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Abstract

A natural gas distribution network connects consumers to a source of gas. It is managed by a
network operator, whose task incurs various costs, some of which may not be attributable to a partic-
ular consumer. Assuming that the operator wishes to recover these costs by charging for its services,
the problem is then to determine how much each consumer should pay. In other words, how should
these costs be allocated among consumers. In this paper, we address this problem and propose cost
allocation rules that depend on the network and the demands of the consumers. To that end, we adopt
a normative approach and oppose two principles: (i) the connection principle and (ii) the uniformity
principle. The Connection rule is proposed in accordance with (i), while the Uniform rule is developed
in line with (ii). It appears that (i) and (ii) are incompatible. To make a trade-off between these
two principles, we propose the family of Mixed rules, which compromise between the Connection rule
and the Uniform rule by mean of convex combinations. For each cost allocation rule, an axiomatic
characterization is provided. Then, we show that the Connection rule coincides with the multi-choice
Shapley value of a specific multi-choice game derived from the network and the demands of the con-
sumers. Moreover, the Connection rule is in the Core of this specific multi-choice game. Similarly, we
show that the Uniform rule coincides with the multi-choice Equal division value and the Mixed rules
coincide with the multi-choice Egalitarian Shapley values.

Keywords: Natural gas distribution network; Cost allocation rules; Axiomatization; Multi-choice
games
JEL codes: C71; D61

1. Introduction

Natural gas distribution is carried out through a network that takes gas from a source (e.g. a
transmission network entry point or a gas storage facility) and delivers it to consumers. The network
is under the management of an operator who is responsible for its safety and maintenance. In order to
carry out its task properly, the network operator is confronted with various operation costs. Some of
these costs cannot be directly attributed to a specific consumer. For example, there are costs related
to gas storage (necessary to overcome seasonal fluctuations in gas consumption), costs related to the
maintenance of the pipelines and costs related to public safety (monitoring the network by drone,
conducting awareness campaigns, etc.). Under the assumption that the network operator recovers
these operation costs by charging the consumers, our problem is then to determine how to allocate
these costs among them.

Email address: david.lowing@outlook.com (David Lowing)



1.1. The gas distribution problem

To conduct this study, we formally define a problem adapted to the gas distribution setting. Fix
a finite set N = {a, b, . . . , n} of consumers, directly or indirectly, connected to a source of gas by
means of a fixed network, which is represented by a rooted tree graph P . The nodes of the graph
represent the consumers plus the source of gas S, while the arcs of the graph represent the pipelines
of the network. In a tree graph, each node has at most one direct predecessor. Therefore, an element
in N will refer to both a consumer and the pipeline having this consumer at its tail.

Each pipeline has a certain capacity, which is represented by an integer. There is an industrial
limit to the capacity of the pipelines given by K ∈ K. Each consumer i ∈ N has an effective demand
in capacity, which is represented by an integer qi ≤ K. It corresponds to the capacity required to
meet i’s highest gas consumption over a certain period of time. For instance, the effective demand of
a regular household is often determined by its highest daily consumption during winter. The profile
of all effective demands is given by q = (qa, . . . , qn).
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Figure 1: Network design

The network operator is responsible for fulfilling any effective demand at all times, and must
therefore ensure that its network is designed accordingly. This means that each pipeline must have
the capacity to meet the effective demands of its downstream consumers. In this paper, we assume
that each pipeline has the capacity to meet the highest effective demand of the consumers located
downstream of it, which we refer to as the pipeline’s effective capacity. For instance, Figure 1
illustrates a situation in which consumer a, c and d have an effective demand of 2, 3 and 1, respectively.
In this case, both pipelines a and c have an effective capacity of 3. For the same reason, pipeline d has
an effective capacity of 1. There are alternatives to this approach to network design. Each approach,
including this one, has its advantages and its drawbacks. We will discuss some of these approaches at
the end of the paper.

A cost function C : N × {1, . . . ,K} → R+ is a map that computes the cost C(i, j) of operating
any pipeline i ∈ N of any capacity j ≤ K. We assume that the map C(i, .) : {1, . . . ,K} → R+ is
non-decreasing, since a larger capacity leads to higher costs, and zero normalized. The total cost of
operating the network is computed as the sum of the costs of all pipelines, where each pipeline meets
its effective capacity.

The problem is then to determine appropriate rules to allocate this total cost among the consumers.
This problem is called the gas distribution problem and is denoted by (N, q, C, P ). We propose
three cost allocation rules to solve this problem. These rules are based on principles that may be
considered desirable for a network operator.
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1.2. Principles for cost allocation rules
To properly define cost allocation rules, let us endow each consumer i ∈ N with the discrete set

of demand units {1, . . . , qi}. A cost allocation rule, or a rule for short, is a map f that allocates
a real number fij(N, q, C, P ) to each demand unit j ∈ {1, . . . , qi} of each consumer i ∈ N . Each rule
studied in this paper follows the two following principles.

(i) Budget balanced principle: a cost allocation rule must recover the total cost of operating
the network. This means that the network operator does not make any losses or profits from its
activity.

(ii) Independence of higher demands principle: the amount allocated to a consumer for a
certain demand unit should be independent from any other greater demand unit. This principle
makes it possible to avoid situations where the presence of a consumer with a high demand
implies additional and unjustified costs to consumers with lower demands. The independence of
higher demands principle was formally discussed by Moulin and Shenker (1992) in the context
of cost sharing problems.

The quantity fij(N, q, C, P ) can be interpreted as the additional amount allocated to consumer i if he
increases his demand from j − 1 to j. In other words, a rule describes how the amount allocated to
a consumer varies according to his demand. This can be useful, for example, if one wishes to derive
a pricing schedule from a rule. Obviously, it suffice to sum each fij(N, q, C, P ), j ∈ {1, . . . , qi}, to
obtain the total allocation of i. In addition to (i) and (ii), we discuss two other principles.

(iii) Connection principle: a consumer should only be charged for the costs associated with the
specific pipelines that connect him to the source. This ensures that costs are allocated fairly and
that consumers are not burdened with the costs of infrastructure that they do not benefit from.

(iv) Uniformity principle: two consumers with the same demands should be charged with the same
amount regardless of their geographical location. For example, there should be no difference in
treatment between rural and urban consumers, although the underlying distribution costs are
different. In fact, (public) network operators in France highly favor rules that respect this
principle (see Fleurbaey and Trannoy (1998)). The aim is to reduce inequalities and ensure that
all residents have access to a similar level of public services.

Contrary to principles (i) and (ii), principles (iii) and (iv) are incompatible and cannot be satisfied
by the same rule. Indeed, (iii) states that consumers should only pay for the portion of the network
they use. Therefore, two consumers with the same demands can be charged with different amount
depending on their position on the network, which contradicts (iv).

In this paper, we propose three rules. First, the Connection rule, follows principles (i), (ii)
and (iii). It ensures that each consumer pays a fair share of the portion of the network that connect
him to the source. Second, the Uniform rule, follows principles (i), (ii) and (iv). It ensures that
two consumers are allocated the same amount for the same demand unit, regardless of any other
parameters of the gas distribution problem. Since the principles (iii) and (iv) are incompatible, we
propose a family of rules to compromise between them: the Mixed rules. We detail how these rules
are computed in the next section.

We formalize (iii) and (iv) into axioms for rules. Additionally, we introduce other axioms that do
not necessarily fit into the idea of principles (iii) and (iv) but can still be viewed as desirable properties
in the context of gas distribution. Combining these axioms, we provide an axiomatic characterization
for each rule introduced in this paper. Observe that principles (i) and (ii) are not formalized into
axioms. Instead, we directly incorporate them into the formal definition of a rule (see Definition 2).
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1.3. Computing the cost allocation rules

To clearly present our rules, assume that a pipeline i ∈ N is built, step by step, by increasing its
capacity from 0 to its effective capacity, which we denote by qi. At each step j ∈ {1, . . . , qi}, pipeline
i undergoes an upgrade, called the j-th upgrade of i. Due to this upgrade, an incremental cost
AC

ij = C(i, j) − C(i, j − 1) is generated. This incremental cost represents the additional operation
costs incurred by the upgrade. This procedure allows us to explain how each upgrade impacts the
cost allocations.

The Connection rule is computed as follows. Pick any pipeline i ∈ N . Step 1: let us assign a
capacity of 1 to pipeline i. This corresponds to its 1-st upgrade. The Connection rule allocates the
incremental cost AC

i1 equally among the first demand unit of all downstream consumers of i. Step 2:
upgrade the capacity of pipeline i by one unit. This 2-nd upgrade generates a positive incremental cost
AC

i2. The Connection rule allocates this incremental cost equally among the second demand units of
all downstream consumers of i whose effective demand exceeds or equals 2. This procedure continues
until pipeline i reaches its effective capacity, i.e., until Step qi. This procedure is applied to each
pipeline and defines the Connection rule (see Algorithm 1).

The Uniform rule is computed in a similar manner. Pick any pipeline i ∈ N . Step 1: the
Uniform rule allocates AC

i1 equally among the first demand units of all consumers regardless of their
position on the network. Step 2: the Uniform rule allocates AC

i2 equally among the second demand
units of all consumers whose effective demand exceeds or equals 2. This procedure continues until
Step qi. This procedure is applied to each pipeline and defines the Uniform rule (see Algorithm 2).

To reach a compromise between principles (iii) and (iv), we propose the family of Mixed rules.
Each rule in this family achieves a compromise by means of convex combinations between the Connec-
tion rule and the Uniform rule. Pick any pipeline i ∈ N . Step 1: the Mixed rule allocates AC

i1 to the
first demand unit of each consumer. This allocation is computed as a convex combination between the
two allocations prescribed by the Connection rule and the Uniform rule. This combination depends on
a parameter α1 ∈ [0, 1]. For instance, if α1 = 0.8, the final allocation consists of 80% of the allocation
prescribed by the Connection rule, plus 20% of the allocation prescribed by the Uniform rule. Step 2:
the Mixed rule allocates AC

i2 among the second demand units of all consumers whose effective demand
exceeds or equals 2. This allocation is computed as a convex combination between the Connection
rule and the Uniform rule. This second combination depends on a parameter α2 ∈ [0, 1], which may be
different from α1. This procedure continues until Step qi. This procedure is applied to each pipeline
and defines the Mixed rules (see Algorithm 3).

Observe that the Mixed rules allow to reach different compromises depending on the level of
upgrade one is considering. For instance, it is possible to reach a compromise in favor of (iv) for
low-capacity upgrades. This ensures that consumers with low effective demand are treated relatively
equally, regardless of their geographical location. Meanwhile, it is possible to reach a compromise
in favor of (iii) for high-capacity upgrades. In this way, consumers with high effective demand are
allocated an amount (for their highest demand units) that reflects their true impact on the cost of the
network. Finally, observe that each rule can be computed in polynomial time. This is obvious from
the Algorithms 1, 2 and 3.

1.4. Comparison with multi-choice games

An appropriate game theoretic tool for modeling gas distribution problems are multi-choice (coop-
erative) games. Multi-choice games, introduced by Hsiao and Raghavan (1992) and van den Nouweland
(1993), are a natural extension of TU-games in which each player is endowed with a certain number
of activity levels. A (multi-choice) coalition is a profile describing each player’s activity level within
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this coalition. The worth of each coalition is measured by a characteristic function. Given a gas
distribution problem, we derive a special multi-choice game associated with this problem. This game
is called the gas distribution game. The player set represents the set of consumers, and the activity
levels represent the demands of the consumers. The worth of a coalition corresponds to the total cost
of the network in which each pipeline meets its effective capacity. The Connection rule applied to a
gas distribution problem corresponds to the multi-choice Shapley value, introduced by Lowing and
Techer (2022), of the corresponding gas distribution game. Similarly, the Uniform rule corresponds
to the multi-choice Equal division value and the Mixed rules to the multi-choice Egalitarian Shapley
values. Both values are introduced by Lowing and Techer (2022). Moreover, for each gas distribution
problem, the multi-choice Shapley value of the corresponding gas distribution game is in the Core of
this gas distribution game.

1.5. Related literature

The delivery of natural gas from production sites to consumers can be separated into two stages:
transmission and distribution. While some papers address cost or resource sharing issues in the context
of gas transmission, few studies have addressed similar problems in gas distribution. For instance,
Junqueira et al. (2007) investigate cost allocation in energy transmission networks, and Bergantiños
et al. (2017) examine the allocation of energy losses in transmission networks. On the other hand, some
papers focus on cooperation aspects of gas-related issues, such as Massol and Tchung-Ming (2010),
who explore cooperation among liquefied gas suppliers, and Csercsik et al. (2019) who model transfer
profits as externalities using partition function form games.

The gas distribution problem shares some technical similarities with the polluted river problem
studied by Ni and Wang (2007), Dong et al. (2012), van den Brink et al. (2018), and Li et al. (2022),
to cite a few. In the polluted river problem, agents living along a river must bear the cost of cleaning
the water, which carries pollutants. To clean the water, some costs are incurred and must be allocated
among the agents. The main difference between the two models is that the gas distribution problem
takes into account the demands of consumers (or agents), while the polluted river problem does
not. The connection principle invoked in the gas distribution problem is analogous to the upstream
responsibility principle used in the unlimited territorial integrity theory for polluted river problems,
which states that agents located along the polluted river should pay for cleaning the portion of the
river that connects them to the source of the river (see Dong et al. (2012) for details). Furthermore,
the Connection rule is conceptually close to the Downstream equal sharing solution, introduced by
Dong et al. (2012) for polluted river problems.

Similarly to how we make an analogy between gas distribution problems and multi-choice games,
van den Brink et al. (2018) makes an analogy between polluted river problem and TU-games with a
permission structure (see Gilles et al. (1992) for details on games with a permission structure). In
particular, the authors show that the permission value (see van den Brink and Gilles (1996)) applied
to a special TU-game constructed from the polluted river problem is equivalent to the Downstream
equal sharing solution.

1.6. Overview of the paper

The rest of the paper is organized as follows. We define the gas distribution problem in Section 2.
Section 3 presents the cost allocation rules and provide their axiomatic characterizations. Section 4 is
dedicated to multi-choice games. Section 5 concludes and provides leads for future research. Section
6 is an appendix containing all the proofs of the results.

5



2. The model

Fix N = {a, b, . . . , n}, |N | ≥ 3, a finite set of consumers. These consumers are connected
to a source S through pipelines. The consumers and the pipelines form a fixed network, which
is modeled by a rooted tree graph. The rooted tree graph is a couple (N ∪ S, P ) where P is a map
P : N∪S −→ 2N∪S representing the links (pipelines) between the nodes. If no confusion arises, simply
denote the network by P . The relationship i′ ∈ P (i) means that i′ ∈ N is supplied right after consumer
i. Equivalently, denote i ∈ P−1(i′) if and only if i ∈ N is supplied right before consumer i′. In this
case, consumer i is called the predecessor of i′ while i′ is the successor of i. Put differently, i is the
head of the pipeline and i′ is the tail of the pipeline. In a rooted tree graph, each node has at most
one predecessor and only one node (the source) has no predecessor, i.e., P−1(S) = ∅. The transitive
closure of a rooted graph P is a rooted graph P̂ such that, for each i ∈ N , i′ ∈ P̂ (i) if and only if
there exists a path i = h1, h2, . . . , hk = i′ such that hk ∈ P (hk−1), . . . , h2 ∈ P (h1). The consumers in
P̂ (i) are called the subordinates of i ∈ N in P , and the consumers in P̂−1(i) := {i′ ∈ N : i ∈ P̂ (i′)}
are called the superiors of i ∈ N in P . Similarly, the set P̂ (E) represents the subordinates of the
consumers in E ⊆ N and P̂−1(E) represents the superiors of the consumers in E ⊆ N . For each i ∈ N ,
we call pipeline i the pipeline having consumer i at its tail. Consumer i ∈ N and his subordinates
are called the downstream consumers of pipeline i.

Each pipeline has a certain capacity, which is represented by an integer. Fix K ∈ N an upper
bound for the capacity of the pipelines. Each consumer i ∈ N has an effective demand in capacity
given by qi ≤ K. The profile of effective demands is denoted by q = (qa, . . . , qn). Without loss
of generality, assume that qn ≥ qi, for each i ∈ N . The set of all consumers whose effective demand
exceeds or equals j is denoted by Q(j) = {i ∈ N : qi ≥ j}. We assume that Q(1) = N . A cost
function is a map

C : N × {0, . . . ,K} → R+

that measures the cost of any pipeline of any capacity. Formally, for each i ∈ N and j ∈ {1, . . . ,K},
C(i, j) represents the cost of operating the pipeline i when it is designed have a capacity of j. We use
the convention C(i, 0) = 0 for each i ∈ N . We assume that each map

∀i ∈ N, C(i, .) : {1, . . . ,K} → R+

is non-decreasing: a larger pipeline’s capacity leads to higher costs. On the other hand, for any
j ∈ {1, . . . ,K} and any two i, i′ ∈ N , we do not necessarily have C(i, j) = C(i′, j). Indeed, the cost
of operating a pipeline may differ depending on the pipeline. These differences are due to exogenous
features of the gas distribution network such as the length or the geographical location of the pipelines.

Equivalently, a cost function can be expressed as a matrix of incremental costs. We denote by AC
ij

the incremental cost generated by the j-th upgrade of pipeline i, i.e., when pipeline i is upgraded
by one unit from capacity j − 1 to capacity j. Formally, it is defined as

∀i ∈ N, ∀j ∈ {1, . . . ,K}, AC
ij = C(i, j)− C(i, j − 1).

Obviously, AC
ij ≥ 0 for each i ∈ N and each j ∈ {1, . . . ,K}, since C(i, .) is a non-decreasing map. The

(n,K) matrix of incremental costs collects all the incremental costs, and is denoted by AC . Pick
any i ∈ N and any j ≤ K. The unit cost matrix Iij is the (n,K) matrix defined as

∀k ∈ N, l ≤ K, Iijkl =

{
1 if k = i, l = j,

0 otherwise.
(1)
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In such matrix, only the j-th upgrade of pipeline i generates non-null incremental costs. Unit cost
matrices will be used to focus on the specific upgrade of a specific pipeline. A matrix of incremental
costs AC can be expressed as the linear combination of n×K unit cost matrices:

AC =
∑
i∈N

∑
j≤K

AC
ijI

ij . (2)

We propose an approach to compute the total cost of operating a gas distribution network from
N , q, P and C. Alternative approaches are discussed at the end of this paper. Assume that each
pipeline is always designed at its effective capacity, i.e., its capacity equals the highest effective
demand of its downstream consumers. Then, for each i ∈ N , the cost of operating pipeline i is given
by

∀i ∈ N, C(i, qi), where qi = max
k∈P̂ (i)∪i

qk. (3)

Equivalently, observe that the cost of operating a pipeline can be expressed using incremental costs.

∀i ∈ N, C(i, qi) =
∑

j∈{1,...,qi}

AC
ij . (4)

Expression (4) highlights how the cost of operating a given pipeline varies according to its capacity.
The total cost of operating the network is computed as the sum of the costs of all the pipelines
designed at their effective capacity (3), which is given by∑

i∈N
C(i, qi), or equivalently,

∑
i∈N

∑
j∈{1,...,qi}

AC
ij . (5)

Definition 1 (The gas distribution problem). A gas distribution problem is denoted by (N, q, C, P ),
or by (q,AC) for short, since N and P are fixed and C and AC are equivalent. The problem is to
determine a way to allocate the total cost (5) among consumers based on their demands and their
location on the distribution network. The set of gas distribution problems is denoted by GDP .

3. Rules and characterizations

We address gas distribution problems by defining cost allocation rules (rules for short). This
section is devoted to the study of three rules: the Connection rule, the Uniform rule and the Mixed
rules. Our rules describe how the allocation of a consumer varies according to his demand. An
axiomatic characterization for each one of these rules is provided.

To properly define rules, we endow each consumer i ∈ N with the discrete set of demand units
{1, . . . , qi}. A (cost) allocation x ∈ Rn×K

+ on GDP assigns a non-negative real number xij to each de-
mand unit j ∈ {1, . . . , qi} of each consumer i ∈ N . We use the convention that for each j /∈ {1, . . . , qi},
xij = 0. We give a formal description of the Budget balanced principle and the Independence of higher
demands principle for allocations.

(i) Budget balanced principle: an allocation should recover the total cost of operating the
network, i.e., ∑

i∈N

∑
j∈{1,...,qi}

xij(q,A
C) =

∑
i∈N

∑
j∈{1,...,qi}

AC
ij .
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(ii) Independence of higher demands principle: the amount allocated to a consumer for a
certain demand unit is independent from any other greater demand unit, i.e., for each (q, AC) ∈
GDP and each l ∈ {0, . . . ,K},

∀i ∈ Q(l),∀j ≤ l, xij(q, A
C) = xij((qk ∧ l)k∈N , AC).

Definition 2 (Cost allocation rule). A cost allocation rule on GDP is a map

f : GDP → Rn×K
+

that associates an allocation f(q, AC) ∈ Rn×K
+ , satisfying (i) and (ii), to each gas distribution problem

(q, AC) ∈ GDP . The quantity fij(q, A
C) can be interpreted as the additional amount allocated to i if

he increases his demand from j − 1 to j, all other parameters being equal.

3.1. The Connection rule

We define the Connection rule on GDP . This rule ensures that each consumer pays a fair share
of the portion of the network that connect them to the source of gas. Formally, for each pipeline k
and each capacity j such that some downstream consumers of pipeline k are in Q(j), the Connection
rule allocates the incremental cost AC

kj equally among the downstream consumers of pipeline k that
are in Q(j).

Definition 3 (Connection rule). The Connection rule Ψ is defined, for each (q, AC) ∈ GDP , as

∀j ≤ qn, ∀i ∈ Q(j), Ψij(q, A
C) =

∑
k∈P̂−1(i)∪i

AC
kj

(|P̂ (k) ∪ k) ∩Q(j)|
. (6)

From (6), it is clear that the Connection rule follows the Budget balanced principle. Moreover, the
cost allocated to a consumer i for a demand unit j is computed using only the incremental costs gen-
erated by j-th upgrade of the pipelines. Therefore, the Connection rule also follows the Independence
of higher demands principle. Algorithm 1 formalizes the procedure depicted in the Introduction to
compute the Connection rule.

Algorithm 1: Connection rule

Data: Consumers N , upper bound K, matrix AC , profile q ∈ Nn and graph P .
Ψ← 0
\\This loops iterates over all pipelines
for k ∈ N do
\\This loops iterates over each integer j below the pipeline’s effective capacity. For each j, it
defines W as the set of downstream consumers of k whose effective demand exceeds or equals j

for j ≤ qk do
Q(j)← {i ∈ N : qk ≥ j}
D(k)← P̂ (k) ∪ {k}
W ← D(k) ∩Q(j)
\\Last loop allocates an equal share of AC

kj to the j-th demand unit of each consumers in W

for i ∈W do
Ψij ← Ψij +AC

kj/|W |
end

end

end
Result: Ψ
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An axiomatic characterization of the Connection rule is provided. It invokes two axioms. We say
that a pipeline is irrelevant to a consumer if it is not a pipeline that helps to connect this consumer
to the source. The first axiom is in line with the Connection principle as it ensures that a consumer
is not charged for the costs generated by irrelevant pipelines. Formally, the axiom states that the cost
charged to a demand unit of a consumer should not be impacted by an increase in incremental cost
of an irrelevant pipeline.

Independence to Irrelevant Cost (IIC): Pick any (q, AC) ∈ GDP . For each j ≤ K, each i ∈
P̂−1(Q(j)) ∪Q(j), and each ε ∈ R,

∀h ∈ Q(j), h /∈ (P̂ (i) ∪ {i}), fhj(q, A
C) = fhj(q, A

C + εIij).

The costs generated by a pipeline are relevant to any of its downstream consumers. The next axiom
is an equal loss requirement, arguing that the rule must treat each downstream consumer equally
regarding a given upstream cost. Formally, the axiom states that the amount allocated to the demand
unit j of two downstream consumers should be equally impacted by the increase of an incremental
cost generated by the j-th upgrade of an upstream pipeline.

Equal Loss for Downstream Consumers (EDC): Pick any (q, AC) ∈ GDP . For each j ≤ K,
each i ∈ P̂−1(Q(j)) ∪Q(j), and each ε ∈ R,

∀h, h′ ∈ (P̂ (i) ∪ {i}) ∩Q(j), fhj(q, A
C + εIij)− fhj(q, A

C) = fh′j(q,A
C + εIij)− fh′j(q, A

C).

Observe that (EDC) does not necessarily fit into the idea of the Connection principle or the Uniformity
principle. In fact, we will see that this axiom is also satisfied by the other rules presented in this paper.
We now have the necessary material to characterize the Connection rule.

Theorem 1. A rule f on GDP satisfies (IIC) and (EDC) if and only if f = Ψ.

Proof. See Appendix 6.1 □

Remark 1. The axioms invoked in this characterization are conceptually close to those used in Dong
et al. (2012) to characterize the Downstream equal sharing rule for polluted river problems. In short,
their characterization uses axioms equivalent to (IIC), (EDC), the Budget balanced principle and an
Additivity axiom. However, contrary to Dong et al. (2012), we do not use an Additivity axiom in our
characterization. Moreover, the Budget balanced principle is already incorporated within Definition
2, thus we do not invoke it in the characterization.

3.2. The Uniform rule

This section defines the Uniform rule on GDP . This rule ensures that two consumers should
always be allocated the same amount for the same demand unit, regardless of any other parameter of
the gas distribution problem. Formally, the Uniform rule allocates each incremental cost AC

ij equally
among each consumer in Q(j) (assuming that pipeline i’s effective capacity exceeds or equals j).

Definition 4 (Uniform rule). The Uniform rule Υ is defined, for each (q, AC) ∈ GDP , as

∀j ≤ qn,∀i ∈ Q(j), Υij(q, A
C) =

1

|Q(j)|
∑

k∈P̂−1(Q(j))∪Q(j)

AC
kj . (7)
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From (7), it is clear that the Uniform rule follows the Budget balanced principle and the Indepen-
dence of higher demands principle. Observe that the Uniform rule satisfies (EDC) but does not satisfy
(IIC). Algorithm 2 formalizes the procedure depicted in the Introduction to compute the Uniform rule.

Algorithm 2: Uniform rule

Data: Consumers N , upper bound K, matrix AC , profile q ∈ Nn and graph P .
Ψ← 0
\\This loops iterates over all pipelines
for k ∈ N do
\\This loops iterates over each integer j below the pipeline’s effective capacity. For each j, it
defines Q(j) as the set of consumers whose effective demand exceeds or equals j

for j ≤ qk do
Q(j)← {i ∈ N : qk ≥ j}
\\Last loop allocates an equal share of AC

kj to the j-th demand unit each of consumers in Q(j)

for i ∈ Q(j) do
Υij ← Υij +AC

kj/|Q(j)|
end

end

end
Result: Υ

To characterize the Uniform rule, we must introduce an additional axiom. Let f be a rule on GDP .
Assume that one or several pipelines generate additional costs due to exogenous reasons (incident,
natural disaster, etc), which leads to an increase of the incremental costs. Such event should not
increase the inequalities between the allocations of the consumers. Formally, pick any capacity j
and assume that all the incremental costs generated by the j-th upgrades of the pipelines increase.
Compare the difference between the highest allocation and the lowest allocation among the consumers
in Q(j) for their demand unit j. This difference should not be increased when the incremental costs
increase.

Non-Increasing Inequalities (NII): For each (q, AC), (q, AC′
) ∈ GDP such that AC′

ij ≥ AC
ij , for

each i ∈ N and j ≤ qn,

∀j ∈ {1, . . . , qn}, max
i∈Q(j)

fij(q, A
C′
)− min

i∈Q(j)
fij(q, A

C′
) ≤ max

i∈Q(j)
fij(q, A

C)− min
i∈Q(j)

fij(q, A
C).

This axiom is in line with the uniformity principle and is sufficient to characterize the Uniform rule.
Obviously, the Connection rule does not satisfy (NII).

Theorem 2. A rule f on GDP satisfies (NII) if and only if f = Υ.

Proof. See Appendix 6.2 □

3.3. The Mixed rule

The Uniform rule does not satisfy (IIC), and the Connection rule does not satisfy (NII). This
testifies that the uniformity principle and the connection principle are clearly incompatible. However,
both principles can be highly desirable in the context of gas distribution problems. For this reason,
a trade-off between the two principles is proposed by introducing a family of rules that compromises
between the uniformity principle and the connection principle. The rules in this family are called
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Mixed rules and are computed by using convex combinations between the Connection rule and the
Uniform rule. Moreover, Mixed rules allow for different compromises between the uniformity principle
and the connection principle, depending on the level of demand.

Definition 5 (Mixed rules). Let α = {αj}1≤j≤K be a parameter system such that αj ∈ [0, 1], for
each 1 ≤ j ≤ K. The α-Mixed rule µα is defined, for each (q, AC) ∈ GDP , as

∀j ≤ qn,∀i ∈ Q(j), µα
ij(q, A

C) = αjΨij(q, A
C) + (1− αj)Υij(q, A

C).

By definition, it is clear that any α-Mixed rule follows the Budget balanced principle and the Indepen-
dence of higher demands principle. Algorithm 3 formalizes the procedure depicted in the Introduction
to compute the Mixed rules.

Algorithm 3: Mixed rules

Data: Consumers N , upper bound K, matrix AC , profile q ∈ Nn, a graph P , and a system α ∈ [0, 1]K .
µ← 0
\\This loops iterates over all pipelines
for k ∈ N do
\\This loops iterates over each integer j below the pipeline’s effective capacity.
for j ≤ qh do

Q(j)← {i ∈ N : qk ≥ j}
D(k)← P̂ (k) ∪ {k}
W ← D(k) ∩Q(j)
\\This loops iterates over all consumers in Q(j). First, it allocates an equal share of
(1−αj)×AC

kj to the j-th demand unit of each consumers in Q(j). Then, it allocates an equal

share of αj ×AC
kj to the j-th demand unit of consumers in D(k).

for i ∈ Q(j) do
µij ← µij + (1− αj)×AC

kj/|Q(j)|
if i ∈ D(k) then

µij ← µij + αj ×AC
kj/|W |

end

end

end
Result: µ

Remark 2. A α-Mixed rule operates convex combinations between the Connection rule and the
Uniform rule. For each demand j ∈ {0, . . . , qn}, a consumer i ∈ Q(j) receives an allocation lying
between the Connection rule Ψij(q,A

C) and the Uniform rule Υij(q, A
C). If αj is closer to 1, then

this allocation is closer to Ψij(q, A
C). On the other hand, if αj is closer to 0, then this allocation is

closer to Υij(q, A
C).

To characterize the Mixed rules, we introduce four new axioms. The first axiom describes how an
irrelevant cost impacts the allocation of two distinct consumers. The second axiom describes how the
allocation of a consumer is impacted by two distinct irrelevant costs. The third axiom is a linearity
requirement. Finally, the last axiom describes the impact of a given cost on two consumers. This cost
being irrelevant for one of them, and relevant for the other.

Let f be a rule on GDP . The first axiom states that any two distinct consumers are equally
impacted by irrelevant costs, without specifying the extent of this impact. Pick any (q, Iij) ∈ GDP .
Recall that a unit cost matrix Iij possesses a unique non-null incremental cost. The next axiom states
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that any two distinct consumers for whom this incremental cost is irrelevant should be allocated the
same amount in (q, Iij).

Equal impact of irrelevant costs (EIC): For each (q, Iij) ∈ GDP ,

∀h, h′ ∈ Q(j), h, h′ /∈ (P̂ (i) ∪ {i}), fhj(q, I
ij) = fh′j(q, I

ij).

Observe that both the Connection rule and the Uniform rule satisfy (EIC). Moreover, (IIC) implies
(EIC). The converse is not true. The next axiom states that no matter where an irrelevant cost is
located, the impact of that cost on a consumer, for whom that cost is irrelevant, remains the same.
Formally, pick any two distinct problems (q, Iij), (q, Ii

′j) ∈ GDP . Assume that each of the two unit
cost matrices features a unique non-null incremental cost that can be considered irrelevant for a given
consumer. The axiom states that the consumer for whom these incremental costs are not relevant
should be allocated the same amount in both problems.

Location independence of irrelevant costs (LIC): For each (q, Iij), (q, Ii
′j) ∈ GDP ,

∀h ∈ Q(j), h /∈
[
P̂ (i) ∪ {i}

]
∪
[
P̂ (i′) ∪ {i′}

]
, fhj(q, I

ij) = fhj(q, I
i′j).

Observe that both the Connection rule and the Uniform rule satisfy (LIC). Moreover, (IIC) implies
(LIC). The converse is not true. The next axiom, Linearity, is a classical axiom in economic theory. An
interpretation is provided in the context of natural gas distribution. The costs of operating a network
can be divided into several categories. For instance, one could separate the maintenance costs and
the costs to access the gas storage. Linearity ensures that there is no difference by considering the
two costs separately or together. Moreover, if the costs are expressed in USD and we want the rule to
be expressed in EUR, then Linearity ensures that there is no difference between converting before or
after applying of the rule.

Linearity (L): For each (q, AC), (q, AC′
) ∈ G and each β ∈ R+,

∀(i, j) ∈M+, fij(q, A
C + βAC′

) = fij(q, A
C) + βfij(q, A

C′
).

Obviously, both the Connection rule and the Uniform rule satisfy (L). The last axiom advocates that
the costs incurred by a pipeline should mostly be allocated to its downstream consumers. Formally,
consider any problem (q, Iij) ∈ GDP . The axiom states that any consumer located downstream of
the cost generating pipeline i should not be allocated less than other consumers.

Fairness (F): For each (q, Iij) ∈ GDP ,

∀k ∈ (P̂ (i) ∪ {i}) ∩Q(j), ∀h ∈ Q(j), fkj(q, I
ij) ≥ fhj(q, I

ij).

Observe that both the Connection rule and the Uniform rule satisfy (F). We now have the material
to characterize the Mixed rules.

Theorem 3. A rule f on GDP satisfies (EIC), (LIC), (L) and (F) if and only if f = µα, for some
parameter system α.

Proof. See Appendix 6.3 □
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3.4. Illustrative example

Consider the set of consumers N = {a, b, c, d, e} and a source S in gas. In this example, we consider
the distribution network P and the profile of effective demands q = (2, 1, 3, 1, 3), which are illustrated
by Figure 2b. For convenience, we fix K = 3. We introduce the lengths of the pipelines, which is one
of the possible exogenous features of a network. The profile L = (1, 2, 1, 2, 1) collects these lengths.
Consider the cost function given by

C : {a, b, c, d, e, f} × {1, 2, 3} → R+

(i, j) 7→ Li + j.

This cost function computes the cost of a pipeline as the sum of its length plus its capacity. This
cost function is obviously overly simplified for the clarity of the example. But the cost of a pipeline
is increasing with respect to both parameters, which is consistent with reality. The corresponding
matrix of incremental costs is given by Figure 2a.

AC a b c d e

1 2 3 2 3 2
2 1 1 1 1 1
3 1 1 1 1 1

(a) Incremental costs

S

qb = 1 qa = 2

qc = 3qd = 1qe = 3

3 3

33 1

(b) Effective demands and network

Figure 2: Gas distribution problem

Consider pipeline a. The effective capacity of pipeline a is qc = 3. Therefore, this pipeline costs
C(a, qc) = La + qc = 4. The total cost of operating the gas distribution network is given by∑

i∈N
C(i, qi) = C(a, qc) + C(b, qe) + C(c, qc) + C(d, qd) + C(e, qe)

= 20.

The allocations of consumer c obtained by applying the Connection rule Ψ and the Uniform rule Υ
are given by Figure 3. In addition, we plot these allocations into Figure 4 to illustrate how c’s total
allocation varies according to his demand, all other parameters being equal. Pick α = (0, 0.5, 1). The
associated Mixed rule µα is given by Figure 3.

c 1 2 3 Total

Ψ 2.67 1.5 2 6.17
Υ 2.4 1.33 2 5.73
µα 2.4 1.415 2 5.815

Figure 3: Allocations of consumer c–table
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The Mixed rule µα favors the uniformity principle for the demand units 2, i.e., α1 = 0. It
compromises between the uniformity principle and the connection principle for the demand unit 2,
i.e., α2 = 0.5. Finally, it favors the connection principle for the demand unit 3, i.e., α3 = 1. In
Figure 4, any point located between a square and the corresponding star may represents the cost
share obtained by using a Mixed rule.

j

∑
l≤j

fcl(q, A
C)

2.67

4.17

6.17

1 2 3

2.4

3.73

5.73

⋆

⋆

⋆

■

■

■

■ = Ψ

⋆ = Υ

Figure 4: Allocations of consumer c–plot

4. Rules and Multi-choice games

This section presents multi-choice games as introduced by Hsiao and Raghavan (1992) and van den
Nouweland (1993). For each gas distribution problem, we derive a specific a specific multi-choice game
called the gas distribution game. Using this gas distribution game, we study how our rules relate to
some solution concepts from multi-choice games. In particular, we show that the Connection rule is a
stable rule, in the sense that consumers have an interest in becoming customers of the operator.

4.1. The gas distribution game

In order to remain consistent with gas distribution problems, some notation coincide with Section
2. Let N = {a, b, . . . , n} be a fixed set of players and K ∈ N. Each player i ∈ N has a finite
set of pairwise distinct activity levels Mi := {0, . . . , qi}, where qi ≤ K. Define the set of players
capable of playing at least activity level j as Q(j) = {i ∈ N : qi ≥ j}. Denote by M the Cartesian
product

∏
i∈N Mi. Each element s = (s1, . . . , sn) ∈ M specifies a participation profile for players

and is referred to as a (multi-choice) coalition. So, a coalition indicates each player’s activity level.
Then, q = (q1, . . . , qn) ∈ M is the players’ maximal participation profile that plays the role of the
grand coalition, whereas Θ = (0, . . . , 0) plays the role of the empty coalition. We use the notations
M+

i := Mi \ {0} for each i ∈ N and M+ :=
⋃

i∈N ({i} ×M+
i ). A pair (i, j) ∈M+ represents a player

and one of his activity levels. A (cooperative) multi-choice game on N is a couple (q, v) where
v :M−→ R is a characteristic function, with v(Θ) = 0, that specifies a worth, v(s), for each s ∈ M.
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The full class of multi-choice games is denoted by G. A multi-choice game is sub-modular if, for
each s, t ∈M,

v(s ∨ t) + v(s ∧ t) ≤ v(s) + v(t).

Consider (q, v) ∈ G. A payoff vector x ∈ RM+
for the game (q, v) assigns a payoff xij ∈ R to each pair

(i, j) ∈M+. A set-valued solution on G is a map F that assigns a collection of payoff vectors F (q, v) to
each (q, v) ∈ G. A value f is a single-valued solution on G, that assigns a unique payoff vector f(q, v)
to each (q, v) ∈ G. We define gas distribution games, which are specific multi-choice games based on
gas distribution problems. A gas distribution game, derived from a gas distribution problem (q, AC),
measures the total cost of each gas distribution problem (s,AC) in which each consumer i ∈ N has an
effective demand si ≤ qi. Put differently, a gas distribution game is a collection of all the total costs
that could be generated by networks smaller than the one they are derived from.

Definition 6 (The gas distribution game). For each (q,AC) ∈ GDP , its associated gas distribu-
tion (multi-choice) game (q, vC,P ) is defined as

∀s ≤ q, vC,P (s) =
∑
i∈N

C(i, si) =
∑
i∈N

∑
j∈{1,...,si}

AC
ij

where ∀i ∈ N, si = max
k∈P̂ (i)∪i

sk.

In a gas distribution game, the players represent the consumers and the activity levels represent the
demand units of the consumers. The worth vC,P (s) represents the cost of operating a network (s,AC)
in which each consumer i ∈ N has an effective demand of si. Obviously, vC,P (q) coincides with the
total cost of operating the network, and vC,P (0, . . . , 0) = 0 since C(i, 0) = 0 for each i ∈ N .

Remark 3. Pick any (q, AC) ∈ GDP . Since C(i, .) is non-decreasing for each i ∈ N , it follows
that the associated gas distribution game is monotonic, meaning that for each s ≥ t, it holds that
vC,P (s) ≥ vC,P (t).

4.2. Rules and solution concepts for multi-choice games

This section presents several solution concepts for multi-choice games and compare them with the
rules of Section 3. First, we present the multi-choice Shapley value as introduced by Lowing and Techer
(2022) for multi-choice games. To that end, we introduce restricted orders over the set of pairs M+

as defined by Grabisch and Xie (2007). Consider a gas distribution game (q, vC,P ). Restricted orders
are such that no pair (i, j) ∈ M+ is ordered before a pair (i′, j′) ∈ M+ with a strictly lower activity
level j′ < j. This means that no consumer can demand j +1 unless each consumer i ∈ Q(j) demands
at least j. Formally, a restricted order over the set of pairs is a bijection σ : M+ → {1, . . . ,

∑
i∈N qi}

defined as

∀(i, j), (i′, j′) ∈M+,
[
j < j′

]
=⇒

[
σ(i, j) < σ(i′, j′)

]
.

Denote by O the set of all restricted orders over the set of pairs. Let σ ∈ O be a restricted order
and h ∈ {1, . . . ,

∑
i∈N qi}. Denote by sσ,h the coalition formed after h steps. We use the convention

sσ,0 = Θ. Formally, it is defined as

∀i ∈ N, sσ,hi = max
{
j ∈ {1, . . . , qi} : σ(i, j) ≤ h

}
∪ {0}.
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For each σ ∈ O, the marginal vector ησ(q, vC,P ) is defined as

∀(i, j) ∈M+, ησij(q, v
C,P ) = vC,P (sσ,σ(i,j))− vC,P (sσ,σ(i,j)−1).

Each ησij(q, v
C,P ) is called the marginal contribution of the pair (i, j) to the coalition sσ,σ(i,j)−1, which

is formed after σ(i, j)−1 steps with respect to the restricted order σ. The marginal contribution of the
pair (i, j) can be interpreted as the additional costs generated when consumer i increases his demand
from j − 1 to j, according to the restricted order σ. We have the material to define the multi-choice
Shapley value for gas distribution games. This value assigns to each pair (i, j) ∈ M+ its expected
marginal contribution assuming that each restricted orders over the set of pairs occurs with the same
probability.

Definition 7 (The multi-choice Shapley value). For each gas distribution game (q, vC,P ), the
multi-choice Shapley value is defined as

∀(i, j) ∈M+, φij(q, v
C,P ) =

1∏
j∈{1,...,qn}

|Q(j)|!

∑
σ∈O

ησij(q, v
C,P ).

The next result states that, for each gas distribution problem, the Connection rule applied to the
problem coincides with the multi-choice Shapley value applied to the gas distribution game associated
with the problem.

Theorem 4. For each gas distribution problem (q, AC) ∈ GDP and its associated gas distribution
game (q, vC,P ),

φ(q, vC,P ) = Ψ(q, AC).

Proof. See Appendix 6.4 □

Next, we present the multi-choice Equal division value as introduced by Lowing and Techer (2022)
for multi-choice games. Assume that all consumers agree on forming a coalition in which everyone
has the same demand, let us say j. Each consumer i ∈ N with an effective demand qi ≤ j demands
qi. We call such coalition a j-synchronized coalition. For each activity level j ∈ {1, . . . , qn}, the
multi-choice Equal division value shares the difference in worth between the j-synchronized coalition
and the j − 1-synchronized coalition equally among the pairs containing the activity level j.

Definition 8 (The multi-choice Equal division value). For each gas distribution game (q, vC,P ),
the multi-choice Equal division value ξ is defined as

∀(i, j) ∈M+, ξij(q, v
C,P ) =

1

|Q(j)|

[
vC,P ((j ∧ qk)k∈N )− vC,P (((j − 1) ∧ qk)k∈N ))

]
.

The next result states that, for each gas distribution problem, the Uniform rule applied to the gas
distribution problem coincides with the multi-choice Equal division value applied to the gas distribu-
tion game associated with the problem.

Theorem 5. For each gas distribution problem (q, AC) ∈ GDP and its associated gas distribution
game (q, vC,P ),

ξ(q, vC,P ) = Υ(q, AC).
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Proof. The proof follows directly from Definition (6) and Definition (8). □

Next, we present the multi-choice Egalitarian Shapley values as defined by Lowing and Techer
(2022) for multi-choice games. These values operate a trade-off between the multi-choice Shapley
value and the multi-choice Equal division value by mean of convex combinations between the two
values. In particular, a convex combination is done for each demand, meaning that the trade-off
between the two values can differ depending on the demand.

Definition 9 (The multi-choice Egalitarian Shapley values). Let α = {αj}1≤j≤K be a param-
eter system such that αj ∈ [0, 1] for each 1 ≤ j ≤ K. For each gas distribution game (q, vC,P ), the
multi-choice Egalitarian Shapley value χα is defined as

∀(i, j) ∈M+, χα
ij(q, v

C,P ) = αjφij(q, v
C,P ) + (1− αj)ξij(q, v

C,P ).

The next result states that, for each gas distribution problem, the set of Mixed rules applied to the
problem coincides with the set of multi-choice Egalitarian Shapley values applied to the gas distribution
game associated with the problem.

Theorem 6. For each gas distribution problem (q, AC) ∈ GDP and its associated gas distribution
game (q, vC,P ), and for each parameter system α,

χα(q, vC,P ) = µα(q, AC).

Proof. The proof follows directly from Theorem 4 and Theorem 5. □

We introduce one last solution concept: the Core of a gas distribution game, inspired from the Core
for multi-choice games introduced by Grabisch and Xie (2007). The Core is defined by two principles.
The first principle (8) states that no coalition can achieve, by itself, a better outcome than the one
prescribed by the payoff vectors in the Core. The second principle (9) states that any l-synchronized
coalition achieves the same outcome than the one prescribed by the payoff vectors in the Core.

Definition 10 (The Core). The Core of a gas distribution game (q, vC,P ), denoted by C(q, vC,P ), is
the set of payoff vectors x ∈ R

∑
i∈N qi defined as

x ∈ C(q, vC,P ) ⇐⇒


∀s ≤ q,

∑
i∈N

si∑
j=1

xij ≤ vC,P (s), (8)

∀l ≤ qn,
∑
i∈N

l∧qi∑
j=1

xij = vC,P ((l ∧ qi)i∈N ). (9)

If we re-interpret the Core principles in terms of rule for gas distribution problems, principle (8)
ensures that consumers always pay less than the cost of supplying themselves in gas and (9) states
that if a group of consumers, which synchronize their demands in the sense of a synchronized coalition,
decide to supply themselves without resorting to the network operator, then they should pay the same
amount as they would have been charged by the operator. Thus, the Core can be viewed as the set
of stable rules, in the sense that consumers have an interest in becoming customers of the operator.
We point out that principle (8) is the opposite from the original definition of the Core provided by
Grabisch and Xie (2007). For each gas distribution problem, the multi-choice Shapley value applied
to a gas distribution game is always in the Core. Therefore, the Connection rule is a stable rule.
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Theorem 7. For each gas distribution problem (q, AC) ∈ GDP and its associated gas distribution
game (q, vC,P ),

φ(q, vC,P ) ∈ C(q, vC,P ).

Proof. See Appendix 6.5 □

5. Conclusion

In this paper, we define gas distribution problems and determine three cost allocation rules for these
problems on the basis of principles. Applying the connection principle, we propose the Connection
rule. Applying the uniformity principle, we propose the Uniform rule. To compromise between
the connection principle and the uniformity principle, we propose the Mixed rules. We provide an
axiomatic characterization for each of these rules. In addition, these rules coincide with solution
concepts from multi-choice games. In particular, the Connection rule applied to a gas distribution
problem belongs to the Core of a specific multi-choice game derived from this problem.

Throughout this study, we assume that each pipeline is designed to meet its highest downstream
demand. Let us call this approach the optimistic approach to pipeline design. The main drawback
of this approach is that a pipeline can only satisfy a few effective demands at a time. In particular,
the highest downstream demand of a pipeline already saturates its capacity. However, this approach
has its advantages since it can be implemented at a low cost while ensuring a minimal service to
consumers.

An alternative is the pessimistic approach to pipeline design: the network operator must be able
to satisfy all effective demand at any time. Therefore each pipeline should have the capacity to meet
the sum of all the effective demands of its downstream consumers. Unlike the previous approach,
this approach ensures a flawless service to consumers. The main drawback of this approach is the
resulting total cost of operating the network. Indeed, a network designed this way would probably be
too expensive to operate.

The two approaches have their advantages and their drawbacks. Therefore, a compromise between
these two approaches may be interesting to investigate. A hybrid approach would allow the network
to handle multiple effective demands simultaneously while limiting overall operation costs. Exploring
such an approach could be an interesting path for future research.
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6. Appendix

To properly conduct the proofs of our results, we introduce a Lemma. By the Independence of
higher demands principle, the total amount allocated to consumers in Q(j) for their demand unit j is
equal to the sum of all incremental costs, generated by the j-th upgrades of the pipelines that connect
the consumers in Q(j) to the source.

Lemma 1. Pick a rule f on GDP . For each (q, AC) ∈ GDP ,

∀l ≤ qn,
∑

i∈Q(l)

fil(q, A
C) =

∑
i∈P̂−1(Q(l))∪Q(l)

AC
il .

Proof. Pick a rule f on GDP . By the Budget balanced principle, for each (q,AC) ∈ GDP ,∑
i∈N

∑
j∈{1,...,qi}

fij(q, A
C) =

∑
i∈N

∑
j∈{1,...,qi}

AC
ij

⇐⇒
∑

j∈{1,...,qn}

∑
i∈Q(j)

fij(q, A
C) =

∑
i∈N

∑
j∈{1,...,qi}

AC
ij (10)

Recall that, for each i ∈ N ,
qi = max

h∈P̂ (i)∪i
qh.

Observe that, for each l ≤ qn, and each i ∈ N ,

((l ∧ q)k∈N )i = max
h∈P̂ (i)∪i

((l ∧ q)k∈N )h

= max
h∈P̂ (i)∪i

(l ∧ qh)

=


l if max

h∈P̂ (i)∪i
qh ≥ l

max
h∈P̂ (i)∪i

qh otherwise.

= l ∧ qi. (11)

For each l ≤ qn, ∑
j∈{1,...,l}

∑
i∈Q(j)

fij(q, A
C) =

∑
j∈{1,...,l}

∑
i∈Q(j)

fij((l ∧ qk)k∈N , AC)

=
∑
i∈N

∑
j∈{1,...,((l∧q)k∈N )i}

AC
ij

=
∑
i∈N

∑
j∈{1,...,l∧qi}

AC
ij

where the first equality follows from the Independence of higher demands principle, the second from
(10), and the third from (11). Similarly,∑

j∈{1,...,l−1}

∑
i∈Q(j)

fij(q, A
C) =

∑
j∈{1,...,l−1}

∑
i∈Q(j)

fij(((l − 1) ∧ qk)k∈N , AC)

=
∑
i∈N

∑
j∈{1,...,(l−1)∧qi}

AC
ij .
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Therefore, for each l ≤ qn,∑
i∈Q(l)

fil(q, A
C) =

∑
j∈{1,...,l}

∑
i∈Q(j)

fij(q, A
C)−

∑
j∈{1,...,l−1}

∑
i∈Q(j)

fij(q, A
C)

=
∑
i∈N

∑
j∈{1,...,l∧qi}

AC
ij −

∑
i∈N

∑
j∈{1,...,(l−1)∧qi}

AC
ij

=
∑
i∈N

[ ∑
j∈{1,...,l∧qi}

AC
ij −

∑
j∈{1,...,(l−1)∧qi}

AC
ij

]
.

To conclude this proof, observe that, for each i ∈ N such that l ∧ qi = (l − 1) ∧ qi (i.e., qi ≤ l − 1),∑
j∈{1,...,l∧qi}

AC
ij −

∑
j∈{1,...,(l−1)∧qi}

AC
ij = 0.

To the contrary, for each i ∈ N such that l ∧ qi > (l − 1) ∧ qi (i.e., qi ≥ l),∑
j∈{1,...,l∧qi}

AC
ij −

∑
j∈{1,...,(l−1)∧qi}

AC
ij = AC

il .

Observe that qi ≥ l if and only if i ∈ P̂−1(Q(l)) ∪ Q(j). Therefore, for each l ≤ qn, we obtain the
desired result ∑

i∈Q(l)

fil(q, A
C) =

∑
i∈P̂−1(Q(l))

AC
il .

□

6.1. Proof of Theorem 1

Existence: We show that Ψ satisfies the axioms of the statement of Theorem 1.

(IIC): The proof follows directly from the definition of the Connection rule. The allocated to a con-
sumer i for a demand unit j is computed using only the incremental costs generated by the pipelines
that connect i to the source. Therefore, the incremental costs generated by the pipelines irrelevant to
i are not taken into account by the Connection rule when computing the allocation of i for his demand
unit j.

(EDC): Pick any (q, AC) ∈ GDP , any i ∈ N , any j ≤ qn, and any ε ∈ R. Assume that there exists
two distinct consumers h, h′ ∈ (P̂ (i) ∪ {i}) ∩Q(j). For h, it holds that

Ψhj(q, A
C + εIij)−Ψhj(q, A

C) =
∑

k∈P̂−1(h)∪h

AC
kj + εIijkj

|(P̂ (k) ∪ {k}) ∩Q(j)|
−

∑
k∈P̂−1(h)∪h

AC
kj

|(P̂ (k) ∪ {k}) ∩Q(j)|

=
∑

k∈P̂−1(h)∪h

εIijkj

|(P̂ (k) ∪ {k}) ∩Q(j)|

=
ε

|(P̂ (i) ∪ {i}) ∩Q(j)|
.
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Similarly, for h′, it holds that

Ψh′j(q, A
C + εIij)−Ψh′j(q, A

C) =
ε

|(P̂ (i) ∪ {i}) ∩Q(j)|
,

which shows that Ψ satisfies the axiom.

Uniqueness: We show that the Connection rule is the only rule on GDP that satisfies all the axioms
of the statement of Theorem 1. Pick any (q, AC) ∈ GDP . Let f be a rule that satisfies all the axioms
of the statement of Theorem 1 on GDP . Let us show that f(q, AC) coincides with the Connection
rule. By definition of a rule, fij(q, A

C) = Ψij(q, A
C) = 0 whenever j > qi, for each i ∈ N . Pick any

i ∈ N and any j ≤ qi, we show that

fij(q, A
C) = Ψij(q, A

C).

Consider the problem (q, Aj) ∈ GDP , in which Aj is defined as

∀k ∈ N, ∀l ≤ K, Aj
kl =

{
0 if l = j and k ∈ P̂−1(Q(j)) ∪Q(j)

AC
kl otherwise.

By Lemma 1, ∑
k∈Q(j)

fkj(q,A
j) =

∑
k∈P̂−1(Q(j))∪Q(j)

Aj
kj

= 0

By definition, a rule assigns non-negative allocations. Therefore,

∀k ∈ Q(j), fkj(q, A
j) = 0.

In (q, Aj), the incremental cost Aj
kj of each pipeline k ∈ P̂−1(Q(j))∪Q(j) has been nullified. We have

shown that fkj(q, A
j) = 0 for each k ∈ Q(j). In particular, fij(q,A

j) = 0. In this part of the proof

we consider, one by one, the pipelines that have been nullified in P̂−1(Q(j))∪Q(j). For each pipeline
k ∈ P̂−1(Q(j)) ∪Q(j), we will un-nullified the incremental cost Aj

kj into Akj and discuss the impact
on the allocation of i for his demand unit j. This way, we reconstruct the problem (q, A) to show the
desired result.

Pick any a ∈ P̂−1(Q(j)) ∪Q(j). If a /∈ P̂−1(i) ∪ {i}, then by (IIC), it holds that

fij(q, A
j +AC

ajI
aj) = fij(q, A

j)

= 0.

If a ∈ P̂−1(i) ∪ {i}, then by (EDC),

∀h ∈ (P̂ (a) ∪ {a}) ∩Q(j), fij(q, A
j +AC

ajI
aj)− fij(q, A

j) = fhj(q, A
j +AC

ajI
aj)− fhj(q, A

j)

⇐⇒ fij(q, A
j +AC

ajI
aj) = fhj(q, A

j +AC
ajI

aj). (12)
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By (IIC),

∀h ∈ Q(j), h /∈ P̂ (a) ∪ {a}, fhj(q, A
j +AC

ajI
aj) = fhj(q, A

j)

= 0. (13)

It follows that ∑
h∈Q(j)

fhj(q, A
j +AC

ajI
aj) =

∑
k∈P̂−1(Q(j))∪Q(j)

(
Aj +AC

ajI
aj
)
kj

⇐⇒
∑

h∈Q(j)

fhj(q, A
j +AC

ajI
aj) = AC

aj

⇐⇒
∑

h∈(P̂ (a)∪{a})∩Q(j)

fhj(q, A
j +AC

ajI
aj) = AC

aj

=⇒ fij(q, A
j +AC

ajI
aj) =

AC
aj

|P̂ (a) ∪ {a} ∩Q(j)|
,

where the first equality follows from Lemma 1, the second equality follows from the definition of Aj ,
the third equality follows from (13), and the fourth equality follows from (12). To summarize,

fij(q, A
j +AC

ajI
aj) =


AC

aj

|P̂ (a) ∪ {a} ∩Q(j)|
if a ∈ P̂−1(i) ∪ {i}

0 if a /∈ P̂−1(i) ∪ {i}.

Next, pick b ∈ P̂−1(Q(j)) ∪Q(j), b ̸= a. If b ∈ P̂−1(i) ∪ {i}, then by (EDC), it holds that

∀h ∈ (P̂ (b) ∪ {b}) ∩Q(j), fij(q, A
j +AC

ajI
aj +AC

bjI
bj)− fij(q,A

j +AC
ajI

aj)

= fhj(q, A
j +AC

ajI
aj +AC

bjI
bj)− fhj(q, A

j +AC
ajI

aj)

= λ, (14)

for some λ ∈ R. By (IIC),

∀h ∈ Q(j), h ∈ P̂ (b) ∪ {b}, fhj(q, A
j +AC

ajI
aj +AC

bjI
bj) = fhj(q, A

j +AC
ajI

aj). (15)

It follows that ∑
h∈Q(j)

fhj(q, A
j +AC

ajI
aj +AC

bjI
bj) = AC

aj +AC
bj

⇐⇒
∑

h∈(P̂ (b)∪{b})∩Q(j)

(fhj(q, A
j +AC

ajI
aj) + λ)

+
∑

h/∈(P̂ (b)∪{b})∩Q(j)

fhj(q, A
j +AC

ajI
aj) = AC

aj +AC
bj

⇐⇒
∑

h∈(P̂ (b)∪{b})∩Q(j)

λ+
∑

h∈Q(j)

fhj(q,A
j +AC

ajI
aj) = AC

aj +AC
bj

⇐⇒ |(P̂ (b) ∪ {b}) ∩Q(j)|λ+AC
aj = AC

aj +AC
bj

⇐⇒ |(P̂ (b) ∪ {b}) ∩Q(j)|λ = AC
bj

⇐⇒ λ =
AC

bj

|(P̂ (b) ∪ {b}) ∩Q(j)|
,
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where the first equality follows from Lemma 1 and the definition of Aj , the second equality follows
from (14), and the fourth equality follows from (15) and Lemma 1. We obtain

fij(q, A
j +AC

ajI
aj +AC

bjI
bj) = fij(q, A

j +AC
ajI

aj) +
AC

bj

|P̂ (b) ∪ {b} ∩Q(j)|

=


AC

aj

|P̂ (a) ∪ {a} ∩Q(j)|
+

AC
bj

|P̂ (b) ∪ {b} ∩Q(j)|
if a ∈ P̂−1(i) ∪ {i}

AC
bj

|P̂ (b) ∪ {b} ∩Q(j)|
if a /∈ P̂−1(i) ∪ {i}.

If b /∈ P̂−1(i) ∪ {i}, then

fij(q, A
j +AC

ajI
aj +AC

bjI
bj) = fij(q, A

j +AC
ajI

aj)

=


AC

aj

|P̂ (a) ∪ {a} ∩Q(j)|
if a ∈ P̂−1(i) ∪ {i}

0 if a /∈ P̂−1(i) ∪ {i}.

We have considered the pipelines a and b in P̂−1(Q(j)) ∪Q(j). Continue this reasoning until all the
pipelines in P̂−1(Q(j)) ∪Q(j) have been considered once. Then, we obtain

fij(q, A
C) = fij(q,

∑
h∈P̂−1(Q(j))∪Q(j)

Aj
hjI

hj)

=
∑

k∈P̂−1(i)∪i

AC
kj

(|P̂ (k) ∪ k) ∩Q(j)|

= Ψij(q,A
C).

We have shown that fij(q, A
C) = Ψij(q, A

C) for any i ∈ N and any j ≤ qi. This concludes the proof
of Theorem 1. □

The axioms of the statement of Theorem 1 are logically independent, as shown by the following
alternative solutions.

- The Uniform rule satisfies (EDC) but does not satisfy (IIC).

- Pick any (q, AC) ∈ GDP and fix any arbitrary integer βi′ ∈ {1, 2} for each i′ ∈ N . The rule fβ

given by

∀j ≤ qn,∀i ∈ Q(j), fβ
ij(q, A

C) =
∑

k∈P̂−1(i)∪{i}

βi∑
x∈Q(j)

βx
×AC

kj ,

satisfies (IIC) but does not satisfy (EDC).
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6.2. Proof of Theorem 2

Existence: The proof is straightforward since each consumer is charged with the same amount for a
given demand. Thus the Uniform rule satisfies (NII).

Uniqueness: We show that the Uniform rule is the only rule on GDP that satisfies all the axioms
of the statement of Theorem 2. Consider (q,AC) ∈ GDP and f a rule that satisfies all the axioms of
the statement of Theorem 2 on GDP . Let us show that f(q, AC) is uniquely determined. By Lemma
1, for each j ≤ qn, ∑

i∈Q(j)

fij(q, A
C) =

∑
i∈P̂−1(Q(j))∪Q(j)

AC
ij . (16)

Consider the matrix of incremental costs A0,j in which each incremental cost generated by a j-th
upgrade is null, i.e.,

∀k ∈ N, ∀l ≤ K, A0,j
kl =

{
0 if l = j and k ∈ Q(j)

AC
kl otherwise.

By definition of a rule, each allocation is positive. Thus, by (16),

∀j ≤ qn, ∀i ∈ Q(j), fij(q, A
0,j) = 0.

The difference between any two allocations is always null. Therefore, by (NII) and the positivity of
the allocations, we get

∀j ≤ qn,∀i, i′ ∈ Q(j), fij(q, A
C) = fi′j(q,A

C). (17)

Combining (16) and (17), f(q,AC) is uniquely determined, which concludes the proof. □

6.3. Proof of Theorem 3

Pick any α parameter system and consider the Mixed rule µα. By definition, and the fact that
µα is computed as a convex combination of Ψ and Υ, µα satisfies all the axioms of the statement of
Theorem 3.

It remains to show that the Mixed rules are the only rules that satisfy all the axioms of the
statement of Theorem 3. Consider (q, AC) ∈ GDP and f on GDP a rule that satisfies all the axioms
of the statement of Theorem 3. First, pick any Iij such that j ≤ qn and i /∈ P̂−1(Q(j)) ∪Q(j). The
Budget balanced principle implies that∑

k∈N

∑
l∈{1,...,qk}

fkl(q, I
ij) =

∑
k∈N

∑
l∈{1,...,qk}

Iijkl

= 0.

Since the cost share charged to each demand of each consumer is non-negative, it follows that, for
each k ∈ N and each l ∈ {1, . . . , qk},

fkl(q, I
ij) = 0.

Therefore, f(q, Iij) is uniquely determined whenever j ≤ qn and i /∈ P̂−1(Q(j)) ∪Q(j).
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Now, Pick any Iij such that j ≤ qn and i ∈ P̂−1(Q(j)) ∪ Q(j). By (EIC), for each h, h′ ∈ Q(j)
such that h, h′ /∈ P̂ (i) ∪ {i},

fhj(q, I
ij) = fh′j(q, I

ij)

= Y, (18)

for some Y ≥ 0. By (F), for each h ∈ (P̂ (i) ∪ {i}) ∩Q(j),

fhj(q, I
ij) ≥ Y

⇐⇒ fhj(q, I
ij) = Y +W, (19)

for some W ≥ 0. By Lemma 1, ∑
h∈Q(j)

fhj(q, I
ij) = 1. (20)

Observe that Y ≤ 1
Q(j) . By 19 and (20), it follows that

|(P̂ (i) ∪ {i}) ∩Q(j)|(Y +W ) + |Q(j) \ ((P̂ (i) ∪ {i}) ∩Q(j))|Y = 1

⇐⇒ |(P̂ (i) ∪ {i}) ∩Q(j)|W = 1− |Q(j)|Y
=⇒ 0 ≤ |(P̂ (i) ∪ {i}) ∩Q(j)|W ≤ 1

⇐⇒ 0 ≤W ≤ 1

|(P̂ (i) ∪ {i}) ∩Q(j)|

⇐⇒ W =
αj

|(P̂ (i) ∪ {i}) ∩Q(j)|
, (21)

for some 0 ≤ αj ≤ 1. Combining (18), (19),(20) and (21), we obtain

|Q(j)|Y + αj = 1

⇐⇒ Y =
1− αj

|Q(j)|
. (22)

Combining (19) and (22), for each h ∈ (P̂ (i) ∪ {i}) ∩Q(j), we obtain

fhj(q, I
ij) =

1− αj

|Q(j)|
+

αj

|(P̂ (i) ∪ {i}) ∩Q(j)|
. (23)

By (20) and by the Budget balanced principle, for each l ̸= j and h ∈ Q(l),

fhl(q, I
ij) = 0. (24)

Finally, combining (22),(23) and (24), we obtain

∀l ≤ qn, h ∈ Q(l),

fhl(q, I
ij) =


0 if l ̸= j,

1− αj

|Q(j)|
if l = j and h /∈ P̂ (i) ∪ {i},

1− αj

|Q(j)|
+

αj

|(P̂ (i) ∪ {i}) ∩Q(j)|
if l = j and h ∈ P̂ (i) ∪ {i},
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for some 0 ≤ αj ≤ 1. However, observe that

∀l ≤ qn, h ∈ Q(l),

Ψhl(q, I
ij) =


0 if l ̸= j,

0 if l = j and h /∈ P̂ (i) ∪ {i},
1

|(P̂ (i) ∪ {i}) ∩Q(j)|
if l = j and h ∈ P̂ (i) ∪ {i}.

and

Υhl(q, I
ij) =


0 if l ̸= j,

1

|Q(j)|
if l = j and h /∈ P̂ (i) ∪ {i},

1

|Q(j)|
if l = j and h ∈ P̂ (i) ∪ {i}.

Thus, for each h ∈ N and l ≤ qh,

fhl(q, I
ij) = αlΨhl(q, I

ij) + (1− αl)Υhl(q, I
ij), (25)

for some parameter system α such that αj is the one determined above. Observe that, for any Ii
′j

such that i′ ∈ P̂−1(Q(j))∪Q(j) and i′ ̸= i, (EIC) and (LIC) ensure that 19 still holds. It follows that
(25) still holds for the same parameter αj even when considering a different incremental cost Ii

′j . By
(L), we conclude that f(q, AC) = µα(q, AC). The proof of Theorem 3 is completed. □

The axioms of the statement of Theorem 3 are logically independent, as shown by the following
alternative solutions. To properly explain the first two alternative solutions, we introduce the following
claim. Pick any (q, AC) ∈ GDP . Pick any sequence (f ij) i∈N

j≤K
of n ×K rules on GDP . Then, define

the map f as

f(q, AC) =
∑
i∈N
j≤K

f ij(q, IijAC
ij). (26)

This map also qualifies as a rule on GDP . Indeed, by the properties of the sum, f allocates a positive
payoff to each demand unit of each consumer. Moreover, by (5), f satisfies the Budget balanced
principle and the Independence of higher demands principle. In the next two alternative solutions, we
define rules computed in a similar manner than (26).

- Pick any (q, AC) ∈ GDP and any h ∈ N . Let us consider the problem (q, Ik1AC
k1), k ∈ N . Recall

that Q(1) = N . Define the allocation Ψ−h
i1 (q, Ik1AC

k1) of a consumer i ∈ N for his demand unit
1 by

Ψ−h
i1 (q, Ik1AC

k1) =



AC
k1

N
if i /∈ P̂ (k) ∪ {k} and i = h,

0 if i /∈ P̂ (k) ∪ {k} and i ̸= h,

AC
k1

1− 1
N

|P̂ (i) ∪ {i}|
if i ∈ P̂ (k) ∪ {k} and h /∈ P̂ (k) ∪ {k},

Ψi1(q, I
k1AC

k1) otherwise.

26



This allocation rule behaves just like the Connection rule, but it gives special treatment to h
by allocating him a non-null payoff for irrelevant costs. Indeed, for each i ∈ N , the amount
allocated by the Connection rule in (q, Ik1AC

k1) is given by

Ψi1(q, I
k1AC

k1) =


0 if i /∈ P̂ (k) ∪ {k},

AC
k1

P̂ (i) ∪ {i}
if i ∈ P̂ (k) ∪ {k}.

The main difference between the two rules Ψ−h
i1 and Ψi1 is that the former allocates

AC
k1
N to h

whenever AC
k1 is an irrelevant cost for h, whereas the later allocates a null share. In case AC

k1 is
a relevant cost for h, then the two allocations coincide.

Using the rule Ψ−h, let us define another rule denoted by f . For each demand level j > 1 and
each consumer i ∈ Q(j), fij(q, A

C) = Ψij(q, A
C). As for the demand level 1, f is defined by

∀i ∈ N, fi1(q,A
C) =

∑
k∈N

Ψ−h
i1 (q, Ik1AC

k1).

The rule f satisfies all the axioms except (EIC) since consumer h is getting a special treatment
for his first level of demand.

- Pick any (q,AC) ∈ GDP . For each k ∈ N , fix any parameter αk ∈ [0, 1]. The rule fα is defined,
for each (q, AC) ∈ GDP , as

∀j ≤ qn, ∀i ∈ Q(j),

fα
ij(q, A

C) =
∑

k∈P̂−1(Q(j))∪Q(j)

[
αkΨij(q, I

kjAC
kj) + (1− αk)Υij(q, I

kjAC
kj)

]
.

This rule operates different compromises between the connection principle and the uniformity
principle for each pipeline of the network. For instance, pipeline k ∈ N may be attributed
a parameter αk = 1, in which case the rule fα will share the incremental costs generated by
k according to the connection principle. Alternatively, pipeline k′ ∈ N may be attributed a
parameter αk′ = 0, in which case the rule fα will share the incremental costs generated by k′

according to the uniformity principle. The rule fα satisfies all the axioms except (LIC).

- The rule f given, for each (q, AC) ∈ GDP , by

∀j ≤ qn,∀i ∈ Q(j),

fij(q, A
C) =

{
Υij(q,A

C) if
∑

i∈N
∑

j∈{1,...,qi}A
C
ij ≤ 10,

Ψij(q, A
C) otherwise.

satisfies all the axioms except (L).

- The rule f is defined, for each (q, AC) ∈ GDP , as

∀j ≤ qn, ∀i ∈ Q(j),

fij(q, A
C) =

[( 1

|Q(j)|2
+

1

|Q(j)|

) ∑
k∈P̂−1(Q(j))∪Q(j)

AC
kj

]
− Ψij(q,A

C)

|Q(j)|
.

This rule satisfies all the axioms except Fairness.
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6.4. Proof of Theorem 4

In order to prove Theorem 4, we recall some definitions on TU-games. Consider a finite set of
players N = {a, b, . . . , n}. A TU-game is a couple (N, v), where v : 2N −→ R is a characteristic
function assigning to each coalition of players S ∈ 2N its worth v(S). For each (N, v), the Shapley
value is defined as

∀i ∈ N, Shi(N, v) =
1

n!

∑
σ∈O

(v(Eσ
i ∪ i)− v(Eσ

i )), (27)

where O is the set of all orders over N and Eσ
i is the coalition formed by the players ordered before i

according to the order σ.
Next, we introduce an intermediary result. To that end, consider a gas distribution problem

(q, AC) ∈ GDP and its associated gas distribution game (q, vC,P ). For each j ≤ qn, define the

TU-game (N,w
(q,vC,P )
j ) as

∀E ⊆ N, w
(q,vC,P )
j (E) = vC,P

[
(
∑
k∈N

(j − 1)ek +
∑
k∈E

ek) ∧ q

]
−vC,P

[
(
∑
k∈N

(j − 1)ek) ∧ q

]
.

The worth w
(m,vC,P )
j (E) can be interpreted as the surplus in cost generated in vC,P when a group of

players E decide to increase their activity level from j − 1 to j while all the other players play the
activity level j − 1 or their maximal feasible activity level if they are unable to play j − 1. The next
Lemma is already proved on the class of monotonic multi-choice games in Lowing and Techer (2022),
and so is omitted.

Lemma 2. For each gas distribution problem (q,AC) ∈ GDP , its associated gas distribution game
(q, vC,P ) verifies

∀(i, j) ∈M+, φij(q, v) = Shi(N,w
(q,vC,P )
j ). (28)

We have the material to prove Theorem 4. Consider (q, AC) ∈ GDP and j ≤ qn. For each k ∈ N ,
define the TU-game (Q(j), Rk) as

∀E ⊆ Q(j), Rk(E) =

{
1 if E ∩ (P̂ (k) ∪ k) ̸= ∅,
0 otherwise.

By definition of the Shapley value,

∀i ∈ N, Shi(Q(j), Rk) =


1

|(P̂ (k) ∪ k) ∩Q(j)|
if i ∈ P̂ (k) ∪ k,

0 otherwise.

(29)

Consider (q, vC,P ) ∈ G, the gas distribution game associated to (q,AC). Consider the TU-game
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(Q(j), w(q,vC,P )) and observe that, for each E ⊆ Q(j),

w
(q,vC,P )
j (E) =vC,P

[( ∑
k∈N

(j − 1)ek +
∑
k∈E

ek

)
∧ q

]
−vC,P

[( ∑
k∈N

(j − 1)ek

)
∧ q

]
(6)
=

∑
i∈N

[
C

(
i, max

h∈P̂ (i)∪i

[( ∑
k∈N

(j − 1)ek +
∑
k∈E

ek
)
∧ q

]
h

)
(30)

− C

(
i, max

h∈P̂ (i)∪i

[( ∑
k∈N

(j − 1)ek
)
∧ q

]
h

)]

=
∑

i∈P̂−1(E)∪E

[
C

(
i, max

h∈P̂ (i)∪i

[( ∑
k∈N

(j − 1)ek +
∑
k∈E

ek
)
∧ q

]
h

)

− C

(
i, max

h∈P̂ (i)∪i

[( ∑
k∈N

(j − 1)ek
)
∧ q

]
h

)]

+
∑

i/∈P̂−1(E)∪E

[
C

(
i, max

h∈P̂ (i)∪i

[
(
∑
k∈N

(j − 1)ek +
∑
k∈E

ek) ∧ q

]
h

)

− C

(
i, max

h∈P̂ (i)∪i

[
(
∑
k∈N

(j − 1)ek) ∧ q

]
h

)]
. (31)

For each i ∈ P̂−1(E) ∪ E, there exists at least one h ∈ P̂ (i) ∪ i such that h ∈ E ⊆ Q(j). Therefore,
for each i ∈ P̂−1(E) ∪ E,

max
h∈P̂ (i)∪i

[( ∑
k∈N

(j − 1)ek +
∑
k∈E

ek
)
∧ q

]
h

= j. (32)

On the other hand,

max
h∈P̂ (i)∪i

[( ∑
k∈N

(j − 1)ek
)
∧ q

]
h

= j − 1. (33)

For each i /∈ P̂−1(E)∪E, there is no h ∈ P̂ (i)∪ i such that h ∈ E. Therefore, for each i /∈ P̂−1(E)∪E,

max
h∈P̂ (i)∪i

[( ∑
k∈N

(j − 1)ek +
∑
k∈E

ek
)
∧ q

]
h

= max
h∈P̂ (i)∪i

[( ∑
k∈N

(j − 1)ek
)
∧ q

]
h

. (34)

For the sake of clarity, for each i /∈ P̂−1(E) ∪ E, we denote

Zi = max
h∈P̂ (i)∪i

[( ∑
k∈N

(j − 1)ek
)
∧ q

]
h

.
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Therefore, by (32), (33) and (34), (30) becomes

w
(q,vC,P )
j (E) =

∑
i∈P̂−1(E)∪E

[
C(i, j)− C(i, j − 1)

]
+

∑
i/∈P̂−1(E)∪E

[
C(i, Zi)− C(i, Zi)

]
=

∑
i∈P̂−1(E)∪E

AC
ij + 0

=
∑
i∈N

AC
ij ×Ri(E).

By Lemma 2, for each i ∈ N and j ∈ {1, . . . , qi},

φij(q, v
C,P ) = Shi

(
Q(j),

∑
l∈N

AC
lj ×Rl

)
=

∑
l∈N

AC
lj × Shi

(
Q(j), Rl

)
=

∑
l∈P̂−1(i)∪i

AC
lj

|(P̂ (l) ∪ l) ∩Q(j)|

= Ψij(q, A
C).

The second equality follows from the Linearity of the Shapley value and the third equality follows
from (29). This concludes the proof. □

6.5. Proof of Theorem 7

Lowing and Techer (2022) show that the multi-choice Shapley value belongs to the Core of sub-
modular (cost) games. Therefore, it suffice to show that gas distribution games are sub-modular games
to prove Theorem 8. Consider a gas distribution game (q, vC,P ) ∈ G associated with a gas distribution
problem (q,AC) ∈ GDP . For each s, t ∈M,

vC,P (t) + vC,P (s) =
∑
i∈N

C(i, max
k∈P̂ (i)∪i

sk) +
∑
i∈N

C(i, max
k∈P̂ (i)∪i

tk),

and vC,P (s ∨ t) + vC,P (s ∧ t) =
∑
i∈N

C(i, max
k∈P̂ (i)∪i

(sk ∨ tk) +
∑
i∈N

C(i, max
k∈P̂ (i)∪i

sk ∧ tk).

Take any i ∈ N . Without loss of generality, assume that

max
k∈P̂ (i)∪i

sk ≥ max
k∈P̂ (i)∪i

tk.

Then, on the one hand,

max
k∈P̂ (i)∪i

(sk ∨ tk) = max
k∈P̂ (i)∪i

sk

=⇒ C(i, max
k∈P̂ (i)∪i

(sk ∨ tk)) = C(i, max
k∈P̂ (i)∪i

sk).
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On the other hand, since C is non-decreasing, it holds that

∀k ∈ P̂ (i) ∪ i, sk ∧ tk ≤ tk

⇐⇒ max
k∈P̂ (i)∪i

(sk ∧ tk) ≤ max
k∈P̂ (i)∪i

tk

=⇒ C(i, max
k∈P̂ (i)∪i

(sk ∧ tk)) ≤ C(i, max
k∈P̂ (i)∪i

tk).

This shows that, for each i ∈ N ,∑
i∈N

C(i, max
k∈P̂ (i)∪i

(sk ∨ tk)) +
∑
i∈N

C(i, max
k∈P̂ (i)∪i

(sk ∧ tk)) ≤
∑
i∈N

C(i, max
k∈P̂ (i)∪i

sk) +
∑
i∈N

C(i, max
k∈P̂ (i)∪i

tk),

and so, we obtain the desired result

vC,P (s ∨ t) + vC,P (s ∧ t) ≤ vC,P (s) + vC,P (t).

□
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