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The linear elastic moduli of cement paste are key parameters, along with the cement paste compressive and tensile strengths, for 

characterizing the mechanical response of mortar and concrete. Predicting these moduli is difficult, as these materials are random, complex, 

multi-scale composites. This paper describes how finite element procedures combined with knowledge of individual phase moduli are used, 

in combination with a cement paste microstructure development model, to quantitatively predict elastic moduli as a function of degree of 

hydration, as measured by loss on ignition. Comparison between model predictions and experimental results are good for degrees of 

hydration of 50% or greater, for a range of water : cement ratios. At early ages, the resolution of the typical 1003 digital microstructure is 

inadequate to give accurate results for the tenuous cement paste microstructure that exists at low degrees of hydration. Elastic computations 

were made on higher resolution microstructures, up to 4003, and compared to early age elastic moduli data. Increasing agreement with 

experiment was seen as the resolution increased, even when ignoring possible viscoelastic effects.
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1. Introduction

The mechanical properties of cement-based materials are

almost always of primary importance in material applica-

tions since concrete, by far the largest volume use of these

materials, is mainly used as a structural material. The

mechanical properties of interest are threefold: short-term

deflection, which is controlled by the elastic properties;

long-term deflection, which is controlled by the viscoelastic

properties; and failure, which is controlled by the strength. If

failure is in compression, then we are concerned with the

compressive strength; if in tension, we are concerned with

the tensile strength.

In this paper, we will only discuss the elastic properties,

and will assume that cement paste is a linear elastic material.

For a linear elastic material, mathematically the stress, rij, is

related to the strain, ekl, via the elastic modulus tensor,

Cijkl :rij =Cijkl ekl. Since we are only considering small

strains, small with respect to strains at failure, we can ignore

failure. Cement-based materials are much more viscoelastic

at early ages than at later ages [1]. At ages of 14 d or older,

cement paste is well-approximated as a linear elastic

material [1], at least for short loading times.

Theoretically predicting the elastic moduli of concrete is

a difficult task. First, at the millimeter scale, concrete is a

complex, random composite, because of a high loading of a

wide size range of fine and coarse aggregates, with all the

theoretical difficulties that involves [2–4]. But the cement

paste matrix itself is an even more complex, random

composite at the micrometer scale. And of course, the main

physical phase of cement paste, the calcium–silicate–

hydrate (C–S–H)2 phase, is a random complex composite

at the nanometer scale. So correctly predicting the elastic
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2 Standard cement chemistry notation is used: C=CaO, S=SiO2,

A=Al2O3, F=Fe2O3, H=H2O, K=K2O and S=SO3.
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moduli of concrete, based on knowledge of individual

phases, is a multi-scale problem [5,6]. In this paper, we

focus on computing the elastic moduli of cement paste at the

micrometer scale, by taking into account all the micro-

structure at that scale but treating the C–S–H phase as an

elastically homogeneous phase. Theoretical predictions are

compared quantitatively with experimental results.

2. Cement paste computer models

Computing cement paste elastic moduli involves three

tasks, no matter what techniques are used: (1) having a proper

microstructure (porosity, arrangement of solids), (2) recog-

nizing their differences and using the proper elastic moduli

for each solid phase, and (3) combining (1) and (2) together

mathematically in some reasonable fashion. This section

discusses how we handle tasks (1) and (3). How we have

obtained values for task (2) is discussed in the next section.

To numerically determine the cement paste microstruc-

ture at the micrometer level, the program CEMHYD3D was

used [7]. This program starts with a careful chemical

analysis of cement particles, so that statistically, the

chemical phase makeup of individual particles, as well as

bulk volume fractions, are determined. The percolation

properties of this model have recently been updated [8].

Model 3-D particles are made from this information (either

spherical or real particle shapes [9,10]) and incorporated

into a 3-D digital computational box according to the known

particle size distribution and water : cement mass ratio.

Model hydration is carried out via cycles of dissolution,

diffusion, and reaction, according to known reaction

equations. The correct volumetric stoichiometry is main-

tained throughout the hydration modeling process. The

finest cement particles are usually smaller than the smallest

particle possible in the digital microstructure, one voxel.

The volume associated with these particles are lumped into

the volume for the one-voxel particles. Recent analysis has

shown how the effect of the size of these small particles can

be quantitatively incorporated into the hydration model via a

curvature-based dissolution bias [11]. The results in this

paper do not include such a bias, which only can affect the

early age results [11]. The output is a 3-D digital micro-

structure, where each voxel is labeled as belonging to a

single phase. The degree of hydration is easily computed for

each of these microstructures by simply counting the

amount of unreacted cement and comparing it to the initial

amount present before hydration.

These microstructures are then taken and used as input

into a computer code called elas3d.f [12,13]. This program

treats each cubic voxel as a tri-linear finite element, upon

which the elastic equations are discretized and solved using

a relaxation algorithm [14]. The average stress for a given

strain is used to determine the composite moduli, which are

averaged over direction to minimize the effects of having a

small, periodic model of a large microstructure. This

program has been used successfully for several other

materials, including tungsten–silver composites [15],

porous ceramics [16], hydrated gypsum plaster-like models

in 2- and 3-D [17], model open- and closed-cell foams

[18,19], sedimentary rocks [20], and leached cement paste

[21]. A review of the application of this computer program

to a wide range of model materials is available [22]. Within

the limits of the resolution of the original image, the

program checks out well against exact solutions [12] and

experimental data [18,19,21].

The elas3d.f program is essentially an elastic solver for

composite materials. Given a correct arrangement of

phases, correct elastic moduli for individual phases, and

a reasonable resolution, the program will give an accurate

result for the overall composite moduli. As was said

above, CEMHYD3D is used to give the microstructure.

The next section describes how individual phase elastic

moduli were obtained.

3. Individual phase properties of cement paste

The elastic modulus tensor of an isotropic elastic material

has only two independent values, which are usually given as

any two of the set: the Young’s modulus, E, the Poisson’s

ratio, m, the bulk modulus, K, and the shear modulus, G. The

following equations show the relationship between these

parameters [23,24]:

9

E
¼

1

K
þ

3

G
m ¼

3K � 2Gð Þ

2 3K þ Gð Þ

K ¼
E

3 1� 2mð Þ
G ¼

E

2 1þ mð Þ

ð1Þ

These equations are given because different sources for

the elastic moduli of individual phases are given in terms of

different combinations of these parameters.

Some individual cement and cement paste phase elastic

properties can be found in the geological literature, as they

are crystalline minerals found in nature whose elastic

properties have been measured. In general, the elastic

moduli of a single crystal will give an anisotropic elastic

moduli tensor reflecting the symmetry of the crystal lattice.

An isotropic average can be performed on this tensor,

which will result in an isotropic average elastic modulus

tensor (two independent elastic moduli). Two ways in

which this can be done, called the Voigt and Reuss

averages [25,26], respectively, result in an upper bound

and a lower bound. The average of these bounds for

various cement and cement paste phases are reported in

Table 1. This isotropic tensor should be more representa-

tive of what appears in real cement paste, where the

crystalline phases are polycrystalline and randomly dis-

persed. For the sake of completeness, all four of the elastic

moduli are reported in Table 1. A tighter set of bounds for

the averaged moduli can be generated, the Hashin bounds
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[25,26], but the average of these compares quite closely

with the average of the Voigt–Reuss bounds. The Voigt–

Reuss bounds are much simpler mathematically, so these

are used in Table 1. Refs. [27–31] are general compila-

tions of the elastic properties of various minerals, usually

given in terms of averages of the Voigt–Reuss bounds, not

the full anisotropic elastic tensor.

The elastic moduli of some cement/cement paste phases,

phases not usually found in nature, have been reported in

journal articles. The full anisotropic elastic tensor has been

measured for calcium hydroxide (CH) via Brillouin scatter-

ing [32], and the Hashin bounds have been computed [33].

The average of the Hashin bounds is what is listed in Table

1. The polycrystalline isotropic elastic moduli of fully dense

hot-pressed powder compacts of C3S have been measured

[34], and are listed in Table 1. The Young’s moduli of the

other clinker phases, C2S, C3A, and C4AF, have been

measured via nano-indentation [35], which have shown that

the Young’s modulus of these phases, including C3S, are all

about the same, certainly within 15%. For simplicity, and

since the moduli of C3S have been previously measured

carefully, these values are used for all of the clinker phases

in the model reported in this paper.

Because of their volumetric abundance, the three phases

that play the largest role in determining cement paste

elastic moduli are clinker, CH, and C–S–H. The Young’s

modulus of late age C–S–H can be estimated from well-

hydrated systems [36] to be about 25 GPa. The Poisson’s

ratio is estimated to be about 0.25. Nano-indentation has

recently been used to measure the Young’s modulus of C–

S–H [5]. A bi-modal distribution of Young’s modulus

values was found, which accords with the hypothesized

two kinds of C–S–H present in cement paste [37]. When

averaged together, a value of E =23.8 GPa was found [5].

A value of 0.24 for Poisson’s ratio was assumed. These

numbers accord well with the estimates made above, and

with other nano-indentation results [38]. In this paper, the

elastic moduli values taken for C–S–H were: E =22.4

GPa and m =0.25 (see Table 1). The values for Young’s

modulus for all three estimates agree within experimental

uncertainty. No measurement of the Poisson’s ratio of C–

S–H has been made at the present time. Measuring the

Poisson’s ratio with nano-indentation is not an easy task

[39], hence the estimate here.

Ettringite is another phase that can appear in some

quantity in some cement pastes, but probably only plays a

minor elastic role. A recent paper by Zohdi et al. [40] takes

measurements made on packed powder compacts and

extrapolates them to zero porosity to estimate that the

isotropically averaged, polycrystalline elastic moduli of

ettringite are E =52 GPa and G =20 GPa. This extrapolation

was complicated mathematically, and gave a very high

degree of curvature of the moduli vs. porosity plots at low

porosities. The minimum porosity that was actually meas-

ured was 23.8%. We have made similar measurements, but

on more porosities and on a minimum porosity of about

11%. Both sets of data are shown in Fig. 1. Comparing to

the extrapolation made in Ref. [40], our 11% porosity

measurement falls well below their extrapolation, which

calls into question their extrapolation procedure. At higher

porosities, where comparison can be made, the two sets of

data agree fairly well, probably within experimental error

when taking into account possible differences in compac-

tion. The experimental uncertainty on our measurements

was less than 1% for the resonance measurement and about

3–5% for the measurement of the porosity of the ettringite

Table 1

Elastic moduli of individual cement and cement paste phases, taken from several sources in the literature

Cement chemistry notation Mineral name K (GPa) G (GPa) E (GPa) t Ref.

H Water 2.2 0.0 – – [27]

C3S Tricalcium silicate 105.2 44.8 117.6 0.314 [34]

C2S Dicalcium silicate Same as C3S [35]

C3A Tricalcium aluminate Same as C3S [35]

C4AF Tetracalcium aluminoferrite Same as C3S [35]

CS
�
IH2ðgypsumÞ Dihydrate 42.5 15.7 45.7 0.33 [28,29]

CS
�
IH1 = 2 Hemihydrate 52.4 24.2 62.9 0.30

CS
�

Anhydrite 54.9 29.3 80.0 0.275 [28,29]

KS
�

Potassium sulfate (arcanite) 31.9 17.4 44.2 0.269 [28,29]

NS
�

Sodium sulfate (thenardite) 43.4 22.3 57.1 0.281 [28,29]

SiO2 Silica fume 36.5 31.2 72.8 0.167 [31]

CH Portlandite 40.0 16.0 42.3 0.324 [32,33]

C1.7SH4 C–S–H 14.9 9.0 22.4 0.25 [5,38]

CaCO3 Limestone 69.8 30.4 79.6 0.31 [28,29]

C3AH6 Hydrogarnet Same as C–S–H

C6AS
�

3H32 Ettringite Same as C–S–H

C4AS
�
H12ðAfmÞ Monosulfate Same as CH

FH3 Iron hydroxide Same as C–S–H

CaCl2 Calcium chloride Same as CH

C3A(CaCl2)H10 Friedel salt Same as ettringite

C2ASH8 Stratlingite Same as C–S–H

C3A(CaCO3)H11 (Afmc) Monocarbonate Same as Afm
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powder compact. The resonance measurements are actually

quite precise, but differences in compaction tend to negate

this precision. In Fig. 1 are also shown simple linear fits to

all our data, giving a zero porosity value of E =25 GPa and

G =10 GPa. The data of Ref. [40] falls fairly well on these

lines. These values for fully dense, polycrystalline ettringite

accord well with our values for C–S–H, which is another

material that incorporates a large amount of water like

ettringite. That is why in Table 1, and in the simulations, the

elastic moduli of ettringite were taken to be the same as for

C–S–H.

A few other phases in Table 1 are listed as having elastic

moduli ‘‘same as’’ another phase. The elastic moduli of

these minor phases are not known independently. Hence, the

elastic moduli were taken, as a ‘‘best guess,’’ to have elastic

moduli equal to that of another phase, which phase they

most resembled structurally. Also, for hemihydrate gypsum,

the E and t values for this phase, which could not be found

in the literature, are just the average of the literature values

of dihydrate gypsum and anhydrite gypsum. Other schemes

could be proposed, based on the relative water content, but

in lieu of data, a simple averaging scheme is just as

plausible as a more sophisticated scheme. If a pore space

voxel is encountered that has been emptied of water due to

self-desiccation, its elastic moduli are both set equal to zero.

The uncertainty in the measured elastic moduli in Table 1

is probably less than 10%, taking into account both

measurement uncertainty, the uncertainty in using averaged

values instead of full tensor values, as described above, and

the difficulties in preparing or finding pure phases. The

‘‘best-guess’’ values for the minor phases must have greater

uncertainty, probably in the range of 50–100%.

4. Cement paste results

4.1. Later age materials

Two different cements were chosen to test whether the

combination of CEMHYD3D and finite element computa-

tions could accurately predict cement paste elastic moduli at

later ages. The first cement was denoted D, and was roughly

equivalent to an ASTM type I cement. Its composition is

given in Table 2 in terms of the major chemical phases

present in the cement. This was a finely ground cement, thus

showing fast early hydration. The cement particle size

distribution (PSD), phase abundance in the cement powder,

and amount and forms of gypsum were analyzed so that

CEMHYD3D could accurately hydrate this cement and

make hydrated microstructures. It is interesting to note that

in this cement, the gypsum (volume fraction of 5% of the

cement) was mainly in the form of anhydrite (2 /3), and

hemihydrate (1 / 3), probably in order to guarantee an

optimized strength development. The cement also included

a volume fraction of about 5% inert filler, mainly limestone.

A second cement, ASTM type I, was denoted H. It was

somewhat different chemically from the D cement, as seen

in Table 2, and was somewhat coarser. Fig. 2 shows the PSD

curves of both cements, displaying the differences in PSD

between them. Table 2 and Fig. 2 also show the chemical

phase information and PSD, respectively, for a third cement,

denoted L, which will be discussed later in Section 4.2. All

three cements were analyzed and incorporated into the

Virtual Cement and Concrete Testing Laboratory (VCCTL)

database, so that microstructures could be generated.

Fig. 3 shows the experimental degree of hydration vs. w /

c ratio, measured using non-evaporable water content, for
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Fig. 1. Two sets of experimental measurements on powder compacts of

ettringite. HG=Haecker–Garboczi (this paper), ZML=Zohdi, Monteiro, and

Lamour [40].

Table 2

Chemical phase composition of the three cements used in this paper (unit is

volume fraction of total cement)

Phase H cement D cement L cement

C3S 0.638 0.705 0.726

C2S 0.085 0.091 0.048

C3A 0.049 0.087 0.101

C4AF 0.077 0.011 0.055

Gypsum 0.025 0 0.07

Hemihydrate 0.024 0.016 0

Anhydrite 0.018 0.036 0

CaCO3 0 0.052 0

Inert 0.084 0 0

Estimated uncertainty in each number is approximately 5%.
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Fig. 2. Cumulative (volume-based) particle size distributions for D, H, and

L cements.
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28 and 56 d periods of saturated hydration for the D cement

and for 14 and 56 d periods of saturated curing for the H

cement. Non-evaporable water content is essentially the

mass loss between 105 and 1000 -C, which can be used to

give a measure of the degree of hydration [7]. These values

are an average over three specimens, with an uncertainty

ranging from 0.5% to 2.1%. Note that the degree of

hydration is higher for the D cement, almost certainly due

to the finer particle size. For all systems studied, the degree

of hydration was above 50%, although full hydration was

not achieved at 56 d. The CEMHYD3D [7] model was run

until the model degree of hydration closely matched the

experimental degrees of hydration. Then these microstruc-

tures were saved for elastic moduli computation.

Fig. 4 shows cross-sections of the 56 d cement D

simulated microstructures. Hydration is nearly complete

after 56 d. The low w/c ratio pastes are characterized by

large amounts of unhydrated clinker phases and very low

porosity, while the higher w /c ratio pastes have higher

amounts of porosity and almost no clinker phases leftover.

So we could say that the low w/c pastes are C–S–H/CH

composites reinforced by the stiff clinker phases, while the

higher w/c ratio pastes are C–S–H/CH composites made

less stiff by pore inclusions. Also, in the lower w/c value

microstructures, there is some hint of the original spherical

particle shape left for the largest cement particles. Recent

CEMHYD3D model improvements have allowed real

cement particle shapes to be used in the starting particle

microstructure [9]. In composite materials, it is well-known

that the shape of the phases can play a large role in

determining the overall properties, including elastic behav-

ior [41–43]. Examining the cement paste model micro-

structures of the H and D cements above revealed that due to

cement consumption during hydration, initial cement

particle shape would not have played much of a role in

the elastic properties of these cement paste systems.

However, the remnant spherical particle shapes in the lower

w/c pastes imply that there could be a small effect of

particle shape even at this late stage of hydration. It is

probably true, though, that cement particle shape could play

a very large role in determining early age mechanical

behavior, as the cement particles will play the role of

relatively very stiff inclusions in a quite soft matrix. It is

known that the higher the contrast between inclusion and

matrix, the more effect the shape of the inclusion has upon

composite properties [41–43]. This will be discussed more

in the next section.

Fig. 5 shows the experimental and model results for E and

G for the D cement, plotted vs. w /c ratio. The experimental

results for both cements were obtained via elastic resonance

measurements (similar to ASTM E1875-00e1 standard test

method for dynamic Young’s modulus, Shear modulus, and

Poisson’s ratio by sonic resonance). In these experiments, E

and G were measured directly, so that the model results are

presented for the same two parameters. The experimental

results are an average over three specimens, with an

uncertainty between 0.5% and 0.8%. At each w/c value,

the lower value is the 28 d result and the upper value is the 56

d result. There is excellent agreement between model

predictions and experimental results, mostly within 5%

although up to 10% disagreement for some values. The
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Fig. 3. Degree of hydration vs. w /c for 28 and 56 d results on D cement and

14 d and 56 results for H cement.

Fig. 4. 56 d D cement paste microstructures (top row, starting from left: w /c=0.25, 0.3, 0.35, 0.4; second row, starting from left: w/c=0.45, 0.5, 0.55, 0.6).

White is the unreacted cement particles, black is pore space, and all hydration products are gray.
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cement paste microstructure is isotropic on average, and so a

pure shear and hydrostatic compression can be applied at the

same time, since any cross terms in the elastic moduli tensor,

e.g. C1123, are small compared to the other components

within numerical round-off error, and average to zero.

In Fig. 6, the model and experimental results are plotted

for (a) 14 d of curing and (b) 56 d of curing for the H

cement. The format of the graph is similar to that of Fig. 5,

and the experimental uncertainties were similar. The same

excellent agreement between experiment and model is

demonstrated. At the highest w /c value, some bleeding

was noted, which tended to raise the measured elastic

moduli values. The model was run for a slightly lower w/c

ratio, 0.55 instead of 0.6, and good agreement was obtained

for the 0.6 w/c point.

4.2. Early age materials

Linear elastic data were collected via a resonant frequency

method (ASTM C215-97) for early age cement paste elastic

moduli for the L cement. It was found that the computed

elastic moduli, using real particle shapes [9], were much too

high, compared to experiment, when a 1003 microstructure

was used. Since the early age cement paste microstructure is

very tenuous – small amounts of hydration products holding

together much stiffer cement particles – it was very possible

that higher resolution finite element meshes could be

necessary to properly represent this tenuous microstructure.

Higher resolution microstructures were made in two ways.

First, larger cement particle systems were made, and

hydration was carried out at the higher resolution (2003–

0.5 Am/voxel and 4003–0.25 Am/voxel), which involved

some modifications to the CEMHYD3D code [44]. This

process resulted in higher resolution systems that were made

by hydrating higher resolution model cement particles. A

second way of preparing higher resolution systems was to

take the original 1003 microstructure and sub-divide each

voxel. In this way, a better elastic solution was obtained but

on the same microstructure. For example, a narrow one-voxel

neck would now be represented by several voxels, thus

allowing more elastic freedom in that neck. The elastic

moduli code was then run on each system. For systems larger

than 1003, a parallel version of the code was used, and run on

parallel computer clusters at NIST [13].

Fig. 7 shows the values of E and G for a w/c=0.6,

a =0.219 early age cement paste, plotted vs. the system size

N, which represents the number of voxel lengths in the 100

Am physical length of the side of the computational unit cell.

The resolution scaling here was of the first kind, actually

changing the resolution at which the cement particles were
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made and altering the CEMHYD3D model so as to

accurately scale with system resolution [44]. The computed

elastic moduli values decrease rapidly with N, and one might

guess from the graph that with increased resolution, the

values are asymptotically approaching the experimental

values. When the resolution was also altered the second

way mentioned above, by simply sub-dividing each voxel in

the original 1003 microstructure and keeping the same

properties from ‘‘parent’’ to ‘‘daughter’’ voxel, similar results

were obtained (not shown), implying that scaling the

hydration to different resolutions was done correctly and

did not introduce any extra unphysical artifacts. Previous

work on scaling the resolution may have introduced some

unphysical artifacts [8].

A more detailed comparison to experiment is illuminat-

ing for the above case. For this w/c=0.6, a =0.219 cement

paste, the experimental elastic moduli values are E =1.7

GPa and G =0.66 GPa (both with uncertainties of at least

+5%, since it can be difficult to make early material age

resonance measurements). Note that actual measurements

were made at degrees of hydration before and after this

value of the degree of hydration, so that the experimental

results quoted are only a linear interpolation. Computing the

corresponding value of K, the bulk modulus, and m, the

Poisson’s ratio, one obtains m =0.29. Choosing the value of

E to be 5% higher and the value G to be 5% lower, one

obtains m =0.423, so that the value of Poisson’s ratio

obtained at this early age is quite sensitive to the values

of E and G used, since they are so small compared to later

ages. There is some early age white cement paste data in the

published results and thesis of Boumiz [34]. At a w/c ratio

of 0.6 and approximating the degree of hydration from the

thesis graph, we obtain E�1.0 GPa, G�0.35 GPa, and

m�0.47. The best simulation values, for the 4003 system,

are E =2.76 GPa and G =0.98 GPa, with m =0.408. Our

experimental value of m =0.29 then seems much too low for

such an early age material and so it is probably true that the

real result has been masked by the uncertainty and the

interpolation. After all, before set, the value of m starts from

about 0.5, the value for a liquid, and decreases from that

point as hydration proceeds [34].

One might also wonder if early age C–S–H has different

elastic properties than what has been determined for later age

C–S–H. The 4003 results of Fig. 7 were re-run using a value

for the Young’s modulus of the C–S–H phase that was three

times lower. The overall elastic moduli then became E =1.72

GPa and G =0.6 GPa, so that m=0.43. So it is possible that a

lower value of Young’s modulus for early age C–S–H is a

real effect, since it brings the 4003 simulation results down

toward more physical values. However, if early age C–S–H

is similar to the low density form of C–S–H that has been

studied [5], its Young’s modulus is not much lower than the

high density, presumably later age form of C–S–H,

21.7+2.2 vs. 29.4+2.4 GPa [5]. A combination of more

nano-indentation experiments and careful early age reso-

nance data combined with high-resolution modeling can

perhaps resolve this question.

The more general question for the simulation results is –

why this dependence of elastic moduli on digital resolution?

At much higher degrees of hydration, one can check to see if

digital resolution matters; it does not. At early hydration age,

the microstructure, after set, is connected primarily by thin,

incomplete, random surface layers of C–S–H and perhaps

ettringite linking the cement particles. A simple test case can

Fig. 8. Illustration of sphere in a periodic box microstructure. The periodic

reflections to the top and bottom, left and right, and front and back, are

shown to help picture the full 3-D structure.
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Fig. 9. How stiffness of spherical particle– spherical particle contact can

decrease with increasing values of N (N=number of voxels per box length

D, N /D=resolution, D is fixed). Image of touching spheres was re-made at

each increased resolution.

Fig. 10. Illustration of part of the microstructure of a cube linked by a single

voxel to other cubes in a periodic box.
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illustrate this early age cement paste behavior, showing how

as an entire microstructure is represented at higher and

higher resolution, the elastic moduli are reduced. Take the

microstructure consisting of a single sphere, centered in a

cubic box, whose diameter D is equal to the side length of

the box. With periodic boundary conditions, a true contin-

uum sphere touches six other spheres at point contacts (see

Fig. 8). This system will have a finite bulk modulus, since

the spheres may push against each other, but a zero shear

modulus, since point contacts cannot offer resistance to shear

forces. The system is approximated by 3-D digital images, of

fixed physical size D. As the number of voxels, N, on a side

becomes larger, the system is better resolved with more

voxels per unit length (N /D), allowing the digital spheres to

look more and more spherical. At low values of N /D, where

N is only 3, for example, a diameter=3 voxel sphere is

simply a 3�3�3 cube with the eight corner voxels

removed. The sphere-to-sphere interface will be made up

of five voxel faces locked together, so the system will be

quite stiff, both in K and in G. As the resolution N /D

increases, the contact will become smaller and smaller with

respect to the spheres, and so the elastic moduli should go

down. Fig. 9 shows just this behavior, which is illustrative of

the cement paste system. As N /D becomes infinite, the shear

modulus should go to zero (neglecting any frictional forces

and assuming no simultaneous compression), because of the

point contacts, while the bulk modulus should asymptote to

a finite value. This microstructure has cubic symmetry, so its

three independent moduli, C11, C12, and C44, have been

averaged to obtain an isotropic bulk modulus and shear

modulus [17,25,26].

Unlike the early cement paste model systems studied, the

sphere system shown in Fig. 8 will not have significantly

smaller moduli when the original microstructure at N =D =3

is simply sub-divided. Fig. 10 shows a slightly different

system, a cube periodically linked on all six sides by one-

voxel connections to identical cubes. As this microstructure

is sub-divided, the single-voxel connections become multi-

ple-voxel connections, 23, 43, and finally 83 voxels in

extent, causing the elastic moduli to decrease, since having

more voxels in the connection allows for more flexibility in

the connection and hence lower values of elastic moduli.

The cube was originally 73 voxels in size when only one

connecting voxel was used. Fig. 11 shows the results for the

computed elastic moduli vs. the side length of the micro-

structure in terms of voxels (N). The cubic moduli have

been averaged to obtain isotropic bulk and shear moduli.

The drop in modulus is not as dramatic as in Fig. 9, since in

the limit of infinite resolution, where the physical length per

voxel goes to zero, the moduli will be non-zero, while in the

sphere microstructure shown in Fig. 8, the shear modulus

goes to zero.

5. Elastic moduli fractions

It has been mentioned above, qualitatively, how the

cement particle phase might contribute to the overall elastic

moduli at early hydration age. It is interesting to study

quantitatively how each major phase contributes to the

overall elastic moduli. One can develop a measure of this

analytically. The overall elastic moduli are found by

averaging each component of the stress tensor and strain

tensor over the entire microstructure:

< rij > ¼
1

V

Z

rijdV

< eij > ¼
1

V

Z

eijdV ð2Þ

and defining the effective elastic moduli via

< rij > ¼ Ceff
ijkl < ekl > ð3Þ

If one wants all the individual components of the elastic

moduli tensor, then one can apply one component of the

strain tensor at a time [17]. The average strain tensor is

equal to the strain tensor applied to the periodic unit cell of

the cement paste model [2–4]. One can then read off the

components of the effective elastic moduli tensor by

dividing the appropriate components of the average stress

tensor by the value of the average strain. We can rewrite Eq.

(2) for the average stress tensor by:

< rij > ¼
X

N

m¼1

cm
1

Vm

Z

m

rijdV ¼
X

N

m¼1

cm < rij >m ð4Þ

where the subscript m indicates the mth distinct chemical

phase out of N total phases, the integral is now taken only

over the volume of the mth phase, and cm is the volume

fraction of phase m. We can compute the partial contribu-

tions of each phase to the overall effective elastic moduli,

and express them as a fraction of the total elastic moduli. We

can then write:

Keff ¼
X

N

m¼1

cm < K >m
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Fig. 11. How the bulk and shear moduli of this figure’s microstructure can

decrease with increasing resolution (original microstructure was simply

sub-divided).
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Geff ¼
X

N

m¼1

cm < G >m ð5Þ

where <K>m, for example, represents the average bulk

modulus, as defined by Eq. (4), in phase m. Dividing both

sides of Eq. (5) by the effective property, we then obtain

1 ¼
X

N

m¼1

cmkm

1 ¼
X

N

m¼1

cmgm ð6Þ

where now the fraction of the bulk modulus supplied by

phase m is equal to the product of cm, the volume fraction of

phase m, and a coefficient km. A similar relation holds for

the shear modulus.

To analyze how each phase fraction contributes to the

overall elastic moduli, we have used the late age D cement

results. Fig. 12 shows the results, broken down into five

parts. Graph (a) shows how the phase volume fractions

vary with w/c ratio. The saturated pores and the residual

cement vary the most, while the CH and C–S–H phases

are fairly flat vs. w /c ratio. The cement phase includes only

remnant clinker phases – C3S, C2S, C3A, and C4AF. All

other phases, including any residual form of gypsum phase,

are included in the ‘‘other’’ phase. This joint phase must be

fairly flat vs. w /c, since the rise in the saturated porosity

with increasing w/c ratio approximately cancels out the

corresponding decrease in residual cement, and the CH and

C–S–H phase are, as said above, also fairly flat with w/c.

Graph (b) shows how each of these five phases contribute

to the overall bulk modulus, as a function of w/c ratio. At

the lowest w /c ratios, the residual cement can contribute up
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Fig. 12. (a) Volume fractions of phases, fractional phase contributions to (b) bulk and (c) shear moduli, and phase volume fraction coefficients for (d) bulk and

(e) shear moduli, for the D cement at late ages of hydration over a range of w/c ratios.

9



to 40%. At the highest values of w/c ratio, the C–S–H

phase contributes the most, about 45%, while the saturated

porosity now contributes about 6%. Remember that the

water in the saturated porosity has a bulk modulus of 2.0

GPa, so it can contribute to the bulk modulus in dynamic

modulus measurements. The CH phase contributes between

20% and 30% over all the range of w/c ratios studied, so it

has to be classified as a major contributor to the bulk

modulus. Fig. 12c shows how each phase contributes to the

overall shear modulus. The saturated porosity is of course

missing from this graph, as the water cannot sustain a shear

stress, so it cannot contribute to the shear stress average

over the microstructure. At the lowest w /c ratio, w /

c=0.25, the residual cement contributes 40% of the shear

modulus, the C–S–H 28%, and the CH and the ‘‘other’’

phase each contribute about 16%. The contributions of the

CH and ‘‘other’’ phase both increase slightly with w/c

ratio, but the contribution of the C–S–H phase rises to

50%, while the residual cement contribution falls off to

near-zero since the volume fraction of residual cement also

decreases sharply.

There is an additional composite theory concept

needed first before Fig. 12d and e can be discussed.

The question to consider is – what is the value of the

coefficients km ( gm) in Eq. (6)? In general, these

coefficients can only be exactly known if the complete

elastic solution for a random composite system were

known, which is usually not the case. But in the dilute

limit, these coefficients are exactly known, at least up to

first order in volume fraction. For simplicity, consider the

bulk modulus of a two phase composite, where both

phases are elastically isotropic. When only a dilute

amount of phase 2 is present, the composite bulk modulus

Keff can be written exactly as a power series in c, the volume

fraction of phase 2 [2,3],

Keff ¼ K1 1þ K½ �cð Þ þ O c2
� �

ð7Þ

where Ki is the bulk modulus of phase i, and [K] is the

intrinsic bulk modulus that depends on the shape of the

phase 2 inclusion and the ratio K2 /K1 [2,3,41–43]. If one

rewrites Eq. (7) slightly, dividing both sides by Keff and

showing the phase contributions more clearly, then up to

first order in c one has exactly

1 ¼
K1 1� cð Þ

Keff
þ

K1 þ K½ �ð Þc

Keff
or 1 ¼ k1c1 þ k2c2 ð8Þ

where c1=1�c and c2=c. Eq. (8) looks exactly like Eq.

(6), except that now the coefficients k1 and k2 are known

exactly: k1=K1 /K
eff and k2=(K1+[K])K

eff. Each term

consists of a factor, defined as km, times the volume

fraction of that phase, as in Eq. (6). Now consider the

second part of Eq. (8). It is known that if K1=K2, then

[K]=0 [42]. In that case, the factor for phase 2, k2, which

multiplies the phase 2 volume fraction, c2, is then equal to

1, and so is k1, since in this case Keff=K1. Though Eq. (8)

becomes a trivial identity, this exercise does show that the

coefficients km become equal to one when the bulk

modulus of a phase equals the overall effective bulk

modulus. In the general, multi-phase case, we have Eq. (6).

When the factors km and gm are computed for a general

composite, we might expect that the case when Km =K
eff

might be an important point for the value of km. In

particular, the factors km could have the property that

km =1 when the moduli of the mth phase equals the overall

moduli, which is taken to be the effective ‘‘matrix phase.’’

There is no reason to expect, however, that an exact result

from the dilute limit will still hold in the multi-phase, non-

dilute limit.

Fig. 12d shows the values of km and the equivalent

quantities for the shear modulus, gm, are plotted in Fig. 12e.

All the values increase with w/c ratio, as the overall elastic

moduli decrease. It is known that intrinsic moduli always

increase as the ratio of the elastic moduli of the inclusion to

the matrix phase increases. These quantities do the same.

The phase elastic moduli are fixed, so as the ‘‘matrix’’

moduli decrease, the ratio increases. In Fig. 12d, only the

C–S–H and the ‘‘other’’ phase cross the value of 1. The C–

S–H phase crosses the value of 1 at a w /c ratio of

approximately 0.5. The bulk modulus of the cement paste at

this point is K =15 GPa, which is quite close to the value of

the bulk modulus for C–S–H, K =14.9 GPa (see Table 1).

In Fig. 12e, again only the C–S–H and ‘‘other’’ phases

cross the value of 1. The C–S–H phase coefficient crosses

unity at w /c=0.45. The cement paste shear modulus at w /

c=0.45 is G =8.7, remarkably close to the C–S–H phase

value of 8.96 GPa (see Table 1). The ‘‘other’’ phase is a

conglomerate of phases, some having CH-like elastic

moduli and some having C–S–H-like elastic moduli, so it

makes sense that the average stiffness of this phase is

somewhat greater than that of C–S–H. Therefore the lines

for this phase cross the value of 1 in Fig. 12d and e at values

of w/c less than that for C–S–H.

Fig. 12d and e also shows that the values for CH and

cement are always greater than 1. The largest cement paste

moduli computed in these results was K =24.8 GPa and

G =13.5 GPa, at w/c=0.25, 56 d. The CH elastic moduli

are K =40 and G =16, while those for cement are K =105

and G =45, all greater than the cement paste. Therefore the

lines for these phases never cross 1.

If we think of the phase parameters above as something

like intrinsic moduli, it is known that as the shape of an

inclusion deviates from a sphere, the intrinsic moduli will

increase [42]. Fig. 13 shows the cross-sections of the L

cement paste microstructures at late age hydration, where

nearly full hydration has been achieved. The remnant

cement particles in the lower w/c ratio pastes look less

spherical than those shown for the 56 d D cement pastes in

Fig. 4. It is possible that these phase parameters could be

higher in the late age L cement pastes because of this shape

factor. This was checked, and it was found that the phase

parameters for the L cement were only slightly larger than
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those for the D cements, in the expected direction, but not

larger than the probable numerical uncertainties.

6. Discussion and future work

Using the finite element code to compute elastic moduli

involves some assumptions, some of which are operative at all

material ages, and some of which are only important for early

age materials. The first general assumption that is operative at

any material age is that cement paste is a linear elastic material,

since the code is purely linear elastic. To the extent that cement

paste is not a linear elastic material, the code will not accurately

predict elastic properties. However, experiment does seem to

show that cement paste is generally a linear elastic material [45],

at least for short durations of loading. Second, it is quite possible

that the elastic moduli of the C–S–H phase changes with time

as the mutual proportion of low density and high density C–S–

H changes [5,6]. This is not taken into account in the model

results – the same elastic moduli for C–S–H are taken for all

material ages. This could be easily changed, but there is

insufficient good data at present to justify such a change. Third,

the CEMHYD3D microstructure is not a perfect representation

of true cement paste microstructure. The smallest capillary pore

size, for example, is no smaller than the voxel size. Critical

capillary pores at later material ages that control fluid flow are

known to be at the 0.1 Am or smaller size [46]. So, for example,

fluid permeability computations will be much too high, roughly

by the square of the ratio of voxel size to the critical cement paste

pore diameter [47]. But elasticmoduli aremuchmore controlled

by the solid frame, not the pores, so accurate elastic moduli

should be able to be computed, as has been seen in this paper.

At early material ages, the viscoelastic nature of cement

paste probably should not be ignored, especially at degrees

of hydration smaller than the ones we are using. It is true

that the resonant frequency method experimental results also

ignored the viscoelastic nature of the cement paste at early

ages. However, this would tend to make the measured

elastic moduli frequency-dependent and higher than they

really are [48], not lower. At early material ages, when the

solid frame is much more tenuous, it is clear that a higher

resolution (less length per voxel) should be used. Low

resolution in the model can mean that particles of different

phases can be touching at a corner or edge and be elastically

connected, even though, with higher resolution, these

particles would become physically disconnected. There are

also probably more important effects like those illustrated in

Figs. 8 and 10. Digital resolution scaling [16–20] has been

studied for other models, and needs to be better studied in

the CEMHYD3D model for elastic properties. The results in

this paper related to digital resolution at early material ages

are preliminary only. A more complete study of early age

phenomena should include methods to more accurately

model the kinetics of hydration at early ages – the

dissolution bias mentioned earlier [11] is an incomplete

example of what needs to be done. But for now, accurate

predictions of cement paste moduli are limited to degrees of

hydration above about 50% hydration, for w /c >0.45, and

above a lower degree of hydration for accurate results at

lower w/c ratios. It is possible that insight could be gained

into the topology of early age hydrated structures using the

Visual Cement Database [49].

Finally, an advantage of this approach of combining

CEMHYD3D microstructures with finite element solvers is

that detailed stress–strain information is available for each

phase. A two-phase composite, exact dilute limit result for

the coefficient of the phase volume fraction (Eq. (6)) was

shown to approximately hold true in the multi-phase,

concentrated case. This was an unexpected result, and

probably holds true generally for any reasonable multi-

phase composite, not just cement paste.

No one questions that the cement paste microstructure is

complicated. Seeing how each phase, for different w/c

ratios and degrees of hydration, contributes to the overall

elastic response, should give new insight into experimental

results and help clarify the microstructure–elastic property

relationships of cement paste, which is one of the

fundamental goals of materials science.
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