [START_REF] Song | An Obstructive Sleep Apnea Detection Approach Using a Discriminative Hidden Markov Model From ECG Signals[END_REF] 5638984: = @ @ + 0 [START_REF] Li | A method to detect sleep apnea based on deep neural network and hidden Markov model using singlelead ECG signal[END_REF] Performance was first evaluated using features from PSG inputs, i.e. AIRFLOWPSG, SpO2, RRI and QRSAMP (called CONFPSG) and with the various sizes of epochs.

Then, the same configuration was considered but AIRFLOWPSG from nasal cannula was replaced AIRFLOWADR (resp. AIRFLOWRIP), called CONFADR (CONFRIP respectively) and the performances of these 3 configurations were compared to validate the use of the ADR index in a polysomnography context for a screening approach. Results were also compared to previous works.

Results

Several classification parameters such as the number of learning cycle, learning rate and misclassification cost were optimized for the CONFPSG in order to get the best model performance and these parameters were then used for CONFRIP and CONFADR.

Determination of epoch size

Table 6 presents the results and performance indicators for CONFPSG, CONFADR and CONFRIP depending on EpochSize. Overall, results showed that 300s was the best epoch size compared to 60s and 150s achieving an accuracy for the screening classification of 100% for CONFPSG and 89% for CONFRIP and CONFADR. Bias analysis showed that 300s was also the best epoch choice, lower than approximately five events per hour compare to 60s for the CONFPSG and CONFRIP and two events per hour for CONFADR. For the three configurations, with 300s epoch size, F1-Score was approximately 8 to 10% higher than 60s epoch size and 2 to 4% higher than 150s epoch size.

Peformance comparison for ADR and RIP

The results showed that performance of CONFADR and CONFRIP decrease by approximately 10% in terms of screening accuracy, specificity and sensitivity compared to CONFPSG. However, the results were still satisfying for a screening approach, with accuracy, sensitivity and specificity higher than 85%. The comparison between ADR and RIP showed a performance in the same range of results whether in terms of bias, F1-Score or screening performance, which suggested the interchangeability between the two measurement techniques in a polysomnography context. statistical distribution of the signal. The higher the Kurtosis, the higher the probability of abnormal presence.

Features engineering analysis

Furthermore, an AHI estimation on 300s epoch using CONFPSG without the three ventilatory specific features (NPRate, ERate and VarDispMetric) had been implemented to evaluate the value of these features in the classification process. The results this evaluation are presented in Fig 9.

A decrease of 11% in the AHI estimation accuracy was observed without these features. Specificity also dropped from 100% to 85% such as sensitivity that dropped from 100% to 93%.

These features could therefore be meaningful and relevant for improving model performance and distinguishing positive from negative epochs.

Performance comparison with previous works

The performance comparison is presented in Table 7. The best performance results for CONGPSG and CONFADR were compared to previous works in the literature. Several studies or devices that proposed an automatic approach for SAS screening approach were listed. This non-exhaustive selection focused on the diversity of the database, the inputs and the classification methods.

The results obtained in [START_REF] Song | An Obstructive Sleep Apnea Detection Approach Using a Discriminative Hidden Markov Model From ECG Signals[END_REF] and [START_REF] Li | A method to detect sleep apnea based on deep neural network and hidden Markov model using singlelead ECG signal[END_REF] showed great screening performance using classifier on ECG signals. However, their works used the Apnea-ECG Database, although of high quality, where two folds out three do not have apnea segments. The work presented in [START_REF] Ravelo-García | Oxygen Saturation and RR Intervals Feature Selection for Sleep Apnea Detection[END_REF] used multimodality by using SpO2 and ECG features and introduced the notion of model explanation. The limitations of their work are the absence of subjects with an AHI between 5 and 10 and the absence of respiratory features, which could be problematic in case of patients with cardiac disorders where specific HRV features could then be irrelevant. The studies presented in [START_REF] Hwang | Unconstrained Sleep Apnea Monitoring Using Polyvinylidene Fluoride Film-Based Sensor[END_REF], [START_REF] Jobin | Predictive value of automated oxygen saturation analysis for the diagnosis and treatment of obstructive sleep apnoea in a home-based setting[END_REF], [START_REF] Nigro | Validation of the WristOx 3100™ oximeter for the diagnosis of sleep apnea/hypopnea syndrome[END_REF] and [START_REF] Garg | Home-based Diagnosis of Obstructive Sleep Apnea in an Urban Population[END_REF] evaluated screening devices using different approaches such as SpO2 or PAT (Peripheral Arterial Tone). The approach used for apnea segment detection was necessarily based on machine learning but it was interesting to observe that the results presented in the present study were in the same range than these devices. Finally, our ADR solution using specific physiological features and a machine learning approach showed similar performance results for AHI estimation than the HealthPatch TM [START_REF] Selvaraj | Automated prediction of the Apnea-Hypopnea Index using a wireless patch sensor[END_REF].

Study

Discussion

Overnight physiological monitoring with an adaptive chest Accelerometry-Derived Respiratory index (ADR) technology using a machine learning approach provided an accurate estimate of the Apnea-Hyponea Index (AHI).

Such a screening tool is clinically relevant in comparison to the reference PSG configuration (PSG signals used in the model) and performs in the same range of accuracy than a configuration using an airflow estimation using RIP.

It is important to notice that overnight PSG data were collected in a supervised environment and sleep nurses often had to put RIP bands or nasal cannula back in place when they observed noisy signals or loss of signal. During the whole data collection, neither the thoracic nor the abdominal accelerometer had to be put back in place, which is a real advantage in terms of usage.

To our knowledge, it is the first time that a system using both a thoracic accelerometer and an abdominal accelerometer and proposing an airflow estimation is used for AHI estimation and SAS detection. It shows that an adaptive ADR system can be used at-home for SAS screening. Also, the use of alternative signals such as ADR could help reduce the failure rate of at home PSG when nasal cannula or RIP signals are unusable. Furthermore, this approach of using classical PSG signals in a machine learning process continues to promote what could be a very promising solution of semi-automatic PSG analysis and could reduce consequently the scoring time for sleep expert by detecting positive epochs with apnea events.

This study also showed that adding features built on an explanatory physiological approach has a real interest in improving classification performance. This could facilitate the physician adhesion to an automatic approach using machine learning.

At this level of validation, our model allowed to measure the AHI regardless of the type and origin of the event(s) within the 300-second segment. However, our design choices based on the use of a double thoracic and abdominal accelerometry could allow us to distinguish between the different respiratory event type. This will be one focus for our future research.

A limitation of our study is therefore the small dimension of our database. Even if it was rather well distributed in term of AHI, another clinical study has to be carried out on more subjects, in order to evaluate the reproducibility of the measure and to increase the statistical dimension.
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 12 Figure 1: Data processing flow chart

  Fig 3.f) for a positive 20swindow. NPRate was therefore defined as the rate of nonperiodic windows during the epoch. The NPRate for the negative epoch in Fig 3.a) was 0% and for the positive epoch in Fig 3.d) was 62.5%. Indeed, in positive epoch, periodic windows could be found during ventilatory recovery after abnormal events.

  Fig 4.b) shows the E calculated in every 20s-window during negative epoch, resulting in an ERate of 0%. On the contrary, Fig 4.d) shows the E calculated in every 20swindow during positive epoch, resulting in an ERate of 81%. VarDispMetric was the variance of the dispersion metric (DispMetric) calculated in every 20s-window during the epoch such as illustrated in Fig 5.

  Fig 5.b) shows the DispMetric calculated in every 20s-windows in a negative epoch, resulting in a relatively low VarDispMetric of 0.008. On the contrary, Fig 5.d) shows the DispMetric calculated in every 20s-windows in a negative epoch, resulting in a relatively high VarDispMetric of 0.18.
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 354 Figure 3: Illustration of the Non-Periodic Window Rate feature (NPRate): a) Airflow of a negative epoch (NPRate = 0%) with an example in a periodic 20s-window b) where the NAC with peak detection c) was performed. d) Airflow of a positive epoch (NPRate = 62.5%) with an example in a non-periodic 20s-window e) where the NAC f) was performed and the peak detection failed.

  Using the reference number of positive epoch per hour according to expert annotations from PSG recordings (PEHPSG) and the reference AHI provided by the experts (AHIPSG), a regression model was identified for each epoch size ()*+$,-. ( /# $% ), where & '()*+$,-. is the regression rule as illustrated in Fig 6.
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 76 Figure 7: Screening confusion matrix

Fig 8

 8 Fig 8 presents the features weight after NCA using CONFPSG for an epoch size of 300s. Features from AIRFLOWPSG and SpO2 carried the highest weight for classification compared to features extracted from ECG. More specifically, the features with the highest weight (> 50% of the maximum weight) were NPRate (2): Non-Periodic windows Rate, LempZC (4) : Lempel-Ziv complexity, ODI25 (5): number of occurrences that SpO2 level declines at least 2% below the baseline and lasts at least 5 seconds and VarDispMetric (3): Variance of the Dispersion Metric calculated in every window during the epoch. Kurtosis (1) is a measure of the flattening of the

Figure 8 :

 8 Figure 8: Features weight analysis using NCA for CONFPSG (EpochSize = 300s). 1: Kurtosis, 2: NPRate, 3: VarDispMetric, 4: LempZC, 5: ODI25, were the features with the highest weight.

Figure 9 :

 9 Figure 9: Results comparison between CONFPSG using all features and CONFPSG without the ventilatory specific features (NPRate, ERate and VarDispMetric) for a 300s epoch size.

  

Table 1 .

 1 Features extracted from AIRFLOW inputs per epoch[START_REF] Selvaraj | Automated prediction of the Apnea-Hypopnea Index using a wireless patch sensor[END_REF]. Features with * are new propositions explained in detail in the text

	Feature Name	Feature Description
	Median	Median of epoch input samples
	Std	Standard-deviation of epoch input samples
	CoeffVar	Coefficient variation of epoch input samples
	MeanAD	Mean absolute deviation of epoch input samples
	MedianAD	Median absolute deviation of epoch input samples
	Kurtosis	Kurtosis of epoch input samples
	Iqr	Interquartile range of epoch input samples
	DispMetric	Dispersion metric of epoch input samples
	VLF	Very Low Frequency power below 0.04Hz
	LF	Low Frequency power between 0.04 -0.15Hz range
	HF	High Frequency power between 0.15 -0.40Hz range
	LF/HF	Low Frequency / High Frequency ratio
	SpecKurtosis	Spectral Kurtosis
	RR	Respiratory rate (Number of respiratory cycles / minute)
	NPRate*	Rate of Non-Periodic 20s-windows rate during the epoch.
	ERate*	Rate of 20s-windows with low energy during the epoch
	VarDispMetric*	Variance of the dispersion metric in every 20s-window during the epoch

Table 2 .

 2 Features extracted from RRI[START_REF] Selvaraj | Automated prediction of the Apnea-Hypopnea Index using a wireless patch sensor[END_REF] 

	Feature Name	Feature Description
	HR	Heart rate (Number of cardiac cycles / minute)
	SDSD	Standard deviation of successive differences
	SDNN	Standard deviation of NN intervals
	RMSSD	Root mean square of successive differences
	pNN50	Probability of intervals greater or smaller than 50ms
	TRI	Triangular index from the interval histogram
	TINN	Triangular Interpolation of NN intervals
	AppEn	Approximate Entropy
	pLF	Percentage of Low Frequency power
	PHF	Percentage of High Frequency power
	VLF	Very Low Frequency power below 0.04Hz
	LF	Low Frequency power between 0.04 -0.15Hz range
	HF	High Frequency power between 0.15 -0.40Hz range
	LF/HF	Low Frequency / High Frequency ratio

Table 3 .

 3 Features extracted from QRS[START_REF] Selvaraj | Automated prediction of the Apnea-Hypopnea Index using a wireless patch sensor[END_REF] 

	Feature Name	Feature Description
	Median	Median of epoch input samples
	Std	Standard-deviation of epoch input samples
	CoeffVar	Coefficient variation of epoch input samples
	MeanAD	Mean absolute deviation of epoch input samples
	MedianAD	Median absolute deviation of epoch input samples
	Kurtosis	Kurtosis of epoch input samples
	Iqr	Interquartile range of epoch input samples
	DispMetric	Dispersion metric of epoch input samples
	AppEn	Approximate Entropy
	SampEn	Sample Entropy
	VLF	Very Low Frequency power below 0.04Hz
	LF	Low Frequency power between 0.04 -0.15Hz range
	HF	High Frequency power between 0.15 -0.40Hz range
	LF/HF	Low Frequency / High Frequency ratio
	SpecKurtosis	Spectral Kurtosis

Table 4 .

 4 Features extracted from SpO2 inputs[START_REF] Xie | Real-Time Sleep Apnea Detection by Classifier Combination[END_REF] 

	Feature Name	Feature Description
	Min	Minimum of epoch SpO2 samples
	Mean	Mean value of epoch SpO2 samples
	Variance	Variance of epoch SpO2 samples
	NumZC	Zero-Crossing Rate using Mean as baseline
	Slope	Slope of the regression line fitted for epoch SpO2 samples
	AbsSlope	Absolute value of Slope
	Delta Index	Delta Index
	TSA70, TSA80, TSA85, TSA90, TSA95	Accumulative time that SpO2 level stays below 70, 80, 85, 90, 95
	ODIS2, ODIS3, ODIS4, ODIS5	The total number of SpO2 samples that fall at least 2, 3, 4, 5 below the Mean as Baseline
	AppEn	Approximate entropy

Table 6 .

 6 Classification and AHI estimation results

	Configuration	Epoch Size (s) F1-Score (%)	Bias	Acc (%)	Sen (%)	Spe (%)
		60	64 ± 17	-7.15 ± 8.41	82	100	62
	CONFPSG	150	72 ± 16	-3.10 ± 8.88	93	100	85
		300	74 ± 17	-1.27 ±	100	100	100
		60	59 ± 18	-5.04 ± 10.49	79	87	69
	CONFADR	150	67 ± 19	-0.99 ± 9.46	86	87	85
		300	69 ± 18	3.47 ± 9.77	89	80	100
		60	61 ± 18	-7.20 ± 9.00	82	100	62
	CONFRIP	150	69 ± 18	-0.85 ± 7.75	89	93	85
		300	69 ± 19	1.64 ± 11.55	89	87	92

Table 7 .

 7 Performance comparison with previous work (-stands for absence of data / information)

		Database Effective	Input signals	Screening Threshold	Classifier	Acc (%)	Sen (%)	Spe (%)
	[9]	Apnea-ECG	70	ECG	AHI > 5	SVM -HMM	97.1	95.8	100
	[33]	Apnea-ECG	70	ECG	AHI > 5	NN -HMM	100	100	100
	[32]	Own	70	SpO2 ECG	AHI > 10	LDA	100	100	100
	[34]	Own	32	PVDF	AHI > 5	-	96.2	100	91.7
	[35]	Own	94	SpO2	AHI > 15	-	81	63	96
	[36]	Own	154	SpO2	AHI > 15	-	-	88	90
	[15]	Own	75	PAT	AHI > 15	-	-	92	77
	[17]	Own	53	ECG 1x Acc	AHI >15	SVM	89.4	78.6	93.9
	Proposed	Own	28	CONFPSG CONFADR	AHI > 15	RUS Boosted Tree	100 89	100 80	100 100

PVDF: Polyvinylidene Film-Based Sensor; PAT: Peripheral Arterial Tone; HMM: Hidden Markov Model; NN: Neural Network; Acc: Accelerometer
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