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Mean-Field Homogenization of Time-Evolving
Microstructures with Viscoelastic Phases:
Application to a Simplified Micromechanical

Model of Hydrating Cement Paste

Julien Sanahuja, Ph.D.1; and Shun Huang2

Abstract: Homogenization of random media is a widely used practical and efficient tool to estimate the effective mechanical behavior 
of composite materials. However, when the microstructure evolves with respect to time, due to phase transformations, care should be taken 
when upscaling behaviors that themselves involve time, such as viscoelasticity. A natural assumption is to consider that the influence of 
microstructure evolution is negligible once the material is macroscopically loaded: it allows one to take advantage of the correspondence 
principle when the phases are nonaging linear viscoelastic. A new approach is proposed to overcome this limitation, building an equivalent 
composite replacing transforming phases by fictitious aging viscoelastic phases. This equivalent composite has a constant microstructure but 
is made up of aging linear viscoelastic phases. Its effective behavior can then be estimated taking advantage of recent approaches to homog-

enize such behaviors. Applications to cement paste are proposed, referring to a simplified morphological model. In particular, the approxi-
mation introduced when neglecting microstructure evolution is investigated. Qualitatively, compliance functions from evolving 
microstructure are found to be closer to the experimental ones. 

Author keywords: Homogenization; Phase transformations; Evolving microstructure; Aging viscoelasticity; Cement paste; Basic creep.

Introduction

Some materials, such as concrete, exhibit a strong evolution of

their microstructure along their life. During hydration of concrete,

dissolution of anhydrous and precipitation of hydrates occur simul-

taneously, albeit more and more slowly. Evolution also occurs

when concrete is exposed to ambient conditions, leading, for ex-

ample, to leaching or carbonation. In all these cases, microstructure

evolution is a key information to bridge the gap between physico-

chemical processes occurring at smaller scales and macroscopic

properties and behavior of materials. Considering microstructure

evolution is thus especially critical to build less empirical behavior

laws.

Homogenization techniques are widely used to upscale the

mechanical behavior of composite materials with constant micro-

structure. When microstructure evolves, elasticity can still be up-

scaled, straightforwardly working on snapshots of microstructure at

given times (Bernard et al. 2003; Constantinides and Ulm 2004;

Pichler et al. 2009; Sanahuja et al. 2007). However, care has to

be taken for time-dependent elementary behaviors, such as nonag-

ing linear viscoelasticity. Indeed, time appears in both morpho-

logical evolutions and behaviors of elementary phases. A common

assumption is then to consider that microstructure does not evolve

any more once the macroscopic loading has been applied (Le

et al. 2007; Sanahuja et al. 2009; Gu et al. 2012; Smilauer and

Bažant 2010). This allows for the reuse of the well-known corre-

spondence principle (Mandel 1966), suitable for constant micro-

structures made up of nonaging linear viscoelastic phases. For

cementitious materials, this approach is clearly restricted to load-

ings at late ages, once hydration is almost stabilized and assuming

the absence of other mechanisms inducing microstructure changes.

To overcome this limitation, new approaches have been proposed.

As far as full-field homogenization is concerned, as the microstruc-

ture is explicitly described, its evolution can be taken into account

by time-stepping methods. Using as input the time-evolving micro-

structure of a cement paste modeled as voxels, Li et al. (2015a, b)

used a dedicated finite-element code to compute the overall re-

sponse to given macroscopic strain paths. Microstructure evolution

was explicitly taken into account through dissolution and precipi-

tation of voxels. As far as mean-field homogenization is concerned,

Scheiner and Hellmich (2009) considered that during an infinitesi-

mal time interval, microstructure evolves negligibly and estimated

the effective creep rate of the evolving microstructure by the rate

derived on the current microstructure, but subsequently kept con-

stant, so that the correspondence principle can be used.

These approaches, numerical or semianalytical, to homogenize

time-dependent microstructures whose phase behaviors are visco-

elastic, are based on time-stepping algorithms and give the response

to a specific loading path. A new simulation needs to be performed

for each loading path investigated. This paper proposes an alterna-

tive, semianalytical approach, to estimate the effective aging visco-

elastic behavior, fully characterized by the compliance or relaxation

tensors as functions of two time variables. This has recently been

made possible thanks to a micromechanical extension (Sanahuja

2014; Sanahuja and Di Ciaccio 2015) of Bažant solidification

theory (Bažant 1977, 1979; Bažant and Prasannan 1989; Carol
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and Bažant 1993) and to mean-field homogenization of aging linear

viscoelastic behaviors (Sanahuja 2013; Lavergne et al. 2016).

These developments have recently been applied to cementitious

materials (Honorio et al. 2016).

The approach proposed in this paper is general and could be

applied to any composite material undergoing phase transforma-

tions (dissolution, precipitation, or conversion from solid to solid)

that induce microstructure evolution. This microstructure evolution

is assumed to be independent of the local stresses or strains. In

other words, this evolution is known in advance. The application

proposed in this paper is restricted to aging basic creep of a cement

paste due to hydration, as aging basic creep is an important feature

of concrete behavior (Briffaut et al. 2012).

The paper is organized as follows. First, a time-evolving

morphological model of hydrating cement paste is proposed.

Anhydrous, hydrates, and capillary pores are considered, and a

description of their spatial distribution as a function of time is

proposed. This model is clearly a simplification of the genuine

complexity of cement paste microstructure, but it allows for the

illustration of developments presented in the next sections without

unnecessary technical complications. Then, phases are considered

as elastic, which allows for performing classic homogenization on

snapshots of microstructure. Basics of mean-field homogenization

in elasticity are recalled for the sake of completeness, and the ef-

fective Young’s modulus of cement paste is estimated as a function

of both the water-to-cement ratio and the hydration degree. Ana-

lyzing these results, limitations of the chosen simplified morpho-

logical model are pointed out, especially regarding prediction of

setting. The last two sections are devoted to nonaging linear vis-

coelastic phases. First, the microstructure is considered as frozen

(i.e., it does not evolve any more) once the macroscopic loading

step has been applied. This allows for taking advantage of the cor-

respondence principle, and the approach is recalled for the sake of

completeness. However, applicability to cement pastes is restricted

to late age loadings as in this case, hydration can be considered as

nearly stabilized. The last section constitutes the main originality of

the paper. The complete evolution of microstructure is considered,

combining micromechanical extensions of Bažant solidification

theory and aging linear viscoelastic mean-field homogenization.

Eventually, several prospects are proposed to improve application

of this new aging approach to cement pastes.

Simplified Evolving Morphological Model for
Hydrating Cement Paste

The microstructure of cement pastes is made up of more than 10

phases (Lothenbach and Winnefeld 2006) categorized as either

anhydrous, hydrates, or additives. Moreover, the morphology of hy-

drated phases, and especially of the main one for portland cements,

calcium silicate hydrates (C-S-H), is highly complex [see Richardson

(2000), Diamond (2004), Juenger et al. (2003), and Lothenbach

et al. (2011), to name a few references]. This morphology is difficult

to both observe and model. Addressing the question of microstruc-

ture of cement pastes and its evolution, is out of scope of this paper.

Thus, a simplified point of view is adopted here: both anhydrous

and hydrates are not detailed but considered as single phases. In other

words, only three phases coexist: anhydrous (subscript a), hydrates

(subscript h), and capillary porosity (subscript p). As the drained

behavior is sought, capillary water is disregarded.

The aim of this paper is to propose a mean-field homogenization

method to take into account microstructure evolution. The three-

phases composition is simple enough to present the approach with-

out unnecessary technical complications.

Volume Fractions Evolution: Hydration Model

During hydration, as a function of time, anhydrous progressively

dissolve and hydrates precipitate. The well-known Powers model

(Powers and Brownyard 1946) is adopted to estimate the volume

fractions as functions of the hydration degree α (defined as the

amount of anhydrous that has reacted over the amount of initial

anhydrous)

faðαÞ ¼
0.32ð1 − αÞ

w=cþ 0.32
; fhðαÞ ¼

0.68α

w=cþ 0.32
; and

fpðαÞ ¼
w=c − 0.36α

w=cþ 0.32
ð1Þ

where w=c = water-to-cement mass ratio. An empirical kinetic

model is adopted to relate the hydration degree to time

αðtÞ ¼
ðt=τ kinÞ

nkin

1þ ðt=τkinÞ
nkin

αmax; where αmax ¼ min

�

w=c

0.42
,1

�

ð2Þ

where τkin and nkin = kinetics characteristic time and exponent.

The theoretical maximum reachable hydration degree αmax is also

estimated from the Powers model.

The volume fractions evolution is plotted in Fig. 1, for w=c ¼
0.5 and nkin ¼ 4. As expected, the amount of anhydrous decreases

with time, and the capillary porosity also decreases, as hydration is

a space-filling process (the volume of hydrates produced is higher

than the volume of anhydrous consumed).

A crude approximation of hydration and kinetics is adopted here

for the sake of simplicity. More advanced models can be used, as

drop-in replacements, as soon as they provide volume fractions of

phases as a function of time.

Morphological Model and Its Evolution during
Hydration

The volume fractions evolution being modeled, the next question to

address regards the spatial distribution of the phases, that is the mor-

phology of the composite material. The cement paste is described at

any given time as a polycrystal-like assemblage. Each cell of the

latter is thus occupied by either anhydrous, hydrates, or capillary

porosity. Although simplified, this morphological model is rather

commonly encountered (Bernard et al. 2003; Stefan et al. 2010).

The evolution of this morphology now needs to be described.

The volume of hydrates produced during an increment of time

being higher than the volume of consumed anhydrous, the former

is split in two subvolumes:

• One part directly replaces the dissolved anhydrous; and

• The other part precipitates into capillary porosity.

Fig. 1. Evolution of cumulative volume fractions of anhydrous,

hydrates, and pores (nkin ¼ 4, w=c ¼ 0.5)
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the first part is assumed to occupy the same volume as left by dis-

solved anhydrous, and the second part complements the first one,

up to the total amount of hydrates produced. At the scale of

cement paste, these phase transformations are assumed to affect

random cells. At the scale of the individual cell, these transfor-

mations are assumed to occur instantly, so that each cell is homo-

geneous at any given time. A schematic representation of this

evolving morphological model is depicted in Fig. 2.

Effective Elastic Stiffness of Evolving
Microstructure

In this section, the phases’ behavior is restricted to linear elasticity.

As the elastic behavior does not involve time, it is straightforward

to estimate, at any given time, the effective stiffness of the com-

posite material, from a snapshot of its morphology. The latter being

constant, usual homogenization procedures can be used. The basic

principle is briefly recalled here; for more details see, for example,

Zaoui (2002) and Dormieux et al. (2006).

Introduction to Mean-Field Homogenization in
Elasticity

The general case of a n phases composite is considered in this sub-

section. Phase i occupies the domain ΩiðtÞ, which depends on time

t due to the evolving nature of the morphology. The volume frac-

tion and stiffness tensor of phase i are respectively denoted by fiðtÞ
and Ci.

At any given time u (different notation from t, to emphasize

that u is a given parameter), the set of equations to solve on the

representative elementary volume (REV) Ω, with kinetic uniform

boundary conditions (macroscopic strain E), is

εðxÞ ¼ grads½ξðxÞ�; x ∈ Ω ð3Þ

div½σðxÞ� ¼ 0; x ∈ Ω

σðxÞ ¼ Cðx; uÞ∶εðxÞ; x ∈ Ω

ξðxÞ ¼ E · x; x ∈ ∂Ω

where gradsðÞ = symmetric part of gradient, and the local stiffness

is defined by

Cðx; tÞ ¼
X

n

i¼1

Ciχiðx; tÞ ð4Þ

where χiðx; tÞ = characteristic function of phase i: χiðx; tÞ ¼ 1

when x ∈ ΩiðtÞ, and 0 otherwise.

Considering a snapshot of the evolving microstructure, that is at

a fixed u, the homogenization problem Eq. (3) is the same as a

classic one with constant microstructure. The linear nature of

the homogenization problem Eq. (3) with respect to the loading

parameter E allows one to define the so-called strain localization

tensor Au, relating the microscopic to the macroscopic strain

εðxÞ ¼ AuðxÞ∶E ð5Þ

the subscript indicates that Au depends on u through the current

morphology at this time. The effective stiffness then derives from

the application of the local behavior and from spatially averaging

the microscopic stress to get the macroscopic stress

C
effðuÞ ¼ hCðx; uÞ∶AuðxÞi ¼

X

n

i¼1

fiðuÞCi∶hAuðxÞiΩiðuÞ
ð6Þ

where hi respectively hiΩiðuÞ
denoting the spatial average over Ω

respectively ΩiðuÞ. The effective stiffness C
eff depends on u

through volume fractions fi, phase domains Ωi, and the localiza-

tion tensor field Au.

Self-Consistent Scheme for Cement Paste

The morphology being assumed as polycrystalline at any given

time, the self-consistent scheme (Budiansky 1965; Hill 1965) is

the most adequate one to estimate the effective stiffness of cement

paste, from the current volume fractions of anhydrous, hydrates,

and pores. The behavior of these phases is assumed to be isotropic,

with bulk and shear moduli ki, gi for phase i ∈ fa; h;pg. The
derivation of the self-consistent scheme, with three families of

spherical particles, is recalled here for the sake of completeness.

The dependencies on the current time u are omitted to lighten

notations.

The average strain in each phase i is estimated as the strain

arising in a sphere made up of the same phase, embedded in an

infinite medium characterized by the sought effective stiffness

CSC, with kinematic uniform (E0) boundary conditions (Fig. 3).

This is an Eshelby inhomogeneity problem (Eshelby 1957), whose

solution is

hεii ¼ A
SC
i ∶E0 with A

SC
i ¼ ½Iþ P

sph
SC ∶ðCi − CSCÞ�

−1 ð7Þ

Fig. 2. Schematic two-dimensional representation of the evolving microstructure considered to model cement paste (w=c ¼ 0.6)

Fig. 3. Auxiliary problems to solve to implement the self-consistent

scheme; anhydrous, hydrates, and pore space being represented by

spherical shapes
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where A
SC
i = strain localization tensor on a sphere of stiffness

Ci embedded into an infinite medium of stiffness CSC. It involves

the Hill tensor P
sph
SC of a sphere in a medium of stiffness CSC. As

both the elementary phases and the morphology are isotropic, the

effective stiffness is expected to be isotropic. Consequently, the Hill

tensor is also isotropic. It is also the case for the strain localization

tensor, which can be written as ASC
i ¼ ASC

iJ Jþ ASC
iKK, with

ASC
iJ ¼

�

1þ
3kSC

3kSC þ 4gSC

ki − kSC

kSC

�

−1

ð8Þ

ASC
iK ¼

�

1þ
6

5

kSC þ 2gSC

3kSC þ 4gSC

gi − gSC

gSC

�

−1

where kSC and gSC = effective bulk and shear moduli.

The average strain in the whole REV is the weighted average of

the average strains in each phase

E ¼ hεi ¼
X

i∈fa;h;pg

fihεiΩi
ð9Þ

the average stress in the whole REV can be written in a similar way,

and eliminating the reference strain E0 from the average stress and

strain yields the implicit expression of the effective stiffness as

estimated from the self-consistent scheme

CSC ¼

�

X

i∈fa;h;pg

fiCi∶A
SC
i

�

∶

�

X

i∈fa;h;pg

fiA
SC
i

�

−1

ð10Þ

the latter is a nonlinear equation on the effective stiffness CSC, as

the strain localization tensor A
SC
i itself depends on the latter

through Eq. (8). This tensorial equation only involves isotropic ten-

sors. It can thus be projected on J and K to yield a system of two

nonlinear equations on the effective bulk and shear moduli

kSC ¼

P

i∈fa;h;pg fikiA
SC
iJ

P

i∈fa;h;pg fiA
SC
iJ

and gSC ¼

P

i∈fa;h;pg figiA
SC
iK

P

i∈fa;h;pg fiA
SC
iK

ð11Þ

Evolution of Elasticity of Cement Paste

Two kinds of input data are required in Eq. (11): the current

values of the volume fractions fi and the bulk and shear moduli

ki, gi. Volume fractions are provided by the Powers model in

Eq. (1). The elementary phases’ elastic properties come from

nano-indentation measurements (Velez et al. 2001; Velez and

Sorrentino 2001) and are gathered in Table 1. The effective Young’s

modulus of hydrating cement paste is plotted as a function of the

degree of hydration for various w=c ratios in Fig. 4(a).

As expected, the effective Young’s modulus of paste increases

with the hydration degree, and is higher for lower w=c ratios.

Moreover, the micromechanical model is able to describe the

setting mechanism: below a critical degree of hydration αc, the ef-

fective stiffness is 0, and for α ≥ αc, it increases from 0. This

feature comes from a well-known property of the underlying self-

consistent scheme: to get a solid effective behavior, the total solid

volume fraction fa þ fh has to reach 1=2. This condition can be

translated to the expression of the critical degree of hydration as a

function of the w=c ratio, referring to the Powers model in Eq. (1)

αc ¼
w=c − 0.32

0.72
ð12Þ

Discussion on the Critical Degree of Hydration

The setting degree of hydration can be difficult to directly measure

experimentally, due to difficulties to perform classical mechani-

cal tests on cementitious materials at very early ages. Torrenti and

Benboudjema (2005) proposed an approach to estimate it, from

compressive strength measurements for various hydration degrees,

reported by Taplin (1959) and Byfors (1980). Namely, the strength

dependence with respect to the hydration degree is approximated

by an affine function, whose intersection with the 0-strength axis

provides an estimate of the setting hydration degree. However,

this estimate can be considered as an upper bound, as a few data

points indicate nonzero strength (a couple of MPa) for hydration

degrees lower than this estimate. Thus, at early age, strength does

not increase with respect to the hydration degree according to an

affine law, but rather in a smoother way, according to a concave

upward curve. Indeed, Pichler et al. (2009) reported experimental

(a) (b)

Fig. 4. (a) Effective Young’s modulus of cement paste, estimated as a function of hydration degree for various w=c ratios; (b) critical degree of

hydration, at setting, estimated from this model and experimentally

Table 1. Material and Kinetics Parameters Used in Applications

Phase E (GPa) ν τ=τkin νv nkin

Anhydrous [135, (Velez et al. 2001)] [0.3, (Velez et al. 2001)] N/A N/A —

Hydrates [31, (Velez and Sorrentino 2001)] [0.24, (Velez and Sorrentino 2001)] 3 0.2 4

Capillary pores 0 N/A N/A N/A —
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setting degrees of hydration from Boumiz et al. (1996) and Sun

et al. (2005), which are much lower than those from Torrenti and

Benboudjema (2005).

This is further confirmed by more recent experimental works.

Still regarding compressive strength, Pichler et al. (2013) measured

a few MPa for a w=c ¼ 0.42 paste at α≈ 0.1. Classical mechanical

tests can only, by nature, be performed on already set samples.

To overcome this limitation, Azenha et al. (2010) developed the

elasticity modulus measurement based on ambient response

method (EMM-ARM) technique, which allows one to continuously

monitor the Young’s modulus of cementitious materials, from the

fluid state. This technique has been used to estimate the setting time

of cement pastes (Maia et al. 2012a), and combined with estimates

of the degree of hydration through chemical shrinkage measure-

ments (Maia et al. 2012b), to relate the Young’s modulus to the

hydration degree. Nonzero stiffness (E≈ 0.2 GPa) has been mea-

sured for hydration degrees as low as α≈ 0.05 on pastes prepared

with w=c ratios ranging between 0.4 and 0.5.

These experimental results allow for assessing the critical hydra-

tion degree estimated by the morphological model adopted here,

and to highlight its limitations [Fig. 4(b): experimental results from

Torrenti and Benboudjema (2005) and Pichler et al. (2009) are

reported using respectively, þ and × dots]:

• Instantaneous setting (at α ¼ 0, before even starting hydration)

occurs for w=c < 0.32; in this case the initial volume fraction of

anhydrous is higher than 1=2. This limitation has already been

pointed out by Bernard et al. (2003);

• At w=c > 0.35, the setting degree of hydration is overestimated,

and at w=c ¼ 0.5 it happens to correspond to the upper bound

proposed by Torrenti and Benboudjema (2005); and

• The predicted stiffness evolution does not follow a concave

upward curve just after setting.

these limitations mainly come from the simplified nature of the

adopted morphological model.

Discussion on the Morphological Model

The aim of this paper is to propose a mean-field homogenization

approach to estimate the effective aging viscoelastic behavior of

time-evolving microstructures. To focus on the presentation of

the approach rather than on technical complications, the morpho-

logical model has been deliberately chosen as a simplistic represen-

tation of cement pastes. Future works include improvements of this

microstructure description. A few possibilities are recalled here,

based on cement paste morphological models that have proven

realistic enough to provide relevant estimates of other effective

mechanical properties, such as stiffness, strength, and (nonaging)

creep.

From the proposed model, which considers spherical particles

and every phase at the same scale, several improvements are

possible:

• Considering nonspherical shapes for hydrate particles, such

as needles (Stora et al. 2006; Pichler et al. 2009; Pichler and

Hellmich 2011; Pichler et al. 2013; Termkhajornkit et al. 2014)

or platelets (Stora et al. 2006; Sanahuja et al. 2007). As shown

on stiffness predictions (Pichler et al. 2009), considering C-S-H

solid particles as needles (prolates of infinite aspect ratio) al-

lowed to predict αc ¼ 0 for w=c > 0.32, thus underestimating

the critical hydration degree rather than overestimating it (case

of spherical particles). Still, for w=c < 0.32, these models pre-

dict a positive Young’s modulus even before starting hydration

(α ¼ 0).

• Considering a multiscale microstructure, that is introducing

a scale separation between C-S-H particles and clinker grains

(and possibly other hydrate particles such as portlandite)

(Constantinides and Ulm 2004; Stora et al. 2006; Sanahuja et al.

2007; Pichler and Hellmich 2011; Gu et al. 2012; Pichler et al.

2013; Termkhajornkit et al. 2014). Combined with aspherical

C-S-H solid particles, this allowed one to overcome the instan-

taneous setting [Eðα ¼ 0Þ > 0], irrespective of the w=c ratio

(Pichler and Hellmich 2011; Sanahuja et al. 2007) and to get

a Young’s modulus evolution starting with upward concavity

(Pichler and Hellmich 2011). Furthermore, considering hydrate

particles as oblates (Sanahuja et al. 2007) or prolates (Sanahuja

et al. 2008) of finite aspect ratio allowed to predict a nonzero

critical hydration degree, whose dependence on w=c is parame-

trized by the particles aspect ratio. Still, the onset of Young’s

modulus evolution is rather affine, but this can be improved

considering a multiscale pore space in the hydrates matrix

(Sanahuja et al. 2007).

• Considering two types of C-S-H, namely high-density and low-

density, either homogenized to provide a matrix embedding

cement grains (Constantinides and Ulm 2004) or respectively

considered as inner (surrounding cement grains) and outer pro-

ducts (acting as a matrix embedding cement grains surrounded

by inner products) (Sanahuja et al. 2007).

Going back to the scope of this paper, as the adopted model is

not able to predict a concave upward onset of Young’s modulus, its

αc predictions are still compared to the experimental estimates of

Torrenti and Benboudjema (2005) [see þ dots in Fig. 4(b)]. At

w=c≈ 0.5, both approaches happen to be consistent: viscoelastic

simulations will focus on this specific water-to-cement ratio.

Effective Viscoelastic Behavior of Evolving
Microstructure: “Frozen Microstructure”
Approximation

The phases behavior is now considered as nonaging linear visco-

elastic. Contrary to the elastic case, this behavior now involves

time. Upscaling is no longer as straightforward as considering a

snapshot of the microstructure at a given time and performing

homogenization on this snapshot. As the domains occupied by

phases evolve with respect to time, a specific procedure will be

proposed in the next section.

For now, a usual simplification [see Le et al. (2007), Sanahuja

et al. (2009), and Gu et al. (2012) for mean-field homogenization or

Smilauer and Bažant (2010) for full-field homogenization] is taken

advantage of: to estimate the effective response of the evolving

composite, the microstructure is considered as frozen once the

strain step has been applied. As microstructure becomes constant,

classical homogenization of nonaging linear viscoelastic behaviors

can be taken advantage of. The latter is briefly recalled in the next

subsection.

Introduction to Nonaging Linear Viscoelasticity
Homogenization of Constant Microstructures

In this subsection, the REV is considered to be made up of n non-

aging linear viscoelastic phases, without any evolution of its micro-

structure. The set of equations to solve on the REV, with kinetic

uniform boundary conditions [macroscopic strain EðtÞ, now de-

pending on time], is

εðx; tÞ ¼ grads½ξðx; tÞ�; x ∈ Ω ð13Þ

div½σðx; tÞ� ¼ 0; x ∈ Ω

5



σðx; tÞ ¼

Z

t

t 0¼−∞

Cðx; t − t 0Þ∶dεðx; t 0Þ; x ∈ Ω

ξðx; tÞ ¼ EðtÞ · x; x ∈ ∂Ω

where the local relaxation tensor is defined by

Cðx; t − t 0Þ ¼
X

n

i¼1

Ciðt − t 0ÞχiðxÞ ð14Þ

where χiðxÞ = characteristic function of phase i.

The classic approach to solve this problem is to take advantage

of the correspondence principle (Mandel 1966): The Laplace-

Carson transform changes nonaging linear viscoelastic behav-

iors into elastic ones. The Laplace-Carson transform of function

fðtÞ is f⋆ðpÞ ¼ pLfðpÞ with the Laplace transform LfðpÞ ¼
∫∞
−∞

fðtÞe−ptdt.
Applying the Laplace-Carson transform to the set of Eq. (13)

yields, taking advantage of the main properties of this transform

(linearity and transformation of convolutions into products)

ε
⋆ðx;pÞ ¼ grads½ξ⋆ðx;pÞ�; x ∈ Ω ð15Þ

div½σ⋆ðx;pÞ� ¼ 0; x ∈ Ω

σ
⋆ðx;pÞ ¼ C

⋆ðx;pÞ∶ε⋆ðx;pÞ; x ∈ Ω

ξ⋆ðx;pÞ ¼ E
⋆ðpÞ · x; x ∈ ∂Ω

and where the Laplace-Carson transform of the local relaxation

tensor is

C
⋆ðx;pÞ ¼

X

n

i¼1

C
⋆
i ðpÞχiðxÞ ð16Þ

for each value of the Laplace variable p, in the Laplace-Carson

domain, this problem is equivalent to the elastic one in Eq. (3).

Consequently, estimates from elastic homogenization schemes

can be directly reused, formally replacing stiffness tensors by the

Laplace-Carson transforms of the relaxation tensors. This yields the

effective relaxation tensor in the Laplace-Carson domain C
eff⋆ðpÞ.

The effective nonaging relaxation tensor in the time domain CeffðtÞ
is then obtained by inversion of the Laplace transform. The latter

can be performed analytically only in the simplest cases (in terms of

both morphology and phase behaviors). In the general case, inver-

sion can be performed numerically, for example using the Stehfest

algorithm (Abate and Whitt 2006; Gaver 1966; Stehfest 1970)

fðtÞ≈
ln 2

t

X

2M

k¼1

ζkLf

�

k
ln 2

t

�

ð17Þ

with the weights

ζk ¼
ð−1ÞMþk

M!

X

minðk;MÞ

j¼floor½ðkþ1Þ=2�

jMþ1

�

M

j

��

2j

j

��

j

k − j

�

ð18Þ

where floorðxÞ = floor function, giving the highest integer lower or

equal to x; and

�

n

k

�

= binomial coefficient. Further computations

are performed with M ¼ 10, which has been found to be a good

compromise with respect to the accuracy required for evaluation in

the Laplace domain of the function to be inverted.

“Frozen Microstructure” Homogenization

The evolving microstructure with nonaging linear viscoelastic

phases is now considered. The “frozen microstructure” simplifica-

tion consists in assuming that microstructure does not evolve any

more after a given time u. The average stress response to a macro-

scopic strain starting at time u is sought. The macroscopic strain E

is thus equal to 0 for t < u. The microscopic strain and stress fields

are then also equal to 0 for t < u. The frozen microstructure

assumption can be expressed as: for t ≥ u, ΩiðtÞ ¼ ΩiðuÞ. Conse-
quently, the relaxation tensor field across the REV can be written as

Cðx; t − t 0Þ ¼
X

n

i¼1

Ciðt − t 0Þχiðx; uÞ for t ≥ t 0 ≥ u ð19Þ

u being fixed, this local relaxation tensor has the same expression

as Eq. (14). As εðtÞ ¼ σðtÞ ¼ 0 for t < u, the fact that the micro-

structure still evolves for t < u does not matter. In other words,

Eqs. (13) and (14) still apply here, quantities starting to be non-0

from time u instead of from time 0.

The homogenization process, using the correspondence princi-

ple, as recalled previously, can then be taken advantage of to es-

timate the nonaging effective stiffness tensor Ceff;frozen
u ðt − uÞ. The

latter has been indexed by u to emphasize the fact that it depends on

the given time u through the phases’ distribution at time u. Repeat-

ing this process for various values of u yields approximations of the

effective relaxation and compliance tensors, as

C
effðt; uÞ≈ C

eff;frozen
u ðt − uÞ and S

effðt; uÞ≈ S
eff;frozen
u ðt − uÞ

ð20Þ

where S
eff;frozen
u = inverse of Ceff;frozen

u in the sense of nonaging

linear viscoelasticity. This inversion can be straightforwardly

performed in the Laplace-Carson domain. Note that one nonaging

linear viscoelastic homogenization computation is required per

value of u.

Application to the Self-Consistent Scheme for Cement
Paste

At a given time u, the morphology of the cement paste is charac-

terized by the volume fractions fiðuÞ. As previously recalled, the

equations on the effective bulk and shear moduli established in

elasticity in Eq. (11) can be reused here, replacing elastic moduli

by Laplace-Carson transforms of the nonaging linear viscoelastic

relaxation functions

k⋆SCðpÞ ¼

P

i∈fa;h;pg fiðuÞk
⋆
i ðpÞA

SC⋆
iJ ðpÞ

P

i∈fa;h;pg fiðuÞA
SC⋆
iJ ðpÞ

ð21Þ

g⋆SCðpÞ ¼

P

i∈fa;h;pg fiðuÞg
⋆
i ðpÞA

SC⋆
iK ðpÞ

P

i∈fa;h;pg fiðuÞA
SC⋆
iK ðpÞ

note that as u = fixed parameter; andfiðuÞ = constant that is not

affected by the Laplace-Carson transform. The components of

the strain localization tensor are obtained similarly from Eq. (8)

ASC⋆
iJ ðpÞ ¼

�

1þ
3k⋆SCðpÞ

3k⋆SCðpÞ þ 4g⋆SCðpÞ

k⋆i ðpÞ − k⋆SCðpÞ

k⋆SCðpÞ

�

−1

ð22Þ

ASC⋆
iK ðpÞ ¼

�

1þ
6

5

k⋆SCðpÞ þ 2g⋆SCðpÞ

3k⋆SCðpÞ þ 4g⋆SCðpÞ

g⋆i ðpÞ − g⋆SCðpÞ

g⋆SCðpÞ

�

−1

6



resolution of Eq. (21) and Laplace-Carson inversion yield the

nonaging effective bulk kSC;frozenu ðt − uÞ and shear gSC;frozenu ðt − uÞ
relaxation functions of the frozen microstructure when t > u.

Repeating the process for various times u allows for deriving

approximations of the aging bulk and shear relaxation and compli-

ance functions, as in Eq. (20).

“Frozen Microstructure” Approximation of Effective
Creep of Cement Paste

The elementary behavior of anhydrous is elastic. For the sake

of simplicity, both bulk and shear behaviors of hydrates are

represented by the Maxwell model (hydrates’ viscoelastic behavior

is discussed in the next subsection)

ChðtÞ ¼ 3khðtÞJþ 2ghðtÞK ð23Þ

with the bulk and shear relaxation functions

khðtÞ ¼ khe
−kht=ηhHðtÞ and ghðtÞ ¼ ghe

−ght=γhHðtÞ ð24Þ

where H = Heaviside function. The constants kh, gh, respectively.

ηh, γh are the bulk and shear stiffness respectively. viscosities. This

behavior can be alternatively defined from the elastic Young’s

modulus Eh and Poisson ratio νh and from the viscous character-

istic time τh and Poisson ratio νvh

kh ¼
Eh

3ð1 − 2νhÞ
; gh ¼

Eh

2ð1þ νhÞ
;

ηh ¼
τhEh

3ð1 − 2νvhÞ
; γh ¼

τhEh

2ð1þ νvhÞ
ð25Þ

the Laplace-Carson transform of Eq. (24) yields the bulk and shear

relaxations in the Laplace-Carson domain

k⋆hðpÞ ¼
1

1=khþ 1=ðηhpÞ
and g⋆hðpÞ ¼

1

1=ghþ 1=ðγhpÞ
ð26Þ

numerical values of material parameters are gathered in Table 1;

the viscous characteristics of hydrates are arbitrarily chosen for

this preliminary application. Times are scaled by the kinetics char-

acteristic time τkin.

The effective uniaxial compliance functions, obtained for vari-

ous loading times u, are plotted in Fig. 5 as plain lines. The evo-

lution of the initial elastic strain, obtained as the inverse of the

effective Young’s modulus (see section dedicated to elasticity), is

also plotted as a dotted line. The latter is consistent with the

effective uniaxial compliance functions.

Taking into account the particular microstructure at the loading

time u allows for the derivation of an aging effective behavior.

However, the latter is approximate as microstructure is assumed

to be frozen for t ≥ u. To evaluate the amount of approximation

induced by this assumption, microstructure evolution is completely

taken into account in the last section.

Discussion on Hydrates Elementary Viscoelastic
Behavior

For the sake of simplicity, hydrates’ elementary viscoelastic behav-

ior has been represented by a Maxwell model. However, any non-

aging linear viscoelastic behavior can be used, provided that the

relaxation moduli are known in the Laplace-Carson domain. Re-

garding the relevant behavior to use, it can be derived following

a bottom-up approach, taking advantage of micromechanics, start-

ing from the creep mechanism at the microscale or nano-scale.

Consensus on the latter seems not to be reached yet, and many hy-

potheses can be found in the literature (Bažant 2001), among which

are transfers between capillary and adsorbed water (Wittmann

1982), water transfers to newly created microcracks (Rossi et al.

2012), and viscous sliding between C-S-H sheets (Tamtsia and

Beaudoin 2000). Discussing the relevance of these micromechan-

isms is way beyond the scope of this paper.

Still, if the viscous sliding mechanism is chosen, recent works

would allow for estimating the appropriate nonaging linear visco-

elastic behavior to use at the hydrates’ scale (instead of the simpli-

fied Maxwell model considered in this paper):

• Considering that C-S-H solid particles are made up of a stack of

elementary sheets sliding one onto the other, with a Maxwell

behavior, the effective bulk and shear creep functions of a por-

ous gel made up of such particles can be estimated from a self-

consistent scheme (Sanahuja and Dormieux 2010). The asymp-

totic behavior (finite strain or asymptotic strain rate) is found to

be dependent on both porosity and aspect ratio of solid particles.

• Considering viscous sliding surfaces embedded into an elastic

matrix, Shahidi et al. (2014) derived the effective viscoelastic

behavior of such a material. Equivalent stiffness and viscosities

of simple rheological models have also been derived as func-

tions of the matrix stiffness and interfaces viscosity, size, and

density (Shahidi et al. 2016). Then, Eq. (26) can be replaced by

the latter.

Alternatively, the hydrates’ viscoelastic behavior can be iden-

tified following a top-down approach, taking advantage of ex-

perimental data at the cement paste scale. Indeed, classical basic

creep tests on cement pastes provide the compliance of cement

paste when loaded at a given age, see, for example, Tamtsia and

Beaudoin (2000), Tamtsia et al. (2004), and Le Roy (1995). The

appropriate hydrate behavior can then be back-analyzed using a

micromechanical model [see Sanahuja et al. (2009) where the slid-

ing characteristic time of C-S-H sheets has been fit on cement paste

creep measurements from Le Roy (1995)]. However, these classical

tests only provide the compliance function at a given loading age.

More precisely, one sample and one test are required for each

loading age, prohibiting extensive characterization of aging creep.

Recently, Irfan-ul-Hassan et al. (2016) proposed a new technique to

characterize the aging viscoelastic behavior of cement pastes

from short creep tests repeated on the same sample. Parameters

of a power-law creep function are calibrated on experimental

results and are given as a function of either time or hydration

Fig. 5. Plain lines: effective uniaxial compliance functions of cement

paste, approximated from frozen microstructure, plotted for various

stress loading times u (w=c ¼ 0.5); dotted line: initial elastic strain

estimated from elasticity homogenization
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degree. These results could be back-analyzed to estimate the

elementary behavior of hydrates.

Effective Viscoelastic Behavior of Evolving
Microstructure: Taking into Account the
Complete Evolution

The aim of this section is to propose an approach that does not rely

on a frozen microstructure, that is, to consider the complete evo-

lution of microstructure as the composite material is loaded. For the

sake of simplicity, the approach is not illustrated on a generic n

phases composite, but directly on cement paste.

Homogenization of Evolving Microstructure with
Viscoelastic Phases

As microstructure evolves with respect to time, classic homogeni-

zation of random media (such as the correspondence principle with

the Laplace-Carson transform) cannot be straightforwardly used

in the framework of viscoelasticity. Still, the solidification theory

from Bažant (1977, 1979), Bažant and Prasannan (1989), and Carol

and Bažant (1993) represents a promising source of inspiration, as

it allows for deriving the effective aging linear viscoelastic behav-

ior arising from the progressive precipitation of parallel layers of

nonaging viscoelastic material. To be applied to cement paste, this

theory needs to be extended in two directions:

• To consider more general precipitation mechanisms than the

parallel arrangement of layers; and

• To also consider the solid (anhydrous) to solid (hydrates) phase

transformation.

in this subsection, no particular morphology of the cement paste is

assumed.

Instead of considering a snapshot of the evolving morphology at

a given time t, the phase transformations occurring at a point x of

the cement paste REV are investigated. As described in the first

section, dedicated to morphology, depending on the position of this

point, one of these transformations can occur:

• Material at this point stays anhydrous;

• Transformation from anhydrous to hydrates (solid-to-solid

transformation);

• Transformation from pore space to hydrates (precipitation); and

• Material at this point stays as pore space.

the subdomains affected by these transformations are respectively

denoted by Ωa→a, Ωa→h, Ωp→h, and Ωp→p; they constitute a par-

tition of the REV Ω. The idea of the proposed extension of

Bažant solidification theory is to affect an equivalent aging linear

viscoelastic behavior to each point in the REV. In the subdomain

Ωa→h, the field ta→hðxÞ is introduced to represent the time at which

transformation from anhydrous to hydrates occurs at point x.

This field is supposed to be known as it can be derived from

the description of the evolving morphology. The field tp→hðxÞ is
similarly defined as the precipitation time at x in Ωp→h.

In Ωp→h, precipitation occurs. As in Bažant solidification

theory, hydrates are assumed to precipitate in a zero-stress state.

The equivalent mechanical behavior at point x is identified through

the stress response to strain steps starting at various times

[Fig. 6(a)].

If the strain step occurs before precipitation time tp→hðxÞ,
the point x behaves as pore space: stress stays at 0 even after pre-

cipitation, as hydrates are assumed to precipitate in a stress-free

state. If the strain step occurs after precipitation time, the nonaging

viscoelastic behavior of hydrates is obviously retrieved. Thus, the

equivalent aging behavior is a tensorial generalization of the one

that can be used for one layer of Bažant’s solidifying composite

Cp→hðx; t; t
0Þ ¼ Chðt − t 0ÞH½t 0 − tp→hðxÞ� ð27Þ

here, the hydrate behavior is nonaging linear viscoelastic

[relaxation Chðt − t 0Þ], but note that no technical reason limits

the approach to nonaging behaviors.

In Ωa→h, a solid (anhydrous)-to-solid (hydrates) transformation

occurs. This dissolution-precipitation process has not been consid-

ered by the original Bažant solidification theory. As adopted by Li

et al. (2015b) for full-field simulations of cement paste creep, a

quasi-instant phase transform process is assumed, involving disso-

lution shortly followed by precipitation. That is, anhydrous are first

dissolved, then, after a short time, hydrates precipitate to occupy

the domain left by anhydrous. This short time separating dissolu-

tion and precipitation is assumed to be negligible with respect to

other characteristic times of the model (related to global hydration

kinetics and to the hydrates viscoelastic behavior). As the volume

of hydrates replacing anhydrous is here assumed to be equal to the

volume of dissolved anhydrous (the complement volume precipi-

tating in pore space), hydrates are considered to precipitate in a

zero-stress state. This is clearly a simplifying assumption; in reality,

hydrates precipitating in place of anhydrous may be subjected to

stress, as crystals growing in pores (Scherer 1999) and due to con-

finement effects related to the expansive nature of the transforma-

tion from anhydrous to hydrates (Scherer 2004). Also, the current

stress state may affect both dissolution (Correns 1949) and precipi-

tation (Avramov 2007) processes and their kinetics. These effects

(growing hydrates subjected to stress and influence of the stress

state on dissolution and precipitation processes) are neglected in

this simplified first approach and constitute sources of improve-

ment for future works.

If the strain step occurs before dissolution-precipitation time

ta→hðxÞ, the stress is first equal to the elastic stress (stiffness Ca)

in the anhydrous phase, then drops to 0 at transformation time, as

anhydrous are dissolved and, shortly after, replaced by hydrates

that precipitate in a zero-stress state [Fig. 6(b)]. If the strain

step occurs after dissolution-precipitation time, the nonaging

(a) (b)

Fig. 6. Definition of equivalent aging linear viscoelastic behavior to represent (a) precipitation and (b) dissolution-precipitation phase transformation

processes occurring at a given time, through stress responses to strain steps starting before or after transformation time
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viscoelastic behavior of hydrates is obviously retrieved. The ficti-

tious aging relaxation tensor is thus completely defined from these

relaxation tests

Ca→hðx; t; t
0Þ ¼ CaHðt − t 0ÞH½ta→hðxÞ − t�H½ta→hðxÞ − t 0�

þ Chðt − t 0ÞH½t 0 − ta→hðxÞ� ð28Þ

Thus, an equivalent composite is built, affecting to each point x

a fictitious aging viscoelastic behavior equivalent to the behavior at

the same point x in the real composite undergoing microstructure

evolution

Cðx; t; t 0Þ ¼

8

>

>

>

>

<

>

>

>

>

:

CaHðt − t 0Þ; x ∈ Ωa→a

Ca→hðx; t; t
0Þ; x ∈ Ωa→h

Cp→hðx; t; t
0Þ; x ∈ Ωp→h

0; x ∈ Ωp→p

ð29Þ

the equivalent composite has a constant microstructure, and

its microscopic behavior is aging linear viscoelastic. The constant

nature of microstructure now allows for taking advantage of mean-

field homogenization. Still, in Ωa→h and Ωp→h, the relaxation ten-

sor continuously depends on position x, through the transformation

time. As this prevents homogenization, it is necessary to replace

this continuum by a finite number of phases. The idea is to gather

points into equal-volume subdomains, according to their transfor-

mation times.

The proposed approach is illustrated on Ωp→h. Fig. 7 shows the

volume fraction evolution of hydrates precipitating into pore space,

as a plain line. The dashed line shows the discretized volume frac-

tion of hydrates precipitating considered with N ¼ 3 subdomains.

The subdomain Ωi
p→h; i ¼ 1; : : : ;N contains the points precipitat-

ing during the time interval corresponding to fmax
p→hði − 1Þ=N ≤

fp→hðtÞ < fmax
p→hi=N, where fmax

p→h is the maximum, final value

of fp→hðtÞ over the time interval of the entire simulation. The dis-

cretization consists in considering that this whole subdomain pre-

cipitates at time tip→h such that fp→hðt
i
p→hÞ ¼ fmax

p→hði − 1=2Þ=N.

The same process is repeated to subdivide the domain Ωa→h into N

subdomains Ωi
a→h.

Thus, the equivalent composite is subdivided into 2N þ 2

phases:

• One phase for Ωa→a;

• N phases for Ωi
a→h; i ¼ 1 : : :N;

• N phases for Ωi
p→h; i ¼ 1 : : :N; and

• One phase for Ωp→p.

the phases associated to Ωa→a and Ωp→p are also qualified as ficti-

tious so that the 2N þ 2 phases of the equivalent composite can be

collectively described as fictitious phases. The effective behavior of

this multiphasic equivalent composite is expected, when N →∞,

to converge towards the effective behavior of the continuous equiv-

alent composite. The latter has the same local behavior, at any point

x, as the evolving composite.

The multiphasic equivalent composite, having a constant micro-

structure, can now be homogenized, taking advantage of recent

approaches to upscale aging linear viscoelastic behaviors.

Introduction to Homogenization of Aging Linear
Viscoelastic Composites

Among the recent approaches (Ricaud and Masson 2009; Masson

et al. 2012; Sanahuja 2013) to homogenize aging linear viscoelastic

composites, Sanahuja (2013) is flexible enough to directly use as

inputs the fictitious behaviors introduced to represent phase trans-

formations [relaxation tensors in Eqs. (27) and (28)].

The morphology of the equivalent composite suggests resorting

to a self-consistent scheme to homogenize its 2N þ 2 fictitious

phases, using spherical shapes. Only the main expressions, useful

for implementation, are reproduced here; for more details see

Sanahuja (2013).

The homogenization problem to solve is the same as Eq. (13),

except that the microscopic behavior is now aging linear

viscoelastic

σðx; tÞ ¼

Z

t

t 0¼−∞

Cðx; t; t 0Þ∶dεðx; t 0Þ ð30Þ

where the relaxation tensor field is homogeneous per fictitious

phase

Cðx; t; t 0Þ ¼
X

2Nþ2

i¼1

Ciðt; t
0ÞχiðxÞ ð31Þ

where χiðxÞ = characteristic function of fictitious phase i in

the equivalent composite. As shown in Sanahuja (2013), elastic

homogenization can be extended to aging linear viscoelasticity

when the inclusions are spherical. The equations to solve to get the

self-consistent estimates of the effective bulk and shear relaxations

have the same structure as Eq. (11)

kSC ¼
X

2Nþ2

i¼1

fiki ∘ A
SC
iJ

!

∘
X

2Nþ2

i¼1

fiA
SC
iJ

!

−1

ð32Þ

gSC ¼
X

2Nþ2

i¼1

figi ∘ A
SC
iK

!

∘
X

2Nþ2

i¼1

fiA
SC
iK

!

−1

where ∘ = Volterra integral product fðt; :Þ ∘ xð:Þ ¼
∫ t
t 0¼−∞

fðt; t 0Þdxðt 0Þ (Volterra 1887, 1959), “−1” its inverse, i iter-
ates over the fictitious phases, ki and gi depend on times t; t 0 and
are the bulk and shear relaxations functions of fictitious phase i, and

fi is the constant (as the equivalent composite has a constant mor-

phology) volume fraction of phase i. The components ASC
iJ and ASC

iK

of the strain localization tensor are also functions of t; t 0 and have to
be carefully derived solving the Eshelby inhomogeneity problem

with aging linear viscoelastic phases, resorting to a displacement

approach (Sanahuja 2013)

ASC
iJ ¼ ð3ki þ 4gSCÞ

−1 ∘ ð3kSC þ 4gSCÞ ð33Þ

ASC
iK ¼ H þ 2ð2H þ 3DSCÞ ∘ ½2gi ∘ ð2H þ 3DSCÞ

þ gSC ∘ ð6H −DSCÞ�
−1 ∘ ðgSC − giÞ ð34Þ

Fig. 7.Volume fraction of hydrates precipitating into pores: continuous

and discretized for N ¼ 3 (w=c ¼ 0.5)
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with

DSC ¼ ðkSC þ gSCÞ
−1 ∘

2

3
gSC ð35Þ

these expressions involve the Volterra integral product ∘ and its in-

verse. To evaluate them in practice, the integral is approximated

using the trapezoidal rule following Bažant (1972), so that relax-

ation functions are converted to matrices, whose components are

defined as

2fi;j ¼

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

fðt0; 0Þ þ fðt0; t0Þ; i ¼ j ¼ 0

fðti; 0Þ − fðti; t1Þ; i ≥ 1; j ¼ 0

fðti; tj−1Þ − fðti; tjþ1Þ; i ≥ 2; 1 ≤ j ≤ i − 1

fðti; ti−1Þ þ fðti; tiÞ; i ≥ 1; j ¼ i

0; 1 ≤ iþ 1 ≤ j ≤ n

ð36Þ

the Volterra product becomes a straightforward product between

square matrices, and its inverse becomes matrix inversion. Solving

the matrix equations obtained from Eq. (32) yields the matrix rep-

resentation [as defined by Eq. (36)] of the effective bulk and shear

relaxation functions. The latter define the complete effective behav-

ior. The response to any loading path can then be postprocessed

from these matrices and the time discretization of this loading path

(Sanahuja 2013).

Application to Aging Creep of Cement Paste due to
Hydration

The effective aging uniaxial compliance function is plotted in

Fig. 8(a) as plain lines. Compliance functions obtained from the

frozen microstructure approximation are also reported as dashed

lines. The initial elastic strain is plotted as a dotted line. Before the

critical degree of hydration is reached at tc, the effective Young’s

modulus is 0, so there is no point plotting the compliance function

for loading times t 0 < tc.

Both approaches (frozen and evolving microstructure) are

consistent with the initial elastic strain as estimated from elastic

homogenization. Both compliance functions are very close when

loading occurs at late ages, as the microstructure does not evolve

much once loaded. However, at early ages, once creep starts, the

strain evolution is different: The compliance functions do not

even share the same tangent. This a priori nonintuitive result [for

several examples of composites exhibiting only solidification, both

compliance functions are found to have the same initial tangent

(Sanahuja 2014)] seems to be the consequence of the anhydrous

dissolution process. Li et al. (2015b) noticed the same effect on

full-field simulations and called it apparent viscoelastic relaxation.

A simple one-dimensional (1D) model, inspired by the solidi-

fication theory, can help to get an idea of the influence of disso-

lution. A parallel arrangement of elastic (Young’s modulus Es)

dissolving layers is considered. The solid volume fraction is thus

a decreasing function of time t, denoted fsðtÞ. The applied uniaxial
stress is a step, as ΣðtÞ ¼ Σ0Hðt − t 0Þ, the loading time t 0 being a

parameter. The stress in the remaining solid phase is thus σðtÞ ¼
ΣðtÞ=fsðtÞ. The strain in the solid phase is also the macroscopic

strain, due to the parallel arrangement: EðtÞ ¼ εðtÞ ¼Σ0Hðt− t 0Þ=
½EsfsðtÞ�. As fsðtÞ decreases, the macroscopic strain EðtÞ increases
for t > t 0, while the macroscopic strain for a frozen microstructure

stays at EfrozenðtÞ ¼ Σ0Hðt − t 0Þ=½Esfsðt
0Þ� [Fig. 8(b)]. Note that

the strain rates at loading (t 0=τ ¼ 1) are clearly different.

The approach proposed to homogenize evolving microstruc-

tures is illustrated on a representation of cement paste, which is

too simplified to allow a quantitative comparison of aging creep

functions to experimental results. Still, for future reference, biblio-

graphic sources providing creep behavior of cement pastes afore-

mentioned in the subsection regarding hydrates behavior, are

recalled here. Le Roy (1995) measured basic creep of cement pastes

at 28 days and of concretes at various loading ages. Use of the latter

data for validation would require an additional upscaling step, from

cement paste to concrete. As morphology does not evolve at the

concrete scale, this upscaling is straightforward following Sanahuja

(2013), once a concrete morphological model (which may include

interfacial transition zones) has been defined. Briffaut et al. (2012)

also provide creep results at concrete scale. Tamtsia et al. (2004)

provide basic creep curves of cement pastes loaded at 18, 24, and

30 h. Irfan-ul-Hassan et al. (2016) propose an extensive characteri-

zation of the first minutes of creep functions of cement pastes

through repeated short tests on the same sample.

Qualitatively, the creep functions estimated considering micro-

structure evolution [plain lines in Fig. 8(a)] are closer to the exper-

imental results of Tamtsia et al. (2004) (Fig. 6 on the referenced

paper) than those estimated considering frozen microstructure

[dashed lines in Fig. 8(a)]. Indeed, the experimental creep strain

rate is high at the onset, then decreases as a function of time (creep

functions show a significant downward concavity).

Conclusion and Prospects

An approach to upscale the mechanical behavior of composite ma-

terials undergoing geometrical evolutions of their microstructure

(a) (b)

Fig. 8. (a) Effective uniaxial compliance functions of cement paste (w=c ¼ 0.5), plotted for various stress loading times t 0: considering full evolution

of microstructure with N ¼ 100 fictitious phases (plain lines), and assuming a frozen microstructure (dashed lines); dotted line represents the initial

elastic strain; (b) effective compliance function of dissolving parallel elastic layers, when fsðtÞ ¼ e−t=τ , plotted for stress loading time t 0=τ ¼ 1

considering full evolution of microstructure (plain line) or a frozen microstructure (dashed line)
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is proposed, with preliminary applications to cement pastes. Mean

field homogenization is considered. Both elastic and nonaging

viscoelastic behaviors are considered for the phases. While the

evolving nature of microstructure does not prevent the use of mean-

field homogenization in the case of elastic phases, special care has

to be taken for viscoelastic phases. Indeed, time appears both in

the elementary behaviors and in the evolution of microstructure.

Even if the phases are nonaging, the effective behavior is aging

viscoelastic.

A common approach, considering microstructure as frozen once

the macroscopic loading step has been applied, allows for approxi-

mating the effective aging behavior using readily available tools

(namely the correspondence principle with the Laplace-Carson

transform), when phases are nonaging. The originality of the paper

resides in the approach proposed to overcome this assumption.

Extending Bažant’s solidification theory, an equivalent composite

is built, whose microstructure is constant but made up of aging

linear viscoelastic fictitious phases. Taking advantage of recent

advances in aging linear viscoelastic homogenization, the effective

behavior of this equivalent composite can then be estimated. Note

that this approach is not restricted to nonaging phases in the evolv-

ing microstructure: aging phases are as straightforward to consider.

The frozen microstructure assumption is, as expected, found to

be valid only for late-age loadings, once the microstructure evolu-

tion becomes negligible. When loaded at early age, compliance

functions from both techniques (with and without this frozen

assumption) only share the initial elastic strain. Even the initial

strain rate is different. This is attributed to the dissolution process.

Qualitatively, compliance functions from evolving microstructure

are closer to the experimental ones reported in Tamtsia et al. (2004).

The proposed application to cement paste is deliberately crude

to focus on the description of the homogenization approach rather

than on unnecessary technical details. However, before further

comparisons to experimental data, the model should be improved

in several aspects:

• Hydration kinetics: More realistic hydration kinetics should be

used, either coming from experimental measurements or from

hydration models. Moreover, the various anhydrous and hy-

drated phases could be detailed;

• Morphological model: Morphologies that have been success-

fully used to estimate other mechanical properties (stiffness,

strength, nonaging creep) can be adapted in the aging viscoe-

lastic context proposed here. Some of these models include fea-

tures (multiscale representation, aspherical shapes) that have

proven to reduce shortcomings on prediction of the setting

hydration degree;

• Elementary viscoelastic behavior of C-S-H: More realistic be-

haviors should be used, for example, obtained from the scale

where sliding interfaces can be explicitly described;

• Stress state of anhydrous and hydrates: A study of the influence

of the stress state over dissolution and precipitation processes

should be performed, and also the zero-stress assumption for

hydrates precipitating in confined spaces should be overcome;

and

• Aging mechanisms: As concrete experimentally shows aging

creep even for loadings at long term [typically several years, see

e.g., data reported by Bažant (1975, 1988)], mechanisms other

than hydration should be taken into account.

among these prospects, modifications of hydration kinetics or vis-

coelastic behavior of hydrates can be straightforwardly taken into

account by the proposed approach. Indeed, it is modular enough to

use as inputs any kinetics curve and any linear viscoelastic behav-

ior, defined by compliance or relaxation functions, for elementary

phases. Improving the morphological model requires the extension

of Sanahuja (2013) to a spheroidal inhomogeneity [see Lavergne

et al. (2016) in the case of a constant Poisson ratio for the matrix]

and to a multilayered composite sphere.

As shown in Honorio et al. (2016), further improvements of the

approach proposed here and applications to concrete are already

promising.
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