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Abstract

This paper presents a cost allocation problem arising from energy distribution and proposes
cost allocation rules that depend on the distribution network and consumer demands. To de-
termine relevant rules, we adopt a normative approach and compare two principles: (i) the
connection principle and (ii) the uniformity principle. The Connection rule is proposed in ac-
cordance with (i), while the Uniform rule is developed in line with (ii). However, (i) and (ii)
are incompatible. To make a trade-off between them, we propose a family of Mixed rules. Each
rule is axiomatically characterized. Then, we demonstrate that the Connection rule coincides
with the multi-choice Shapley value of a specific multi-choice game derived from the original
problem. Moreover, the Connection rule is in the Core of this game. Similarly, we show that the
Uniform rule and the Mixed rules coincide with other solution concepts from multi-choice games.

Keywords: Energy distribution network; Cost allocation rules; Axiomatization; Multi-choice
games
JEL codes: C71; D61

1. Introduction

This paper considers situations in which some form of energy (e.g., electricity, gas, heating,
etc.) is distributed through a network that channels the energy from a source to end consumers.
The network is managed by an operator who is responsible for ensuring its safety and mainte-
nance. To carry out its responsibilities, the network operator faces various operation costs.
Some of these costs cannot be directly assigned to a specific part of the network. For exam-
ple, there are costs associated with storage, which is necessary to address seasonal fluctuations
in consumption. There are also costs associated with maintaining the network and ensuring
public safety. Assuming that the network operator recovers these operation costs by charging
consumers, the problem is to determine how to allocate these costs among them.

1.1. The energy distribution problem and optimistic design

To conduct this study, we define a model adapted to the energy distribution setting. Fix a
finite set N = {a, b, . . . , n} of consumers, directly or indirectly, connected to a unique source
of energy S by means of a fixed network, which is represented by a (directed) tree graph P .
Figure 1 is an example of tree graph, but a formal definition can be found in Section 2. The
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nodes of the graph represent the consumers plus the source, while the links of the graph represent
the infrastructure of the network. An element in N will refer to both a consumer and the link
having this consumer at its head. Link b has consumer b at its head in Figure 1 for instance.

Each link has a varying capacity, which is represented by an integer. This capacity may
represent the diameter of a gas pipeline or the ampacity of a power line for instance. There
is an industrial limit to the capacity of the links represented by K ∈ N. In addition, each
consumer i ∈ N has a peak demand in capacity, which is represented by an integer qi ≤ K. It
corresponds to the capacity required to handle i’s highest energy usage over a certain period of
time. For instance, the peak gas/electricity demand of a regular household is often determined
by its consumption during winter. The profile of all peak demands is denoted by q = (qa, . . . , qn).

The network operator is responsible for satisfying the peak demand of the consumers, and
must ensure that its network is designed accordingly. This means that each link must have
the capacity to handle the peak demands of its downstream consumers. For instance, link
b must have the capacity to handle the peak demands of both b and e in Figure 1. In this
paper, we assume that each link must have the capacity to handle the highest peak demand of
the consumers located downstream of it, which we refer to as the link’s peak capacity. For
example, in Figure 1, links a and c have a peak capacity of 3, while link d has a peak capacity
of 1, as consumers a, c, and d have peak demands of 2, 3, and 1, respectively. We call this
methodology the optimistic approach to network design.

S

qb = 1 qa = 2

qc = 3qd = 1qe = 3

link b→ 3 3 ← link a

3← link clink e→ 3 link d→ 1

Figure 1: Optimistic approach to network design

The main drawback of the optimistic approach to network design is that a link can only
satisfy a few peak demands at a time. In particular, the highest downstream peak demand of a
link already saturates its capacity. However, this approach has its advantages since it does not
expand the network too much and it limits the associated operation costs. A real-life example
is an electricity distribution network serving sports stadiums or event venues. These venues
often have high power requirements during events, with a significant spike in electricity demand
during peak times when the place is filled with spectators, lights are at maximum intensity, and
various electrical equipment is in use. To prevent network overload, consumers may coordinate
and schedule their electricity usage to not consume at the same time. In this context, it makes
sense to adopt an optimistic approach to network design.

An alternative is the pessimistic approach to network design: the network operator must
be able to satisfy all peak demands at any time. Therefore each link should have the capacity
to handle the sum of all the peak demands of its downstream consumers. Unlike the previous
approach, this approach ensures a flawless service to consumers. The main drawback of this
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approach are the important operation costs associated with it. This approach has recently been
covered in Techer (2023) and Béal et al. (2023). The author applies the pessimistic approach to
model a waste transportation network with a formalism close to ours. In this study, we primarily
focus on the optimistic approach.

In this paper, we make the assumption that the methodology used to calculate the cost of
operating a link may differ from one link to another. The idea is that the cost of operating a link
may vary due to factors outside of the distribution network. Operating a gas pipeline in moun-
tainous terrain poses greater challenges compared to operating one in an urban environment,
for example. To model this idea, we define a cost function C : N × {1, . . . ,K} → R+, which
computes the cost C(i, j) of operating any link i ∈ N of any capacity 1 ≤ j ≤ K. Each map
C(i, .) : {1, . . . ,K} → R+, i ∈ N , is non-decreasing since a larger capacity leads to higher costs,
and is zero normalized. Two maps C(i, .) : {1, . . . ,K} → R+ and C(i′, .) : {1, . . . ,K} → R+,
i, i′ ∈ N , may behave very differently if the two links i and i′ differ according to some outside
factors. The total cost of operating the network is computed as the sum of the costs of all the
links, where each link meets its peak capacity. The problem is then to determine appropriate
rules to allocate this total cost among the consumers. This problem is called the distribution
problem. We propose three cost allocation rules to solve it. These rules are based on principles
that can be viewed as desirable for a network operator.

1.2. Principles for cost allocation rules

To properly define cost allocation rules, let us endow each consumer i ∈ N with the discrete
set of demand units {1, . . . , qi}. A cost allocation rule, or a rule for short, is a map f that
allocates a real number fij to each demand unit j ∈ {1, . . . , qi} of each consumer i ∈ N . The real
fij captures the incremental allocation assigned to consumer i for an increase in demand from
j − 1 to j. In essence, an incremental allocation describes the marginal change in the amount
allocated to a consumer per unit change in their demand. This can be particularly helpful when
attempting to generate a pricing schedule. Obviously, it suffice to sum each (fij)j≤qi to obtain
the total allocation of consumer i. Each rule studied in this paper follows the following two
principles.

(i) Budget balance principle: a cost allocation rule must recover the total cost of operating
the network. This means that the network operator neither incurs losses nor earns profits
from its activity.

(ii) Independence to higher demands principle: the amount allocated to a consumer
for a certain demand unit should be independent of any other greater demand unit. This
principle makes it possible to avoid situations where the presence of a consumer with a high
demand implies additional and unjustified costs to consumers with lower demands. The
Independence to higher demands principle was formally discussed by Moulin and Shenker
(1992) in the context of cost-sharing problems.

In addition to (i) and (ii), we discuss two other principles.

(iii) Connection principle: a consumer should only be charged for the costs associated with
the specific links that connect him to the source. This ensures that costs are allocated
fairly and that consumers are not burdened with the costs of infrastructure that they do
not benefit from.
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(iv) Uniformity principle: two consumers with the same demands should be charged the
same amount regardless of their geographical location. For example, there should be
no difference in treatment between rural and urban consumers, although the underlying
operation costs are different. In fact, (public) network operators in France highly favor
rules that respect this principle (see Fleurbaey and Trannoy, 1998). The aim is to reduce
inequalities and ensure that all residents have access to a similar level of public services.

Contrary to principles (i) and (ii), principles (iii) and (iv) are incompatible and cannot be
satisfied by the same rule. Indeed, (iii) states that consumers should only pay for the portion of
the network they use. Therefore, two consumers with the same demands can be charged with
different amounts depending on their position on the network, which contradicts (iv).

In this paper, we propose three rules. First, the Connection rule, follows principles (i),
(ii) and (iii). It ensures that each consumer pays a fair share of the portion of the network
that connect him to the source. Second, the Uniform rule, follows principles (i), (ii) and
(iv). It ensures that two consumers are allocated the same amount for the same demand unit,
regardless of any other parameter of the distribution problem. Since the principles (iii) and (iv)
are incompatible, we propose a family of rules to compromise between them: the Mixed rules.
We detail how these rules are computed in the next sub-section.

We formalize (iii) and (iv) into axioms for rules. Additionally, we introduce other axioms
that do not necessarily fit into the idea of principles (iii) and (iv) but can still be viewed as
desirable properties in the context of distribution. Combining these axioms, we provide an
axiomatic characterization for each rule introduced in this paper. Observe that principles (i)
and (ii) are not formalized into axioms. Instead, we directly incorporate them into the formal
definition of a rule (see Definition 2).

1.3. Computing the cost allocation rules

To clearly present our rules, assume that a link i ∈ N is built, step by step, by increasing its
capacity from 0 to its peak capacity, which we denote by qi. At each step j ∈ {1, . . . , qi}, link i
undergoes an upgrade, called the j-th upgrade of i. Due to this upgrade, an incremental cost
AC

ij = C(i, j)−C(i, j−1) is generated. This incremental cost represents the additional operation
costs incurred by the upgrade. This procedure allows us to explain how each incremental cost
impacts the cost allocations.

The Connection rule is computed as follows. Pick any link i ∈ N . Step 1 : let us assign
a capacity of 1 to link i. This corresponds to its 1-st upgrade. The Connection rule allocates
the incremental cost AC

i1 equally among the first demand unit of all downstream consumers of
i. Next comes Step 2 : let us upgrade the capacity of link i by one unit. This 2-nd upgrade
generates the incremental cost AC

i2. The Connection rule allocates this incremental cost equally
among the second demand units of all downstream consumers of i whose peak demand exceeds
or equals 2. This procedure continues until link i reaches its peak capacity, i.e., until Step qi,
and is applied to each link.

The Uniform rule is computed in a similar manner. Pick any link i ∈ N . Step 1 : the
Uniform rule allocates AC

i1 equally among the first demand units of all consumers regardless
of their position on the network. Step 2 : the Uniform rule allocates AC

i2 equally among the
second demand units of all consumers whose peak demand exceeds or equals 2. This procedure
continues until Step qi, and is applied to each link.

Principle (iii) is incompatible with principle (iv). To reach a compromise between them, we
propose the family of Mixed rules. Each rule in this family achieves several compromises by
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means of convex combinations between the Connection rule and the Uniform rule. Pick any link
i ∈ N . Step 1 : the Mixed rule allocates AC

i1 to the first demand unit of each consumer. This
allocation is computed as a convex combination between the two allocations prescribed by the
Connection rule and the Uniform rule. This combination depends on a parameter α1 ∈ [0, 1].
For instance, if α1 = 0.8, the allocation to the first demand unit of the consumers consists of
80% of the allocation prescribed by the Connection rule, plus 20% of the allocation prescribed
by the Uniform rule. In that case, the compromise favors the connection principle specifically
for the first demand unit of the consumers. Step 2 : the Mixed rule allocates AC

i2 among the
second demand units of all consumers whose peak demand exceeds or equals 2. This allocation
is computed as a convex combination between the Connection rule and the Uniform rule. This
second combination depends on a parameter α2 ∈ [0, 1], which may be different from α1. For
instance, if α2 = 0.1, the allocation consists of 10% of the allocation prescribed by the Connection
rule, plus 90% of the allocation prescribed by the Uniform rule. In that case, the compromise
favors the uniformity principle specifically for the second demand unit of the consumers. This
procedure continues until Step qi, and is applied to each link.

1.4. Comparison with multi-choice games

An appropriate game theoretic tool for modeling distribution problems are multi-choice
(cooperative) games. Multi-choice games, introduced by Hsiao and Raghavan (1992) and van den
Nouweland (1993), are a natural extension of TU-games in which each player is endowed with
a certain number of participation levels. A (multi-choice) coalition is a profile describing each
player’s participation level within this coalition, and each coalition’s worth is measurable. Given
a distribution problem, we derive a special multi-choice game associated with this problem.
This game is called the distribution game. The player set represents the set of consumers,
and the participation levels represent the demands of the consumers. The worth of a coalition
corresponds to the total cost of the network in which each link meets its peak capacity. The
Connection rule applied to a distribution problem corresponds to the multi-choice Shapley value,
introduced by Lowing and Techer (2022), of the corresponding distribution game. Similarly,
the Uniform rule corresponds to the multi-choice Equal division value and the Mixed rules
to the multi-choice Egalitarian Shapley values. Both values are introduced by Lowing and
Techer (2022). Moreover, for each distribution problem, the multi-choice Shapley value of the
corresponding distribution game is in its Core (in the sense of Grabisch and Xie, 2007).

1.5. Related literature

The distribution problem shares some technical similarities with the polluted river problem
studied by Ni and Wang (2007), Dong et al. (2012), van den Brink et al. (2018), and Li et al.
(2023), to cite a few. In the polluted river problem, agents living along a river must bear the
cost of cleaning the water, which carries pollutants. To clean the water, some costs are incurred
and must be allocated among the agents. The main difference between the two models is
that distribution problems discriminate consumers (or agents) by incorporating demands, while
polluted river problems do not. The connection principle invoked in the distribution problem
is analogous to the upstream responsibility principle used in the unlimited territorial integrity
theory for polluted river problems, which states that agents located along the polluted river
should pay for cleaning the portion of the river that connects them to the source of the river (see
Dong et al., 2012). Furthermore, the Connection rule is conceptually close to the Downstream
equal sharing solution, introduced by Dong et al. (2012) for polluted river problems. Similarly to
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how we make an analogy between distribution problems and multi-choice games, van den Brink
et al. (2018) makes an analogy between polluted river problem and TU-games with a permission
structure (see Gilles et al., 1992). In particular, the authors show that the permission value (see
van den Brink and Gilles, 1996) applied to a special TU-game constructed from the polluted
river problem is equivalent to the Downstream equal sharing solution.

1.6. Overview of the paper

The rest of the paper is organized as follows. We define the distribution problem in Section
2. Section 3 presents the cost allocation rules and provide their axiomatic characterizations.
Section 4 is dedicated to multi-choice games. Section 5 concludes and proposes leads for future
research. Section 6 is an appendix containing all the proofs of the results.

2. The model

We denote by |A| the number of elements in a finite set A ⊂ N. For each non-empty B ⊆ A,
we denote by eB ∈ R|A| the vector such that (eB)i = 1 if i ∈ B and (eB)i = 0 otherwise. The
power set of A is denoted by 2A. Pick any s ∈ R|A|. The vector (s−i, j) ∈ R|A| is defined as
(s−i, j)i = j and (s−i, j)i′ = si′ for each i′ ̸= i.

We start by introducing some definitions from graph theory. A directed graph is a pair
(N,P ) where N ⊂ N is a set of nodes and P : N −→ 2N is a map describing the links between
the nodes. We assume that i /∈ P (i) for any i ∈ N . In the following, we denote a directed graph
(N,P ) just by P . Pick any i ∈ N . The nodes in P (i) are called the successors of i. The nodes
in P−1(i) = {i′ ∈ N : i ∈ P (i′)} are called the predecessors of i. A (directed) path from i ∈ N
to i′ ∈ N is a sequence of nodes i = h1, h2, . . . , hk = i′ such that hk ∈ P (hk−1), . . . , h2 ∈ P (h1).
The transitive closure of a directed graph P is a directed graph P̂ , such that, for each i ∈ N ,
i′ ∈ P̂ (i) if and only if there exists a path from i ∈ N to i′ ∈ N . The nodes in P̂ (i) are called
the subordinates of i in P , and the nodes in P̂−1(i) are called the superiors of i in P . Similarly,
the set P̂ (E) represents the subordinates of the nodes in E ⊆ N and the set P̂−1(E) represents
the superiors of the nodes in E ⊆ N . A directed graph is a (directed) rooted tree if and only
if there is a unique root i0 ∈ N such that (i) the root has no predecessor, i.e., P−1(i0) = ∅, (ii)
the subordinates of the root are all the other nodes, i.e., P̂ (i0) = N \ {i0}, and (iii), each node
aside from the root has exactly one predecessor, i.e., |P−1(i)| = 1 for each i ∈ N \ {i0}.

Consider a finite set of consumers N = {a, b, . . . , n} who are connected to a source S via
a fixed (energy distribution) network. This network is represented by a rooted tree (N ∪ S, P ),
where the source plays the role of the root, the consumers are the other nodes, and P : N∪S −→
2N∪S models the links between the consumers and the source. If no confusion arises, simply
denote the network by P . Pick any two i, i′ ∈ N ∪ S such that i ∈ P (i′). In that case, there
is a link that goes from consumer i′ to consumer i in the network. The consumers i′ and i are
respectively called the tail and the head of the link. We call link i the link with consumer i at
its head, and the downstream consumers of link i are consumer i and its subordinates in P .

Each link has a certain capacity represented by an integer, which cannot exceed K ∈ N for
operational reasons. Each consumer i ∈ N has an peak demand in capacity qi ≤ K. This peak
demand corresponds to the capacity required to handle i’s highest consumption over a certain
period of time. For instance, the highest gas/electricity consumption of a regular household
often occurs during the coldest days of winter. The profile of peak demands is denoted by
q = (qa, . . . , qn). Without loss of generality, assume that qn ≥ qi, for each i ∈ N . The set of
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all consumers whose peak demand exceeds or equals j is denoted by Q(j) = {i ∈ N : qi ≥ j}.
We assume that Q(1) = N . For any two a, b ∈ {0, . . . ,K}|N |, a ∨ b and a ∧ b denote their least
upper bound and their greatest lower bound on {0, . . . ,K}|N |, respectively.

A cost function is a map C : N × {0, . . . ,K} → R+ that measures the cost of any link of
any capacity. In other words, for each i ∈ N and each j ∈ {0, . . . ,K}, C(i, j) represents the
cost of operating the link i when it is designed to have a capacity of j. We use the convention
C(i, 0) = 0 for each i ∈ N . We assume that for each i ∈ N , the map C(i, .) : {0, . . . ,K} → R+

is non-decreasing: a larger link’s capacity leads to higher costs. On the other hand, for any
j ∈ {0, . . . ,K} and any two i, i′ ∈ N , we do not necessarily have C(i, j) = C(i′, j). The
interpretation is that the cost of operating a link may vary due to factors that are not captured
by N , q or P , such as the length or geographic location of the link.

We have the material to compute the total cost of operating the distribution network. To that
end, we employ the optimistic approach to network design, as described in the introduction.
Assume that each link is optimistically designed to meet its peak capacity qi, i.e., its capacity
equals the highest peak demand of its downstream consumers. Then, for each i ∈ N , the cost
of operating link i is given by

C(i, qi), where qi = max
k∈P̂ (i)∪i

qk.

Following the optimistic approach, we define (optimistic) incremental costs. Assume that each
link i ∈ N is built, step by step, by increasing its capacity one unit at a time, each upgrade is
referred to as the j-th upgrade of i. The incremental cost generated by the j-th upgrade of
i ∈ N , 1 ≤ j ≤ K, is denoted by AC

ij and is defined as

AC
ij = C(i, j)− C(i, j − 1).

Obviously, AC
ij ≥ 0 for each i ∈ N and each j ∈ {1, . . . ,K}, since C(i, .) is a non-decreasing

map. The |N | × K matrix of incremental costs collects all the incremental costs, and is

denoted by AC ∈ R|N |×K
+ . Pick any i ∈ N and any 1 ≤ j ≤ K. The unit cost matrix Iij is

the |N | ×K matrix defined as

∀k ∈ N, l ≤ K, Iijkl =

{
1 if k = i, l = j,

0 otherwise.

In such a matrix, only the j-th upgrade of link i generates a non-null incremental cost. Unit cost
matrices will be used to focus on the specific upgrade of a specific link in the axiomatic discus-
sions. Moreover, the matrix of incremental costs AC can be expressed as the linear combination
of unit cost matrices as follows

AC =
∑
i∈N

∑
1≤j≤K

AC
ijI

ij .

The total cost of operating the network is computed as the sum of the costs of all the
optimistically designed links∑

i∈N
C(i, qi), or equivalently,

∑
i∈N

∑
j∈{1,...,qi}

AC
ij . (1)
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As mentioned in the introduction, the optimistic approach can model real-life situations such
as an electricity distribution network serving sports stadiums or event venues (the consumers).
Obviously, these consumers have very important needs in power. To prevent network overload,
these consumers may coordinate and schedule their electricity usage to not consume at the same
time. In this context, it makes sense to adopt an optimistic approach to network design to limit
the total cost of operating the network. This leads us to the following problem: how to allocate
this total cost among the consumers ? Next definition formalizes this problem.

Definition 1 (Distribution problems). A distribution problem is denoted by (N, q,AC , P ),
or by (q, AC) for short, since N and P are fixed. The problem is to determine a way to allocate
the total cost (1) among the consumers based on their demands and their location on the
distribution network. The set of distribution problems is denoted by DP .

3. Rules and characterizations

We address distribution problems by defining cost allocation rules (rules for short). In this
section, we analyze and compare three different rules: the Connection rule, the Uniform rule, and
the Mixed rules. Our rules describe the marginal change in the amount allocated to a consumer
per unit change in their demand. These rules can be particularly helpful when attempting to
determine a pricing schedule for instance. We also provide an axiomatic characterization for
each rule. To properly define the rules, we endow each consumer i ∈ N with the discrete set of
demand units {1, . . . , qi}.

Definition 2 (Cost allocation rule). A (cost allocation) rule f : DP → R|N |×K
+ for distri-

bution problems is a map that assigns a |N | ×K matrix f(q,AC) to each (q, AC) ∈ DP . Each
coordinate fij(q, A

C) ∈ R+ specifies a positive allocation to each demand unit j ∈ {1, . . . , qi} of
each consumer i ∈ N . It captures the incremental allocation assigned to consumer i for an
increase in demand from j−1 to j. We set the convention fij(q, A

C) = 0 for each j /∈ {1, . . . , qi}.
Moreover, a rule satisfies (i) the Budget balance principle and (ii) the Independence to higher
demands principle, for which we give a formal description.

(i) Budget balance principle: a rule recovers the total cost of operating the network, i.e.,∑
i∈N

∑
j∈{1,...,qi}

fij(q,A
C) =

∑
i∈N

∑
j∈{1,...,qi}

AC
ij .

(ii) Independence to higher demands principle: the amount allocated to a demand unit
of a consumer is independent from any other greater demand unit, i.e., for each i ∈ N and
j ∈ {1, . . . , qi},

∀l ≥ j, fij(q, A
C) = fij(q ∧ leN , AC).

3.1. The Connection rule

We define the Connection rule on DP as a means to ensure a fair allocation to each
consumer based on their position on the network. For each link k and each capacity j, such that
some downstream consumers of k belong to Q(j), the Connection rule divides the incremental
cost of AC

kj equally among the downstream consumers of k in Q(j). Specifically, each j-th

demand unit of k’s downstream consumers in Q(j) bears an equal portion of AC
kj .
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Definition 3 (Connection rule). The Connection rule Ψ is defined, for each (q, AC) ∈ DP ,
as

∀j ≤ qn, ∀i ∈ Q(j), Ψij(q, A
C) =

∑
k∈P̂−1(i)∪i

AC
kj

|(P̂ (k) ∪ k) ∩Q(j)|
. (2)

From (2), it is clear that the Connection rule follows the Budget balance principle. Moreover,
the cost allocated to a consumer i for a demand unit j is computed using only the incremental
costs generated by j-th upgrade of the links. Therefore, the Connection rule also follows the
Independence to higher demands principle. Moreover, the Connection rule can be computed in
polynomial time.

Obviously, the Connection rule aligns with the connection principle: according to this rule, a
consumer should only pay for the incremental costs associated with the links that connect them
to the source. In other words, consumers are not burdened with the costs of infrastructure from
which they do not benefit. It is worth noting that the allocations of a consumer increase as their
distance from the source increases. Consequently, a consumer will always pay less than their
subordinates for any demand unit they have in common. This disparity arises due to the non-
negative nature of incremental costs and the fact that a consumer must contribute a portion of
each incremental cost generated by the links that connect them to the source. Next, we provide
an axiomatic foundation of the Connection rule. To that end, we introduce two axioms that
define properties for a rule f on DP .

First, we say that a link is irrelevant to a consumer if it does not connect him to the source.
The first axiom aligns with the Connection principle by ensuring that a consumer is not burdened
with the costs of irrelevant links. Specifically, the axiom dictates that the cost allocated to a
demand unit of a consumer should remain unaffected by any increase in the incremental cost of
an irrelevant link.

Independence to Irrelevant Cost (IIC): Pick any (q, AC) ∈ DP . For each j ≤ K, each
i ∈ P̂−1(Q(j)) ∪Q(j), and each ε ∈ R,

∀h ∈ Q(j), h /∈ (P̂ (i) ∪ {i}), fhj(q, A
C) = fhj(q, A

C + εIij).

The next axiom is an equal loss requirement. It emphasizes the importance of treating each
downstream consumer equally with respect to the costs generated by an upstream link. The
idea is that the distance of a consumer to a certain (upstream) link should not matter when
deciding how much they should pay for it. All downstream consumers of that link have the same
usage of it, and no discrimination should occur. Formally, this axiom states that an increase
of an incremental cost generated by the j-th upgrade of an upstream link should impact the
allocation of the j-th demand unit of any two downstream consumers equally.

Equal Loss for Downstream Consumers (EDC): Pick any (q, AC) ∈ DP . For each j ≤
K, each i ∈ P̂−1(Q(j)) ∪Q(j), and each ε ∈ R,

∀h, h′ ∈ (P̂ (i) ∪ {i}) ∩Q(j), fhj(q, A
C + εIij)− fhj(q, A

C) = fh′j(q,A
C + εIij)− fh′j(q, A

C).

Observe that (EDC) does not necessarily fit into the idea of the Connection principle or the
Uniformity principle. In fact, we will see that this axiom is also satisfied by the other rules
presented in this paper. We now have the necessary material to characterize the Connection
rule.
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Theorem 1. A rule f on DP satisfies (IIC) and (EDC) if and only if f = Ψ.

Proof. See Appendix 6.1 □

Remark 1. The axioms invoked in this characterization are conceptually close to those used
in Dong et al. (2012) to characterize the Downstream equal sharing rule for polluted river
problems. In short, their characterization uses axioms equivalent to (IIC), (EDC), the Budget
balance principle and an Additivity axiom. However, contrary to Dong et al. (2012), we do
not use an Additivity axiom in our characterization. Moreover, the Budget balance principle is
already incorporated within Definition 2, thus we do not invoke it in Theorem 1.

3.2. The Uniform rule

This section defines and characterizes the Uniform rule on DP . This rule ensures that two
consumers should always be allocated the same amount for the same demand unit, regardless
of any other parameter of the distribution problem. Formally, the Uniform rule allocates each
incremental cost AC

kj equally among consumers in Q(j) (assuming that link k’s peak capacity
exceeds or equals j).

Definition 4 (Uniform rule). The Uniform rule Υ is defined, for each (q, AC) ∈ DP , as

∀j ≤ qn,∀i ∈ Q(j), Υij(q,A
C) =

1

|Q(j)|
∑

k∈P̂−1(Q(j))∪Q(j)

AC
kj . (3)

From (3), it is clear that the Uniform rule follows the Budget balance principle and the Inde-
pendence to higher demands principle. Observe that the Uniform rule satisfies (EDC) but does
not satisfy (IIC). Obviously, the Uniform rule can be computed in polynomial time.

The Uniform rule aligns with the uniformity principle: according to this rule, two consumers
with the same effective demand will have to pay the same amount regardless of their position
on the network. While it does not consider the structure of the network, this rule allows to
avoid significant disparities in the consumers’ allocations. It reduces the likelihood of disputes,
conflicts, or resentment among them. Moreover, a consumer with low financial capabilities would
be able to locate itself far from the source, which may not be the case with the Connection rule.
Next, we provide an axiomatic foundation of the Uniform rule. To that end, we introduce
additional axioms.

The first axiom is called Solidarity. It aligns with the uniformity principle as it guarantees
that every consumer contributes a certain amount when the overall cost of the network increases.
Formally, consider two distribution problems. If the sum of the incremental costs generated by
the j-th upgrade of the links used in the computation of the total cost (see (1)) are higher in
one of the two problems, then, the axiom requires that the amount allocated to the j-th demand
unit of the consumers should also be higher in that particular problem.

Solidarity (S) Pick any two (q, AC), (q, AC′
) ∈ DP . If∑

k∈P̂−1(Q(j))∪Q(j)

AC
kj ≥

∑
k∈P̂−1(Q(j))∪Q(j)

AC′
kj

for some j ≤ K, then fij(q, A
C) ≥ fij(q,A

C′
) for each i ∈ Q(j).

10



Observe that the Connection rule fails (S). The next axiom, Linearity, is a classical axiom in
economic theory. An interpretation is provided in the context of energy distribution. The costs
associated with operating a network can be categorized in various ways, such as maintenance
costs and costs for accessing storage. The axiom of Linearity guarantees that there is no differ-
ence in considering these costs separately or jointly. Furthermore, if the costs are denominated
in one currency, say USD, and we want the final allocation to be expressed in another currency,
say EUR, Linearity guarantees that the conversion can be done either before or after applying
the rule without affecting the outcome.

Linearity (L): For each (q, AC), (q, AC′
) ∈ DP and each β ∈ R+,

∀i ∈ N, j ∈ {1, . . . , qi}, fij(q, A
C + βAC′

) = fij(q, A
C) + βfij(q, A

C′
).

Obviously, both the Connection rule and the Uniform rule satisfy (L). The final axiom asserts
that the downstream consumers of a link should not be allocated less than other consumers for
this link. This is because the downstream consumers benefit the most from the link, and therefore
should bear the largest share of the costs. Formally, consider any problem (q, Iij) ∈ DP . The
axiom states that any consumer located downstream of the cost generating link i should not be
allocated less than other consumers.

Fairness (F): For each (q, Iij) ∈ DP ,

∀k ∈ (P̂ (i) ∪ {i}) ∩Q(j), ∀h ∈ Q(j), fkj(q, I
ij) ≥ fhj(q, I

ij).

Observe that both the Connection rule and the Uniform rule satisfy (F).

Theorem 2. A rule f on DP satisfies (S), (L) and (F) if and only if f = Υ.

Proof. See Appendix 6.2 □

3.3. The Mixed rule

The Uniform rule does not satisfy (IIC) and the Connection rule does not satisfy (S). This
testifies that the uniformity principle and the connection principle are clearly incompatible.
However, both principles can be highly desirable in the context of distribution problems. To
reconcile these principles, a compromise is proposed in the form of a family of rules called Mixed
rules. These rules are obtained by using convex combinations of the Connection rule and the
Uniform rule. Moreover, they allow for different types of compromise between the two principles
depending on the demand unit.

Definition 5 (Mixed rules). Let α = {αj}1≤j≤K be a parameter system such that αj ∈ [0, 1],
for each 1 ≤ j ≤ K. The α-Mixed rule µα is defined, for each (q, AC) ∈ DP , as

∀j ≤ qn, ∀i ∈ Q(j), µα
ij(q,A

C) = αjΨij(q,A
C) + (1− αj)Υij(q, A

C). (4)

By (4), it is clear that any α-Mixed rule follows the Budget balance principle and the Indepen-
dence to higher demands principle. Obviously, any Mixed rule can be computed in polynomial
time.
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Remark 2. A α-Mixed rule operates convex combinations between the Connection rule and
the Uniform rule. For each demand j ∈ {0, . . . ,K}, a consumer i ∈ Q(j) receives an allocation
lying between the Connection rule Ψij(q, A

C) and the Uniform rule Υij(q, A
C). If αj is closer

to 1, then this allocation is closer to Ψij(q, A
C). On the other hand, if αj is closer to 0, then

this allocation is closer to Υij(q, A
C).

We introduce two axioms to characterize the Mixed rules. The first axiom describes how the
allocations of two distinct consumers are impacted by an irrelevant cost, and the second axiom
describes how the allocation of a consumer is impacted by two distinct irrelevant costs. The first
axiom states that any two distinct consumers are equally impacted by irrelevant costs, without
specifying the extent of this impact. It relaxes the prescription of (IIC) as it allows consumers
to be impacted by irrelevant costs. Formally, pick any (q, Iij) ∈ DP , a unit cost matrix that
possesses a unique non-null incremental cost. The axiom states that any two distinct consumers
for whom this incremental cost is irrelevant should be allocated the same amount in (q, Iij).

Equal impact of irrelevant costs (EIC): For each (q, Iij) ∈ DP ,

∀h, h′ ∈ Q(j), h, h′ /∈ (P̂ (i) ∪ {i}), fhj(q, I
ij) = fh′j(q, I

ij).

Observe that both the Connection rule and the Uniform rule satisfy (EIC). Moreover, (IIC)
implies (EIC). The converse is not true. The next axiom states that no matter where an irrelevant
cost is located, the impact of that cost on a consumer, for whom that cost is irrelevant, remains
the same. Formally, pick any two distinct problems (q, Iij), (q, Ii

′j) ∈ DP . Assume that each of
the two unit cost matrices features a unique non-null incremental cost that can be considered
irrelevant for a given consumer. The axiom states that the consumer for whom these incremental
costs are not relevant should be allocated the same amount in both problems.

Location independence of irrelevant costs (LIC): For each (q, Iij), (q, Ii
′j) ∈ DP ,

∀h ∈ Q(j), h /∈
[
P̂ (i) ∪ {i}

]
∪
[
P̂ (i′) ∪ {i′}

]
, fhj(q, I

ij) = fhj(q, I
i′j).

Observe that both the Connection rule and the Uniform rule satisfy (LIC). Moreover, (IIC)
implies (LIC). The converse is not true. We now have the material to characterize the Mixed
rules.

Theorem 3. A rule f on DP satisfies (EIC), (LIC), (L) and (F) if and only if f = µα, for
some parameter system α.

Proof. See Appendix 6.3 □

A direct consequence of Theorem 3 is that the Connection rule can be characterized by replacing
(EDC) in the statement of Theorem 1 by (L) and (F), or, equivalently, by replacing (EIC) and
(LIC) in the statement of Theorem 3 by (IIC).

Corollary 1. A rule f on DP satisfies (IIC), (L) and (F) if and only if f = Ψ.

Proof. Direct from the proof of Theorem 3.
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3.4. Illustrative example

Consider the set of consumers N = {a, b, c, d, e} and a source S. In this example, we
consider the distribution network P and the profile of peak demands q = (2, 1, 3, 1, 3), which
are illustrated by Figure 2b. For convenience, we fix K = 3. We introduce the lengths of the
links, which is one of the possible exogenous features of a network. The profile L = (1, 2, 1, 2, 1)
collects these lengths. Consider the cost function given by

C : {a, b, c, d, e} × {1, 2, 3} → R+

(i, j) 7→ Li + j.

The cost function used in this example adds the length and capacity of the link to compute
the overall cost. While this function is an oversimplification for the sake of clarity, it aligns
with the real-world scenario where operation costs increase with both of these parameters. The
corresponding matrix of incremental costs is given by Figure 2a.

AC a b c d e

1 2 3 2 3 2
2 1 1 1 1 1
3 1 1 1 1 1

(a) Incremental costs

S

qb = 1 qa = 2

qc = 3qd = 1qe = 3

3 3

33 1

(b) peak demands and network

Figure 2: distribution problem

Consider link a. The peak capacity of link a is qc = 3. Therefore, this link costs C(a, qc) =
La + qc = 4. Similarly, it is possible to determine the cost of each remaining link. The costs
associated with each link are summed to obtain the total cost of operating the distribution
network given by∑

i∈N
C(i, qi) = C(a, qc) + C(b, qe) + C(c, qc) + C(d, qd) + C(e, qe)

= 20.

We want to allocate the total cost among consumers. Let us consider consumer c. Figure 3a
shows consumer c’s allocation according to the Connection rule Ψ and the Uniform rule Υ.
Moreover, we also show consumer a’s allocation for comparison. Consumer c’s allocations are
also plotted in Figure 3b to highlight the marginal change in his allocation with respect to his
demand. To derive a Mixed rule µα, we select α = (0, 0.5, 1), as depicted in Figure 3a.
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c 1 2 3 Total

Ψ 2.67 1.5 2 6.17
Υ 2.4 1.33 2 5.73
µα 2.4 1.415 2 5.815

a 1 2 3 Total

Ψ 0.67 0.5 0 1.17
Υ 2.4 1.33 0 3.73
µα 2.4 0.915 0 3.315

(a) Allocations of consumer c and a

j

∑
l≤j

fcl(q,A
C)

2.67

4.17

6.17

1 2 3

2.4

3.73

5.73

⋆

⋆

⋆

■

■

■

■ = Ψ

⋆ = Υ

(b) Plotted allocations of consumer c

Figure 3: Cost allocations of consumers

The Connection and Uniform rules exemplify the connection and uniformity principles, re-
spectively. This is evident in the allocations made by these rules for consumers a and c. The
former utilizes a smaller portion of the distribution network and thus receives a smaller alloca-
tion than the latter under the Connection rule. On the other hand, the Uniform rule assigns the
same allocation to both consumers for their first two demand units, regardless of their location
on the network.

The Mixed rule µα prioritizes the uniformity principle for demand unit 1, as indicated by
α1 = 0. It reaches a compromise between the uniformity and connection principles for demand
unit 2 by setting α2 = 0.5. For demand unit 3, the connection principle is favored with α3 = 1.
In Figure 3b, any allocation per demand unit resulting from applying a Mixed rule can be
represented by a point between the corresponding square and star.

4. Rules and multi-choice games

In this section, we introduce multi-choice games, as defined by Hsiao and Raghavan (1992)
and van den Nouweland (1993), and apply them to distribution problems. Specifically, we derive
a distribution (multi-choice) game for each problem and analyze how our rules relate to solution
concepts from multi-choice games. We demonstrate that the Connection rule is a stable rule,
meaning that consumers have an incentive to become customers of the operator.

4.1. The distribution game

In order to remain consistent with distribution problems, some notations coincide with Sec-
tion 2. Let N = {a, b, . . . , n} be a fixed set of players and K ∈ N. Each player i ∈ N has a finite
set of pairwise distinct participation levels Mi := {0, . . . , qi}, where qi ≤ K. Define the set of
players capable of participating at least at level j as Q(j) = {i ∈ N : qi ≥ j}. Denote by M
the Cartesian product

∏
i∈N Mi. Each element s = (s1, . . . , sn) ∈ M specifies a participation
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profile for players and is referred to as a (multi-choice) coalition. Then, q = (q1, . . . , qn) ∈ M
is the players’ maximal participation profile that plays the role of the grand coalition, whereas
Θ = (0, . . . , 0) plays the role of the empty coalition. We use the notations M+

i := Mi \ {0}
for each i ∈ N and M+ :=

⋃
i∈N ({i} × M+

i ). A pair (i, j) ∈ M+ represents a player and
one of his participation levels. A (cooperative) multi-choice game on N is a couple (q, v)
where v : M −→ R is a characteristic function, with v(Θ) = 0, that specifies a worth, v(s),
for each s ∈ M. The full class of multi-choice games is denoted by G. A multi-choice game is
sub-modular if, for each s, t ∈M,

v(s ∨ t) + v(s ∧ t) ≤ v(s) + v(t).

Consider (q, v) ∈ G. A payoff matrix x ∈ R|N |×K for the game (q, v) assigns a payoff xij ∈ R
to each (i, j), i ∈ N and 1 ≤ j ≤ K. If (i, j) /∈ M+, xij = 0. A set-valued solution on G is
a map F that assigns a collection of payoff matrices F (q, v) to each (q, v) ∈ G. A value f is
a single-valued solution on G, that assigns a unique payoff matrix f(q, v) to each (q, v) ∈ G.
We define distribution games as specific multi-choice games based on distribution problems. A
distribution game, derived from a distribution problem (q,AC), measures the total cost of each
distribution problem (s,AC) in which each consumer i ∈ N has a peak demand si ≤ qi. Put
differently, a distribution game is a collection of all the total costs that could be generated by
(optimistically designed) networks smaller than the one they are derived from.

Definition 6 (The distribution game). For each (q, AC) ∈ DP , its associated distribution
(multi-choice) game (q, vC,P ) is defined as

∀s ≤ q, vC,P (s) =
∑
i∈N

C(i, si) =
∑
i∈N

∑
j∈{1,...,si}

AC
ij

where ∀i ∈ N, si = max
k∈P̂ (i)∪i

sk.

In a distribution game, the players represent the consumers and the participation levels represent
the demand units of the consumers. The worth vC,P (s) represents the cost of operating a
(optimistically designed) network (s,AC) in which each consumer i ∈ N has a peak demand of
si. Obviously, vC,P (q) coincides with the total cost of operating the network, and vC,P (Θ) = 0
since C(i, 0) = 0 for each i ∈ N .

Remark 3. Pick any (q, AC) ∈ DP . Since C(i, .) is non-decreasing for each i ∈ N , it follows
that the associated distribution game is monotonic, meaning that for each s ≥ t, it holds that
vC,P (s) ≥ vC,P (t).

4.2. Rules and solution concepts for multi-choice games

This section presents several solution concepts for multi-choice games and compare them
with the rules of Section 3. First, we present the multi-choice Shapley value as introduced
by Lowing and Techer (2022) for multi-choice games. To that end, we must present a certain
coalition formation process. We introduce restricted orders over the set of pairsM+ as defined
by Grabisch and Xie (2007). Consider a distribution game (q, vC,P ). Restricted orders are such
that no pair (i, j) ∈M+ is ordered before a pair (i′, j′) ∈M+ with a strictly lower j′ < j. This
means that no consumer can demand j + 1 unless each consumer i ∈ Q(j) demands at least
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j. Formally, a restricted order over the set of pairs is a bijection σ : M+ → {1, . . . ,
∑

i∈N qi}
defined as

∀(i, j), (i′, j′) ∈M+,
[
j < j′

]
=⇒

[
σ(i, j) < σ(i′, j′)

]
.

Denote by O the set of all restricted orders over the set of pairs. Let σ ∈ O be a restricted
order and h ∈ {1, . . . ,

∑
i∈N qi}. Denote by sσ,h the coalition formed after h steps. We use the

convention sσ,0 = Θ. Formally, it is defined as

∀i ∈ N, sσ,hi = max
{
j ∈ {1, . . . , qi} : σ(i, j) ≤ h

}
∪ {0}.

For each σ ∈ O, the marginal vector ησ(q, vC,P ) is defined as

∀(i, j) ∈M+, ησij(q, v
C,P ) = vC,P (sσ,σ(i,j))− vC,P (sσ,σ(i,j)−1).

Each ησij(q, v
C,P ) is called the marginal contribution of the pair (i, j) to the coalition sσ,σ(i,j)−1,

which is formed after σ(i, j) − 1 steps with respect to the restricted order σ. The marginal
contribution of the pair (i, j) can be interpreted as the additional costs generated when consumer
i increases his demand from j− 1 to j. We have the material to define the multi-choice Shapley
value for distribution games. This value assigns to each pair (i, j) ∈ M+ its expected marginal
contribution assuming that each restricted orders over the set of pairs occurs with the same
probability.

Definition 7 (The multi-choice Shapley value). For each distribution game (q, vC,P ), the
multi-choice Shapley value is defined as

∀(i, j) ∈M+, φij(q, v
C,P ) =

1∏
j∈{1,...,qn}

|Q(j)|!

∑
σ∈O

ησij(q, v
C,P ).

The next result states that, for each distribution problem, the Connection rule applied to the
problem coincides with the multi-choice Shapley value applied to the distribution game associ-
ated with the problem.

Theorem 4. For each distribution problem (q, AC) ∈ DP and its associated distribution game
(q, vC,P ),

φ(q, vC,P ) = Ψ(q, AC).

Proof. See Appendix 6.4 □

Next, we present the multi-choice Equal division value as introduced by Lowing and Techer
(2022) for multi-choice games. Assume that all consumers agree on forming a coalition in which
everyone has the same peak demand, let us say j. Each consumer i /∈ Q(j) demands qi instead.
We call such coalition a j-synchronized coalition. For each demand unit j ∈ {1, . . . , qn}, the
multi-choice Equal division value allocates the difference in worth between the j-synchronized
coalition and the j − 1-synchronized coalition equally among the pairs featuring the demand
unit j.
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Definition 8 (The multi-choice Equal division value). For each distribution game (q, vC,P ),
the multi-choice Equal division value ξ is defined as

∀(i, j) ∈M+, ξij(q, v
C,P ) =

1

|Q(j)|

[
vC,P (q ∧ jeN )− vC,P (q ∧ (j − 1)eN )k∈N ))

]
.

The next result states that, for each distribution problem, the Uniform rule applied to
the distribution problem coincides with the multi-choice Equal division value applied to the
distribution game associated with the problem.

Theorem 5. For each distribution problem (q, AC) ∈ DP and its associated distribution game
(q, vC,P ),

ξ(q, vC,P ) = Υ(q, AC).

Proof. The proof follows directly from Definition (6) and Definition (8). □

In the following, we introduce the multi-choice Egalitarian Shapley values for multi-choice
games, as defined by Lowing and Techer (2022). These values reach a compromise between the
multi-choice Shapley value and the multi-choice Equal division value by using convex combina-
tions of the two values. Specifically, for each demand unit, a convex combination is computed,
resulting in a compromise that may vary depending on the demand unit.

Definition 9 (The multi-choice Egalitarian Shapley values). Let α = {αj}1≤j≤K be a
parameter system such that αj ∈ [0, 1] for each 1 ≤ j ≤ K. For each distribution game
(q, vC,P ), the multi-choice Egalitarian Shapley value χα is defined as

∀(i, j) ∈M+, χα
ij(q, v

C,P ) = αjφij(q, v
C,P ) + (1− αj)ξij(q, v

C,P ).

The next result states that, for each distribution problem, the set of Mixed rules applied to
the problem coincides with the set of multi-choice Egalitarian Shapley values applied to the
distribution game associated with the problem.

Theorem 6. For each distribution problem (q, AC) ∈ DP and its associated distribution game
(q, vC,P ), and for each parameter system α,

χα(q, vC,P ) = µα(q, AC).

Proof. The proof follows directly from Theorem 4 and Theorem 5. □

We introduce one last solution concept: the Core of a distribution game, derived from
the Core for multi-choice games introduced by Grabisch and Xie (2007). The Core is defined
by two principles. The first principle (5) states that no coalition can achieve, by itself, a better
outcome than the one prescribed by the payoff matrices in the Core. The second principle (6)
states that any l-synchronized coalition achieves the same outcome than the one prescribed by
the payoff matrices in the Core.
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Definition 10 (The Core). The Core of a distribution game (q, vC,P ), denoted by C(q, vC,P ),
is the set of payoff matrices x ∈ R

∑
i∈N qi defined as

x ∈ C(q, vC,P ) ⇐⇒


∀s ≤ q,

∑
i∈N

si∑
j=1

xij ≤ vC,P (s), (5)

∀l ≤ qn,
∑
i∈N

min{qi,l}∑
j=1

xij = vC,P (q ∧ leN ). (6)

If we re-interpret the Core principles in terms of rule for distribution problems, principle (5)
ensures that consumers always pay less than the cost of supplying themselves and (6) states that
if a group of consumers, which synchronize their peak demands, decide to supply themselves
without resorting to the network operator, then they should pay the same amount as they would
have been charged by the operator. Thus, the Core can be viewed as the set of stable rules,
in the sense that consumers have an interest in becoming customers of the operator.

Remark 4. We emphasize that principle (5) is the opposite of the original definition of the
Core provided by Grabisch and Xie (2007). Furthermore, principle (6) is implied by both the
Budget balance principle and the Independence to Higher Demands principle. To see this, we
refer the reader to Lemma 1 and its proof, both contained in the Appendix.

Alternative definitions of the Core for multi-choice games can be found in van den Nouweland
(1993) and Hwang and Liao (2010). However, these definitions of the Core do not relate to our
solution concepts and will not be covered. For each distribution problem, the multi-choice
Shapley value applied to a distribution game is always in the Core. Therefore, the Connection
rule is a stable rule.

Theorem 7. For each distribution problem (q, AC) ∈ DP and its associated distribution game
(q, vC,P ),

φ(q, vC,P ) ∈ C(q, vC,P ).

Proof. See Appendix 6.5 □

Remark 5. Observe that the Uniform rule and the Mixed rules may not be stable. To see this,
consider Example 3.4. According to Figure 3a, consumer a is allocated 2.4 for its demand unit
1 by both the Uniform rule and the α-Mixed rule. However, observe that vC,P (1, 0, 0, 0, 0) =
AC

a1 = 2. Then, we have Υa1(q, A
C) > vC,P (1, 0, 0, 0, 0) and µα

a1(q, A
C) > vC,P (1, 0, 0, 0, 0),

which contradicts the Core principle (5).

Remark 6. Assume that we follow the pessimistic approach to network design as defined by
Techer (2023) and Béal et al. (2023). In that case, each link has the capacity to handle the
sum of all the peak demands of its downstream consumers. For each i ∈ N , the pessimistic
cost of operating link i is given by C(i,

∑
k∈P̂ (i)∪{i} qk). Following Techer (2023), pessimistic

incremental costs are defined, for each i ∈ N and each j ∈ {1, . . . ,K}, as

A
C
ij = C

(
i,

∑
k∈P̂ (i)∪{i}

min{j, qk}
)
− C

(
i,

∑
k∈P̂ (i)∪{i}

min{j − 1, qk}
)
.
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In this context, a (pessimistic) incremental cost A
C
ij represents the increase in the operation cost

of link i when all of its downstream consumers increase their demand by one unit, transitioning
from demand level j − 1 to demand level j (assuming they do not exceed their peak demand).

A distribution problem with a pessimistically designed network is denoted by (q,A
C
). The class

of such problems is denoted by DP .
By modifying the form of the incremental costs in their expression, one can adapt the Con-

nection rule, the Uniform rule, and their convex combinations to the framework of distribution
problems with a pessimistically designed network. Most results can also be adapted in a similar
manner. However, we cannot adapt Theorem 7 to this alternative framework. To see this, let
us adapt the Connection rule to the framework distribution problems with a pessimistically

designed network. We obtain the allocation rule defined, for each (q,A
C
) ∈ DP , as

∀j ≤ qn, ∀i ∈ Q(j), Ψij(q,A
C
) =

∑
k∈P̂−1(i)∪i

A
C
kj

|(P̂ (k) ∪ k) ∩Q(j)|
.

In addition, it is possible to define a distribution game associated with any distribution problem

with a pessimistically designed network. For each (q,A
C
) ∈ DP , its associated distribution

game (q, vC,P ) is defined as

∀s ≤ q, vC,P (s) =
∑
i∈N

C(i, si)

where ∀i ∈ N, si =
∑

k∈P̂ (i)∪i

sk.

This game measures the cost of operating any hypothetical distribution network with a pes-

simistically designed network. By adapting Theorem 4, we obtain Ψ(q,A
C
) = φ(q, vC,P )

for each (q,A
C
) ∈ DP . It remains to show that there exists a (q,A

C
) ∈ DP such that

φ(q, vC,P ) /∈ C(q, vC,P ). Consider the example introduced in section 3.4. We replace C with
a new cost function defined as

C ′ : {a, b, c, d, e} × {1, 2, 3} → R+

(i, j) 7→ j2.

Consider the resulting new problem (q,A
C′
) and its associated game (q, vC

′,P ). Observe that

A
C′

b1 = C ′(b, 2) = 4. Consequently,

φb1(q, v
C′,P ) =

A
C′

b1

2
= 2.

Moreover, observe that vC
′,P (Θ−b, 1) = C(b, 1) = 1. Since φb1(q, v

C′,P ) > vC
′,P (Θ−b, 1) the

Core condition (5) does not hold. Therefore, it holds that φ(q, vC
′,P ) /∈ C(q, vC′,P ). This shows

that we cannot adapt Theorem 7 to the class of distribution problems with a pessimistically
designed network.
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5. Conclusion

In this paper, we define distribution problems and propose three cost allocation rules for these
problems on the basis of principles. The Connection rule is proposed in accordance with the
connection principle, while the Uniform rule is developed in line with the uniformity principle. To
compromise between the connection principle and the uniformity principle, we propose the Mixed
rules. For each cost allocation rule, we provide an axiomatic characterization. In addition, these
rules coincide with solution concepts from multi-choice games. In particular, the Connection
rule applied to a distribution problem belongs to the Core of a specific multi-choice game derived
from this problem.

Throughout this study, we assume that each link is optimistically designed to handle its
highest downstream demand. Alternatively, the pessimistic approach to network design states
that the network operator must be able to satisfy all peak demands at any time. Therefore, each
link should have the capacity to handle the sum of all of its peak downstream demands. The two
approaches both have their advantages and their drawbacks. Therefore, a compromise between
these two approaches may be interesting to investigate. A hybrid approach would allow the
network to handle multiple peak demands simultaneously while limiting overall operation costs.
Exploring network design in this direction could be an interesting path for future research.

In addition, a strategic approach to distribution problems could be interesting. For instance,
Lowing and Techer (2022) demonstrate that the multi-choice Shapley value is related to the Se-
rial cost sharing mechanism proposed by Moulin and Shenker (1992) for cost sharing problems.
Consequently, the Connection rule is also related to this mechanism. It appears that Moulin and
Shenker (1992) conduct a strategic analysis of the Serial cost sharing mechanism and provide
a characterization. Therefore, it could be interesting to adapt their strategic analysis to the
framework of distribution problems, thus providing an alternative perspective on the problem.
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6. Appendix

To properly conduct the proofs of our results, we introduce a Lemma. By the Budget
balance principle and the Independence to higher demands principle, the total amount allocated
to consumers in Q(j) for their demand unit j is equal to the sum of all incremental costs,
generated by the j-th upgrades of the links that connect the consumers in Q(j) to the source.

Lemma 1. Pick a rule f on DP . For each (q, AC) ∈ DP ,

∀l ≤ qn,
∑

i∈Q(l)

fil(q, A
C) =

∑
i∈P̂−1(Q(l))∪Q(l)

AC
il .

Proof. Pick a rule f on DP . By the Budget balance principle, for each (q, AC) ∈ DP ,∑
i∈N

∑
j∈{1,...,qi}

fij(q, A
C) =

∑
i∈N

∑
j∈{1,...,qi}

AC
ij

⇐⇒
∑

j∈{1,...,qn}

∑
i∈Q(j)

fij(q, A
C) =

∑
i∈N

∑
j∈{1,...,qi}

AC
ij (7)

Recall that, for each i ∈ N ,
qi = max

h∈P̂ (i)∪i
qh.

Observe that, for each l ≤ qn, and each i ∈ N ,

(q ∧ leN )i = max
h∈P̂ (i)∪i

(q ∧ leN )h

= max
h∈P̂ (i)∪i

min{qh, l}

=


l if max

h∈P̂ (i)∪i
qh ≥ l

max
h∈P̂ (i)∪i

qh otherwise.

= min{qi, l}. (8)

For each l ≤ qn, ∑
j∈{1,...,l}

∑
i∈Q(j)

fij(q,A
C) =

∑
j∈{1,...,l}

∑
i∈Q(j)

fij(q ∧ leN , AC)

=
∑
i∈N

∑
j∈{1,...,(q∧leN )i}

AC
ij

=
∑
i∈N

∑
j∈{1,...,min{qi,l}}

AC
ij

where the first equality follows from the Independence to higher demands principle, the second
from (7), and the third from (8). Similarly,∑

j∈{1,...,l−1}

∑
i∈Q(j)

fij(q, A
C) =

∑
j∈{1,...,l−1}

∑
i∈Q(j)

fij(q ∧ (l − 1)eN , AC)

=
∑
i∈N

∑
j∈{1,...,min{qi,l−1}}

AC
ij .
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Therefore, for each l ≤ qn,∑
i∈Q(l)

fil(q, A
C) =

∑
j∈{1,...,l}

∑
i∈Q(j)

fij(q, A
C)−

∑
j∈{1,...,l−1}

∑
i∈Q(j)

fij(q, A
C)

=
∑
i∈N

∑
j∈{1,...,min{qi,l}}

AC
ij −

∑
i∈N

∑
j∈{1,...,min{qi,l−1}}

AC
ij

=
∑
i∈N

[ ∑
j∈{1,...,min{qi,l}}

AC
ij −

∑
j∈{1,...,min{qi,l−1}}

AC
ij

]
.

To conclude this proof, observe that, for each i ∈ N such that min{qi, l} = min{qi, l − 1} (i.e.,
qi ≤ l − 1), ∑

j∈{1,...,min{qi,l}}

AC
ij −

∑
j∈{1,...,min{qi,l−1}}

AC
ij = 0.

On the contrary, for each i ∈ N such that min{qi, l} > min{qi, l − 1} (i.e., qi ≥ l),∑
j∈{1,...,min{qi,l}}

AC
ij −

∑
j∈{1,...,min{qi,l−1}}

AC
ij = AC

il .

Observe that qi ≥ l if and only if i ∈ P̂−1(Q(l)) ∪ Q(j). Therefore, for each l ≤ qn, we obtain
the desired result ∑

i∈Q(l)

fil(q, A
C) =

∑
i∈P̂−1(Q(l))

AC
il .

□

6.1. Proof of Theorem 1

Existence: We show that Ψ satisfies the axioms of the statement of Theorem 1.

(IIC): The proof follows directly from the definition of the Connection rule. The allocation of
a consumer i for a demand unit j is computed using only the incremental costs generated by
the links that connect i to the source. Therefore, the incremental costs generated by the links
irrelevant to i are not taken into account by the Connection rule when computing the allocation
of i for his demand unit j.

(EDC): Pick any (q, AC) ∈ DP , any i ∈ N , any j ≤ qn, and any ε ∈ R. Assume that there
exist two distinct consumers h, h′ ∈ (P̂ (i) ∪ {i}) ∩Q(j). For h, it holds that

Ψhj(q, A
C + εIij)−Ψhj(q, A

C) =
∑

k∈P̂−1(h)∪h

AC
kj + εIijkj

|(P̂ (k) ∪ {k}) ∩Q(j)|
−

∑
k∈P̂−1(h)∪h

AC
kj

|(P̂ (k) ∪ {k}) ∩Q(j)|

=
∑

k∈P̂−1(h)∪h

εIijkj

|(P̂ (k) ∪ {k}) ∩Q(j)|

=
ε

|(P̂ (i) ∪ {i}) ∩Q(j)|
.

22



Similarly, for h′, it holds that

Ψh′j(q, A
C + εIij)−Ψh′j(q, A

C) =
ε

|(P̂ (i) ∪ {i}) ∩Q(j)|
,

which shows that Ψ satisfies the axiom.

Uniqueness: We show that the Connection rule is the only rule on DP that satisfies all the
axioms of the statement of Theorem 1. Pick any (q, AC) ∈ DP . Let f be a rule that satisfies
all the axioms of the statement of Theorem 1 on DP . Let us show that f(q,AC) coincides with
the Connection rule. By definition of a rule, fij(q,A

C) = Ψij(q, A
C) = 0 whenever j > qi, for

each i ∈ N . Pick any i ∈ N and any j ≤ qi, we show that

fij(q, A
C) = Ψij(q,A

C).

Consider the problem (q, Aj) ∈ DP , in which Aj is defined as

∀k ∈ N, ∀l ≤ K, Aj
kl =

{
0 if l = j and k ∈ P̂−1(Q(j)) ∪Q(j)

AC
kl otherwise.

By Lemma 1, ∑
k∈Q(j)

fkj(q, A
j) =

∑
k∈P̂−1(Q(j))∪Q(j)

Aj
kj

= 0

By definition, a rule assigns non-negative allocations. Therefore,

∀k ∈ Q(j), fkj(q, A
j) = 0.

In (q, Aj), the incremental cost Aj
kj of each link k ∈ P̂−1(Q(j)) ∪ Q(j) has been nullified. We

have shown that fkj(q, A
j) = 0 for each k ∈ Q(j). In particular, fij(q, A

j) = 0. In this part

of the proof we consider, one by one, the links that have been nullified in P̂−1(Q(j)) ∪ Q(j).
For each link k ∈ P̂−1(Q(j)) ∪Q(j), we will un-nullified the incremental cost Aj

kj into Akj and
discuss the impact on the allocation of i for his demand unit j. This way, we reconstruct the
problem (q, A) to show the desired result.

Pick any a ∈ P̂−1(Q(j)) ∪Q(j). If a /∈ P̂−1(i) ∪ {i}, then by (IIC), it holds that

fij(q, A
j +AC

ajI
aj) = fij(q, A

j)

= 0.

If a ∈ P̂−1(i) ∪ {i}, then by (EDC),

∀h ∈ (P̂ (a) ∪ {a}) ∩Q(j), fij(q, A
j +AC

ajI
aj)− fij(q, A

j) = fhj(q, A
j +AC

ajI
aj)− fhj(q, A

j)

⇐⇒ fij(q, A
j +AC

ajI
aj) = fhj(q, A

j +AC
ajI

aj). (9)
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By (IIC),

∀h ∈ Q(j), h /∈ P̂ (a) ∪ {a}, fhj(q, A
j +AC

ajI
aj) = fhj(q, A

j)

= 0. (10)

It follows that ∑
h∈Q(j)

fhj(q, A
j +AC

ajI
aj) =

∑
k∈P̂−1(Q(j))∪Q(j)

(
Aj +AC

ajI
aj
)
kj

⇐⇒
∑

h∈Q(j)

fhj(q,A
j +AC

ajI
aj) = AC

aj

⇐⇒
∑

h∈(P̂ (a)∪{a})∩Q(j)

fhj(q, A
j +AC

ajI
aj) = AC

aj

=⇒ fij(q, A
j +AC

ajI
aj) =

AC
aj

|P̂ (a) ∪ {a} ∩Q(j)|
,

where the first equality follows from Lemma 1, the second equality follows from the definition of
Aj , the third equality follows from (10), and the fourth equality follows from (9). To summarize,

fij(q, A
j +AC

ajI
aj) =


AC

aj

|P̂ (a) ∪ {a} ∩Q(j)|
if a ∈ P̂−1(i) ∪ {i}

0 if a /∈ P̂−1(i) ∪ {i}.

Next, pick b ∈ P̂−1(Q(j)) ∪Q(j), b ̸= a. If b ∈ P̂−1(i) ∪ {i}, then by (EDC), it holds that

∀h ∈ (P̂ (b) ∪ {b}) ∩Q(j), fij(q, A
j +AC

ajI
aj +AC

bjI
bj)− fij(q,A

j +AC
ajI

aj)

= fhj(q, A
j +AC

ajI
aj +AC

bjI
bj)− fhj(q, A

j +AC
ajI

aj)

= λ, (11)

for some λ ∈ R. By (IIC),

∀h ∈ Q(j), h ∈ P̂ (b) ∪ {b}, fhj(q, A
j +AC

ajI
aj +AC

bjI
bj) = fhj(q, A

j +AC
ajI

aj). (12)

It follows that ∑
h∈Q(j)

fhj(q, A
j +AC

ajI
aj +AC

bjI
bj) = AC

aj +AC
bj

⇐⇒
∑

h∈(P̂ (b)∪{b})∩Q(j)

(fhj(q, A
j +AC

ajI
aj) + λ)

+
∑

h/∈(P̂ (b)∪{b})∩Q(j)

fhj(q, A
j +AC

ajI
aj) = AC

aj +AC
bj

⇐⇒
∑

h∈(P̂ (b)∪{b})∩Q(j)

λ+
∑

h∈Q(j)

fhj(q,A
j +AC

ajI
aj) = AC

aj +AC
bj

⇐⇒ |(P̂ (b) ∪ {b}) ∩Q(j)|λ+AC
aj = AC

aj +AC
bj

⇐⇒ |(P̂ (b) ∪ {b}) ∩Q(j)|λ = AC
bj

⇐⇒ λ =
AC

bj

|(P̂ (b) ∪ {b}) ∩Q(j)|
,
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where the first equality follows from Lemma 1 and the definition of Aj , the second equality
follows from (11), and the fourth equality follows from (12) and Lemma 1. We obtain

fij(q, A
j +AC

ajI
aj +AC

bjI
bj) = fij(q, A

j +AC
ajI

aj) +
AC

bj

|P̂ (b) ∪ {b} ∩Q(j)|

=


AC

aj

|P̂ (a) ∪ {a} ∩Q(j)|
+

AC
bj

|P̂ (b) ∪ {b} ∩Q(j)|
if a ∈ P̂−1(i) ∪ {i}

AC
bj

|P̂ (b) ∪ {b} ∩Q(j)|
if a /∈ P̂−1(i) ∪ {i}.

If b /∈ P̂−1(i) ∪ {i}, then

fij(q, A
j +AC

ajI
aj +AC

bjI
bj) = fij(q, A

j +AC
ajI

aj)

=


AC

aj

|P̂ (a) ∪ {a} ∩Q(j)|
if a ∈ P̂−1(i) ∪ {i}

0 if a /∈ P̂−1(i) ∪ {i}.

We have considered the links a and b in P̂−1(Q(j))∪Q(j). Continue this reasoning until all the
links in P̂−1(Q(j)) ∪Q(j) have been considered once. Then, we obtain

fij(q, A
C) = fij(q,

∑
h∈P̂−1(Q(j))∪Q(j)

Aj
hjI

hj)

=
∑

k∈P̂−1(i)∪i

AC
kj

(|(P̂ (k) ∪ k) ∩Q(j)|

= Ψij(q, A
C).

We have shown that fij(q,A
C) = Ψij(q, A

C) for any i ∈ N and any j ≤ qi. This concludes the
proof of Theorem 1. □

The axioms of the statement of Theorem 1 are logically independent, as shown by the
following alternative solutions.

- The Uniform rule satisfies (EDC) but does not satisfy (IIC).

- Fix any arbitrary integer βi′ ∈ {1, 2} for each i′ ∈ N . The rule fβ defined, for each
(q, AC) ∈ DP , as

∀j ≤ qn,∀i ∈ Q(j), fβ
ij(q, A

C) =
∑

k∈P̂−1(i)∪{i}

βi∑
x∈Q(j)∩(P (k)∪{k})

βx
×AC

kj ,

satisfies (IIC) but does not satisfy (EDC).
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6.2. Proof of Theorem 2

Existence: This part of the proof is straightforward by definition of the Uniform rule.

Uniqueness: We show that the Uniform rule is the only rule on DP that satisfies all the axioms
of the statement of Theorem 2. Consider (q, AC) ∈ DP and f a rule that satisfies all the axioms
of the statement of Theorem 2 on DP . Let us show that f(q, AC) = Υ(q, AC). First, pick any
Iij such that j ≤ qn and i /∈ P̂−1(Q(j)) ∪Q(j). The Budget balance principle implies that∑

k∈N

∑
l∈{1,...,qk}

fkl(q, I
ij) =

∑
k∈N

∑
l∈{1,...,qk}

Iijkl

= 0.

Since an allocation is a positive real matrix, it follows that, for each k ∈ N and each l ∈
{1, . . . , qk},

fkl(q, I
ij) = 0.

Therefore, f(q, Iij) is the null matrix whenever j ≤ qn and i /∈ P̂−1(Q(j)) ∪ Q(j). Now, Pick
any two Iij and Ii

′j such that j ≤ qn and i, i′ ∈ P̂−1(Q(j)) ∪Q(j). By Lemma 1,∑
k∈Q(j)

fkj(q, I
ij) =

∑
k∈P̂−1(Q(j))∪Q(j)

Iijkj

= 1, (13)

and ∑
k∈Q(j)

fkj(q, I
i′j) =

∑
k∈P̂−1(Q(j))∪Q(j)

Ii
′j
kj

= 1. (14)

By (S), (13) and (14), fkj(q, I
ij) = fkj(q, I

i′j) for each k ∈ Q(j). In particular, if k ∈ P̂ (i)∪{i},
then by (F), for any k′ ̸= k,

fkj(q, I
ij) ≥ fk′j(q, I

ij).

However, if k′ ∈ P (i′) ∪ {i′}, then

fk′j(q, I
i′j) ≥ fkj(q, I

i′j).

Since fk′j(q, I
ij) = fk′j(q, I

i′j), we obtain

fkj(q, I
ij) = fkj(q, I

i′j) ≥ fk′j(q, I
ij) = fk′j(q, I

i′j)

and fk′j(q, I
i′j) = fk′j(q, I

ij) ≥ fkj(q, I
i′j) = fkj(q, I

ij).

Therefore, fkj(q, I
ij) = fk′j(q, I

ij) and fkj(q, I
i′j) = fk′j(q, I

i′j). Since this reasoning holds for

any two Iij and Ii
′j such that j ≤ qn and i, i′ ∈ P̂−1(Q(j)) ∪ Q(j), it follows that for each Iij

such that j ≤ qn and i ∈ P̂−1(Q(j)) ∪Q(j),

∀k, k′ ∈ Q(j), fkj(q, I
ij) = fk′j(q, I

ij).
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By the Budget balance condition and (13), for each Iij such that j ≤ qn and i ∈ P̂−1(Q(j))∪Q(j),

∀k ∈ Q(j), fkj(q, I
ij) =

1

|Q(j)|
.

By (L), we obtain the desired result.

∀j ≤ K,∀k ∈ Q(j), fkj(q, A
C) =

1

|Q(j)|
∑

i∈P̂−1(Q(j))∪Q(j)

AC
ij

= Υkj(q, A
C).

This concludes the proof of Theorem 2. □
The axioms of the statement of Theorem 2 are logically independent, as shown by the

following alternative solutions.

- The Connection rule satisfies (L) and (F) but does not satisfy (S).

- The rule f defined, for each (q, AC) ∈ DP , as

∀j ≤ qn, ∀i ∈ Q(j), fij(q, A
C) =


∑
i∈N

C(i, qi) if i = 1, j = 1,

0 otherwise,

satisfies (L), (S) but does not satisfy (F).

- The rule f given, for each (q, AC) ∈ DP , by

∀j ≤ qn,∀i ∈ Q(j),

fij(q, A
C) =


Υij(q, A

C) if
∑

i∈P̂−1(Q(j))∪Q(j)

AC
ij ≤ 10,

i∑
i′∈Q(j) i

′

[( ∑
k∈P̂−1(Q(j))∪Q(j)

AC
kj

)
− 10

]
+

10

Q(j)
otherwise.

satisfies all the axioms except (L).

6.3. Proof of Theorem 3

Pick any α parameter system and consider the Mixed rule µα. By definition, and the fact
that µα is computed as a convex combination of Ψ and Υ, µα satisfies all the axioms of the
statement of Theorem 3.

It remains to show that the Mixed rules are the only rules that satisfy all the axioms of the
statement of Theorem 3. Consider (q, AC) ∈ DP and f on DP a rule that satisfies all the axioms
of the statement of Theorem 3. First, pick any Iij such that j ≤ qn and i /∈ P̂−1(Q(j)) ∪Q(j).
The Budget balance principle implies that∑

k∈N

∑
l∈{1,...,qk}

fkl(q, I
ij) =

∑
k∈N

∑
l∈{1,...,qk}

Iijkl

= 0.
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Since an allocation is a positive real matrix, it follows that, for each k ∈ N and each l ∈
{1, . . . , qk},

fkl(q, I
ij) = 0.

Therefore, f(q, Iij) is uniquely determined whenever j ≤ qn and i /∈ P̂−1(Q(j)) ∪Q(j).
Now, Pick any Iij such that j ≤ qn and i ∈ P̂−1(Q(j))∪Q(j). By (EIC), for each h, h′ ∈ Q(j)

such that h, h′ /∈ P̂ (i) ∪ {i},

fhj(q, I
ij) = fh′j(q, I

ij)

= Y, (15)

for some Y ≥ 0. By (F), for each h ∈ (P̂ (i) ∪ {i}) ∩Q(j),

fhj(q, I
ij) ≥ Y

⇐⇒ fhj(q, I
ij) = Y +W, (16)

for some W ≥ 0. By Lemma 1, ∑
h∈Q(j)

fhj(q, I
ij) = 1. (17)

Observe that Y ≤ 1
Q(j) . By (16) and (17), it follows that

|(P̂ (i) ∪ {i}) ∩Q(j)|(Y +W ) + |Q(j) \ ((P̂ (i) ∪ {i}) ∩Q(j))|Y = 1

⇐⇒ |(P̂ (i) ∪ {i}) ∩Q(j)|W = 1− |Q(j)|Y
=⇒ 0 ≤ |(P̂ (i) ∪ {i}) ∩Q(j)|W ≤ 1

⇐⇒ 0 ≤W ≤ 1

|(P̂ (i) ∪ {i}) ∩Q(j)|

⇐⇒ W =
αj

|(P̂ (i) ∪ {i}) ∩Q(j)|
, (18)

for some 0 ≤ αj ≤ 1. Combining (15), (16), (17) and (18), we obtain

|Q(j)|Y + αj = 1

⇐⇒ Y =
1− αj

|Q(j)|
. (19)

Combining (16) and (19), for each h ∈ (P̂ (i) ∪ {i}) ∩Q(j), we obtain

fhj(q, I
ij) =

1− αj

|Q(j)|
+

αj

|(P̂ (i) ∪ {i}) ∩Q(j)|
. (20)

By (17) and by the Budget balance principle, for each l ̸= j and h ∈ Q(l),

fhl(q, I
ij) = 0. (21)
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Finally, combining (19), (20) and (21), we obtain

∀l ≤ qn, h ∈ Q(l),

fhl(q, I
ij) =


0 if l ̸= j,

1− αj

|Q(j)|
if l = j and h /∈ P̂ (i) ∪ {i},

1− αj

|Q(j)|
+

αj

|(P̂ (i) ∪ {i}) ∩Q(j)|
if l = j and h ∈ P̂ (i) ∪ {i},

for some 0 ≤ αj ≤ 1. However, observe that

∀l ≤ qn, h ∈ Q(l),

Ψhl(q, I
ij) =


0 if l ̸= j,

0 if l = j and h /∈ P̂ (i) ∪ {i},
1

|(P̂ (i) ∪ {i}) ∩Q(j)|
if l = j and h ∈ P̂ (i) ∪ {i}.

and

Υhl(q, I
ij) =


0 if l ̸= j,

1

|Q(j)|
if l = j and h /∈ P̂ (i) ∪ {i},

1

|Q(j)|
if l = j and h ∈ P̂ (i) ∪ {i}.

Thus, for each h ∈ N and l ≤ qh,

fhl(q, I
ij) = αlΨhl(q, I

ij) + (1− αl)Υhl(q, I
ij), (22)

for some parameter system α such that αj is the one determined above. Observe that, for any
Ii

′j such that i′ ∈ P̂−1(Q(j)) ∪ Q(j) and i′ ̸= i, (EIC) and (LIC) ensure that (16) still holds.
It follows that (22) still holds for the same parameter αj even when considering a different in-
cremental cost Ii

′j . By (L), we conclude that f(q,AC) = µα(q,AC). The proof of Theorem 3 is
completed. □

The axioms of the statement of Theorem 3 are logically independent, as shown by the follow-
ing alternative solutions. To properly explain the first two alternative solutions, we introduce
the following claim. Pick any (q, AC) ∈ DP . Pick any sequence (f ij) i∈N

j≤K
of |N | ×K rules on

DP . Then, define the map f as

f(q, AC) =
∑
i∈N
j≤K

f ij(q, IijAC
ij). (23)

This map also qualifies as a rule on DP . Indeed, by the properties of the sum, f allocates
a positive payoff to each demand unit of each consumer. Moreover, f satisfies the Budget
balance principle and the Independence to higher demands principle. In the next two alternative
solutions, we define rules computed in a similar manner than (23).
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- Pick any (q, AC) ∈ DP and any h ∈ N . Let us consider the problem (q, Ik1AC
k1), k ∈ N .

Recall that Q(1) = N . Define the allocation Ψ−h
i1 (q, Ik1AC

k1) of a consumer i ∈ N for his
demand unit 1 by

Ψ−h
i1 (q, Ik1AC

k1) =



AC
k1

N
if i /∈ P̂ (k) ∪ {k} and i = h,

0 if i /∈ P̂ (k) ∪ {k} and i ̸= h,

AC
k1

1− 1
N

|P̂ (i) ∪ {i}|
if i ∈ P̂ (k) ∪ {k} and h /∈ P̂ (k) ∪ {k},

Ψi1(q, I
k1AC

k1) otherwise.

This allocation rule behaves just like the Connection rule, but it gives special treatment
to h by allocating him a non-null payoff for irrelevant costs. Indeed, for each i ∈ N , the
amount allocated by the Connection rule in (q, Ik1AC

k1) is given by

Ψi1(q, I
k1AC

k1) =


0 if i /∈ P̂ (k) ∪ {k},

AC
k1

P̂ (i) ∪ {i}
if i ∈ P̂ (k) ∪ {k}.

The main difference between the two rules Ψ−h
i1 and Ψi1 is that the former allocates

AC
k1
N

to h whenever AC
k1 is an irrelevant cost for h, whereas the later allocates a null amount.

In case AC
k1 is a relevant cost for h, then the two allocations coincide.

Using the rule Ψ−h, let us define another rule denoted by f . For each demand unit j > 1
and each consumer i ∈ Q(j), fij(q, A

C) = Ψij(q, A
C). As for the demand unit 1, f is

defined by

∀i ∈ N, fi1(q, A
C) =

∑
k∈N

Ψ−h
i1 (q, Ik1AC

k1).

The rule f satisfies all the axioms except (EIC) since consumer h is getting a special
treatment for his first level of demand.

- Pick any (q, AC) ∈ DP . For each k ∈ N , fix a parameter αk ∈ [0, 1]. The rule fα is
defined, for each (q,AC) ∈ DP , as

∀j ≤ qn, ∀i ∈ Q(j),

fα
ij(q, A

C) =
∑

k∈P̂−1(Q(j))∪Q(j)

[
αkΨij(q, I

kjAC
kj) + (1− αk)Υij(q, I

kjAC
kj)

]
.

This rule operates different compromises between the connection principle and the unifor-
mity principle for each link constituting the network. For instance, link k ∈ N may be
attributed a parameter αk = 1, in which case the rule fα will allocate the incremental
costs generated by k according to the connection principle. Alternatively, link k′ ∈ N may
be attributed a parameter αk′ = 0, in which case the rule fα will allocate the incremental
costs generated by k′ according to the uniformity principle. The rule fα satisfies all the
axioms except (LIC).
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- The rule f given, for each (q, AC) ∈ DP , by

∀j ≤ qn, ∀i ∈ Q(j),

fij(q,A
C) =

{
Υij(q, A

C) if
∑

i∈N
∑

j∈{1,...,qi}A
C
ij ≤ 10,

Ψij(q, A
C) otherwise.

satisfies all the axioms except (L).

- The rule f is defined, for each (q,AC) ∈ DP , as

∀j ≤ qn, ∀i ∈ Q(j),

fij(q, A
C) =

[( 1

|Q(j)|2
+

1

|Q(j)|

) ∑
k∈P̂−1(Q(j))∪Q(j)

AC
kj

]
− Ψij(q,A

C)

|Q(j)|
.

This rule satisfies all the axioms except Fairness.

6.4. Proof of Theorem 4

In order to prove Theorem 4, we recall some definitions on TU-games. Consider a finite set of
players N = {a, b, . . . , n}. A TU-game is a couple (N, v), where v : 2N −→ R is a characteristic
function assigning to each coalition of players E ∈ 2N its worth v(E). For each (N, v), the
Shapley value is defined as

∀i ∈ N, Shi(N, v) =
1

n!

∑
σ∈O

(v(Eσ
i ∪ i)− v(Eσ

i )), (24)

where O is the set of all orders over N and Eσ
i is the coalition formed by the players ordered

before i according to the order σ.
Next, we introduce an intermediary result. To that end, consider a distribution problem

(q, AC) ∈ DP and its associated distribution game (q, vC,P ). For each j ≤ qn, define the

TU-game (N,w
(q,vC,P )
j ) as

∀E ⊆ N, w
(q,vC,P )
j (E) = vC,P

[
(
∑
k∈N

(j − 1)ek +
∑
k∈E

ek) ∧ q

]
−vC,P

[
(
∑
k∈N

(j − 1)ek) ∧ q

]
.

The worth w
(m,vC,P )
j (E) can be interpreted as the surplus in cost generated in vC,P when a group

of players E decide to increase their participation level from j−1 to j while all the other players
play the participation level j − 1 or their maximal feasible participation level if they are unable
to play j − 1. The next Lemma is already proved on the class of monotonic multi-choice games
in Lowing and Techer (2022), and so is omitted.

Lemma 2. For each distribution problem (q, AC) ∈ DP , its associated distribution game (q, vC,P )
verifies

∀(i, j) ∈M+, φij(q, v) = Shi(N,w
(q,vC,P )
j ). (25)
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We have the material to prove Theorem 4. Consider (q, AC) ∈ DP and j ≤ qn. For each
link k ∈ N , define the TU-game (Q(j), Rk) as

∀E ⊆ Q(j), Rk(E) =

{
1 if E ∩ (P̂ (k) ∪ k) ̸= ∅,
0 otherwise.

By definition of the Shapley value,

∀i ∈ Q(j), Shi(Q(j), Rk) =


1

|(P̂ (k) ∪ k) ∩Q(j)|
if i ∈ P̂ (k) ∪ k,

0 otherwise.

(26)

Consider (q, vC,P ) ∈ G, the distribution game associated to (q, AC). Consider the TU-game

(Q(j), w(q,vC,P )) and observe that, for each E ⊆ Q(j),

w
(q,vC,P )
j (E) =vC,P

[( ∑
k∈N

(j − 1)ek +
∑
k∈E

ek

)
∧ q

]
−vC,P

[( ∑
k∈N

(j − 1)ek

)
∧ q

]
(6)
=

∑
i∈N

[
C

(
i, max

h∈P̂ (i)∪i

[( ∑
k∈N

(j − 1)ek +
∑
k∈E

ek
)
∧ q

]
h

)
(27)

− C

(
i, max

h∈P̂ (i)∪i

[( ∑
k∈N

(j − 1)ek
)
∧ q

]
h

)]

=
∑

i∈P̂−1(E)∪E

[
C

(
i, max

h∈P̂ (i)∪i

[( ∑
k∈N

(j − 1)ek +
∑
k∈E

ek
)
∧ q

]
h

)

− C

(
i, max

h∈P̂ (i)∪i

[( ∑
k∈N

(j − 1)ek
)
∧ q

]
h

)]

+
∑

i/∈P̂−1(E)∪E

[
C

(
i, max

h∈P̂ (i)∪i

[
(
∑
k∈N

(j − 1)ek +
∑
k∈E

ek) ∧ q

]
h

)

− C

(
i, max

h∈P̂ (i)∪i

[
(
∑
k∈N

(j − 1)ek) ∧ q

]
h

)]
. (28)

For each i ∈ P̂−1(E) ∪ E, there exists at least one h ∈ P̂ (i) ∪ i such that h ∈ E ⊆ Q(j).
Therefore, for each i ∈ P̂−1(E) ∪ E,

max
h∈P̂ (i)∪i

[( ∑
k∈N

(j − 1)ek +
∑
k∈E

ek
)
∧ q

]
h

= j. (29)

On the other hand,

max
h∈P̂ (i)∪i

[( ∑
k∈N

(j − 1)ek
)
∧ q

]
h

= j − 1. (30)
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For each i /∈ P̂−1(E) ∪ E, there is no h ∈ P̂ (i) ∪ i such that h ∈ E. Therefore, for each
i /∈ P̂−1(E) ∪ E,

max
h∈P̂ (i)∪i

[( ∑
k∈N

(j − 1)ek +
∑
k∈E

ek
)
∧ q

]
h

= max
h∈P̂ (i)∪i

[( ∑
k∈N

(j − 1)ek
)
∧ q

]
h

. (31)

For the sake of clarity, for each i /∈ P̂−1(E) ∪ E, we denote

Zi = max
h∈P̂ (i)∪i

[( ∑
k∈N

(j − 1)ek
)
∧ q

]
h

.

Therefore, by (29), (30) and (31), (27) becomes

w
(q,vC,P )
j (E) =

∑
i∈P̂−1(E)∪E

[
C(i, j)− C(i, j − 1)

]
+

∑
i/∈P̂−1(E)∪E

[
C(i, Zi)− C(i, Zi)

]
=

∑
i∈P̂−1(E)∪E

AC
ij + 0

=
∑
i∈N

AC
ij ×Ri(E).

By Lemma 2, for each j ∈ {1, . . . , qn} and each i ∈ Q(j),

φij(q, v
C,P ) = Shi

(
Q(j),

∑
k∈N

AC
kj ×Rk

)
=

∑
k∈N

AC
kj × Shi

(
Q(j), Rk

)
=

∑
k∈P̂−1(i)∪i

AC
kj

|(P̂ (k) ∪ k) ∩Q(j)|

= Ψij(q, A
C).

The second equality follows from the Linearity of the Shapley value and the third equality
follows from (26).

Therefore, φij(q, v
C,P ) = Ψij(q,A

C) for each i ∈ N and j ≤ qi. In addition, by definition
of a payoff matrix for multi-choice games, φij(q, v

C,P ) = 0 for each i ∈ N and j > qi. Since
Ψij(q, A

C) = 0 for each i ∈ N and j > qi, we obtain the desired result: φ(q, vC,P ) = Ψ(q, AC).
This concludes the proof. □

6.5. Proof of Theorem 7

Lowing and Techer (2022) show that the multi-choice Shapley value belongs to the Core
of sub-modular (cost) games. Therefore, it suffices to show that distribution games are sub-
modular games to prove Theorem 7. Consider a distribution game (q, vC,P ) ∈ G associated with
a distribution problem (q, AC) ∈ DP . For each s, t ∈M,

vC,P (t) + vC,P (s) =
∑
i∈N

C(i, max
k∈P̂ (i)∪i

sk) +
∑
i∈N

C(i, max
k∈P̂ (i)∪i

tk),

and vC,P (s ∨ t) + vC,P (s ∧ t) =
∑
i∈N

C
(
i, max

k∈P̂ (i)∪i
(s ∨ t)k

)
+

∑
i∈N

C
(
i, max

k∈P̂ (i)∪i
(s ∧ t)k

)
.
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Take any i ∈ N . Without loss of generality, assume that

max
k∈P̂ (i)∪i

sk ≥ max
k∈P̂ (i)∪i

tk.

Then, on the one hand,

max
k∈P̂ (i)∪i

(s ∨ t)k = max
k∈P̂ (i)∪i

sk

=⇒ C(i, max
k∈P̂ (i)∪i

(s ∨ t)k) = C(i, max
k∈P̂ (i)∪i

sk).

On the other hand, since s ∧ t ≤ t and C is non-decreasing, it holds that

⇐⇒ max
k∈P̂ (i)∪i

(s ∧ t)k ≤ max
k∈P̂ (i)∪i

tk

=⇒ C(i, max
k∈P̂ (i)∪i

(s ∧ t)k) ≤ C(i, max
k∈P̂ (i)∪i

tk).

This shows that, for each i ∈ N ,∑
i∈N

C(i, max
k∈P̂ (i)∪i

(s ∨ t)k) +
∑
i∈N

C(i, max
k∈P̂ (i)∪i

(s ∧ t)k) ≤
∑
i∈N

C(i, max
k∈P̂ (i)∪i

sk) +
∑
i∈N

C(i, max
k∈P̂ (i)∪i

tk),

and so, we obtain the desired result

vC,P (s ∨ t) + vC,P (s ∧ t) ≤ vC,P (s) + vC,P (t).

□
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