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This article is devoted to an extension of the celebrated Filippov theorem to the metric space setting. We deal with fairly general metric spaces, where derivatives of time-dependent functions are replaced by mutations and solutions of differential equations/inclusions are mutational primitives of (timedependent) maps of transitions. As an example of application we discuss measure-valued solutions to a controlled transport equation and state the Filippov theorem in this context. We also show that whenever a transport equation is generated by Lipschitz vector fields its classical weak solutions coincide with its mutational solutions. Our abstract setting applies as well to systems on the space of nonempty compact subsets of R n endowed with the Pompeiu-Hausdorff distance and to continuity equations/inclusions on Wasserstein spaces of Borel probability measures.

Introduction

The use of (topological) vector spaces has been and still is predominant in models arising in applied sciences. Modeling in such mathematical setting, however, usually requires that all states are endowed with units of measures and thus quantified. This has proved to be well suited for physical environments, of course, and has been extended to economics by introducing quantified goods and commodities.

However, not all relevant entities can be quantified straightforwardly. In social dynamics, for instance, the interactions between agents are strongly influenced by mutual feelings, individual opinions and the past experiences. This renders them particularly imprecise and calls for taking means of states of all the agents, like in the mean-field games. In the recent years, social sciences related models are often formulated on the so-called Wasserstein (metric) spaces of probability measures. States in such models are the occupation probability of agents, that is positive reals from the interval [0, 1] associated to subsets of a given space and obeying measure theoretic laws. On the other hand, deterministic approach to uncertainties uses sets instead of singletons to describe possible outcomes of a system (with uncertain initial conditions or uncertain parameters). Nevertheless, nonempty subsets (of a fixed basic set/space) do not have an obvious linear structure -unless considerations are restricted to some very special classes, like convex subsets of a vector space. The need to deal with dynamic systems on metric spaces, so that closed or even compact subsets can be handled, resulted in developments of the so called morphological analysis on the space of nonempty compact subsets of R n endowed with the Pompeiu-Hausdorff distance, see [START_REF] Aubin | Mutational and Morphological Analysis. Systems & Control: Foundations & Applications[END_REF][START_REF] Badreddine | Hamilton-Jacobi inequalities on a metric space[END_REF][START_REF] Lorenz | Morphological control problems with state constraints[END_REF].

Our goal is to develop analysis of dynamical systems with states in a metric space (E, d). For this aim we apply the mutational concept introduced by Aubin [START_REF] Aubin | A note on differential calculus in metric spaces and its applications to the evolution of tubes[END_REF][START_REF] Aubin | Mutational equations in metric spaces[END_REF][START_REF] Aubin | Mutational and Morphological Analysis. Systems & Control: Foundations & Applications[END_REF] as a counterpart to differential equations. It is based on specifying a class Θ of some semi-dynamical systems ϑ : [0, 1] × E -E (called transitions) which are used to define first-order approximations of a curve x : [0, T ] -E at time t ∈ [0, T ) just in terms of the metric d on E:

lim h 0 1 h • d ϑ(h, x(t)), x(t + h) = 0 (1) 
(more details are presented in Section 2.1 below). This mutational approach has already proved to be useful in a broad class of examples, like random closed sets, structured population models and traffic flow models (see, e.g., [START_REF] Doyen | Filippov and invariance theorems for mutational inclusions of tubes[END_REF][START_REF] Doyen | Mutational equations for shapes and vision-based control[END_REF][START_REF] Gautier | Viability results for mutational equations with delay[END_REF][START_REF] Gorre | Evolutions of tubes under operability constraints[END_REF][START_REF] Kloeden | Stochastic morphological evolution equations[END_REF][START_REF] Kloeden | Nonlocal multi-scale traffic flow models: analysis beyond vector spaces[END_REF][START_REF] Lorenz | Mutational Analysis[END_REF][START_REF] Lorenz | Nonlocal hyperbolic population models structured by size and spatial position: well-posedness[END_REF][START_REF] Lorenz | Viability in a non-local population model structured by size and spatial position[END_REF][START_REF] Murillo Hernández | Tangential regularity in the space of directional-morphological transitions[END_REF][START_REF] Najman | Euler method for mutational equations[END_REF][START_REF] Pichard | Equations with delay in metric spaces: the mutational approach[END_REF] and references therein). Motivated by Carathéodory solutions to ordinary differential equations, given f : [0, T ] × E -Θ, a curve x : [0, T ] -E is considered a solution to the mutational equation with f on the right-hand side, if x(•) is absolutely continuous and if at a.e. t ∈ [0, T ), the transition ϑ := f t, x(t) ∈ Θ satisfies the infinitesimal condition [START_REF] Aggarwal | Nonlocal systems of conservation laws in several space dimensions[END_REF]. This notion extends to differential inclusions on metric spaces.

Let us underline that the notion of metric gradient introduced in [3, Chapter 1] for absolutely continuous mappings x : [0, T ] -E differs from transitions. For instance, in the case of a reflexive Banach space (E, ∥ • ∥), the metric gradient at a point t of differentiability of x(•) is equal to ∥x ′ (t)∥, while the associated transition is ϑ(h, z) = z + hx ′ (t) for (h, z) ∈ [0, 1] × E. In [3, Part I] curves of maximal slope are investigated with respect to the upper gradient of a given extended real-valued functional on (E, d).

In contrast, transitions induce curves without any optimisation features behind. In short, the objective of mutational analysis is to extend theory of ordinary differential equations to metric spaces. In particular, example provided in Section 6 implies that for the 1-Wasserstein space any weak solution to the continuity equation generated by a bounded Lipschitz vector field is a mutational solution. Hence our main result derived in a general metric setting applies to controlled continuity equations on this Wasserstein space with generating Lipschitz vector fields that are not necessarily gradients. Also any Lipschitz, locally bounded set-valued map F : R n ⇝ R n having nonempty convex compact values defines a transition on the metric space K(R n ) of nonempty compact subsets of R n endowed with the Pompeiu-Hausdorff distance, see [START_REF] Lorenz | Mutational Analysis[END_REF]. These transitions are described by reachable sets from initial conditions that are elements of K(R n ). Hence in this case the flow of sets is generated by the set-valued map F , while in [START_REF] Ambrosio | Gradient Flows in Metric Spaces and in the Space of Probability Measures[END_REF], roughly speaking, dynamics of systems on metric spaces are induced by "gradients" of some given functions.

In the theory of differential inclusions, the celebrated theorem of Filippov combines the existence of solutions with a priori estimates on the distance of a given curve from the set of all the solutions to a differential equation/inclusion. It provides a richer information than the Cauchy-Lipschitz existence theorem even in the case of ordinary differential equations and has many applications ranging from relaxation, invariance, stability, to the uniqueness of solutions to Hamilton-Jacobi equations. To the best of our knowledge, the only Filippov-like result in a mutational setting so far was presented by Doyen in [18, § 7] and concerns the special case of autonomous morphological inclusions (i.e., systems on the space of nonempty compact subsets of R n ). In the present paper we extend it to a much broader framework of non-autonomous mutational inclusions in general metric spaces.

Let us first recall a finite dimensional version of Filippov's theorem (see, e.g., [START_REF] Aubin | Grundlehren der mathematischen Wissenschaften[END_REF][START_REF] Frankowska | A priori estimates for operational differential inclusions[END_REF][START_REF] Vinter | Optimal Control. Modern Birkhäuser Classics[END_REF]). Under suitable assumptions about the set-valued map F : [0, T ]×R n ⇝ R n which is k(t)-Lipschitz in the second variable with k ∈ L 1 ([0, T ]), the following statement holds : Let an absolutely continuous curve y : [0, T ] -R n be given. Then for each x 0 ∈ R n , there exists a solution x : [0, T ] -R n to the differential inclusion x ′ ∈ F (t, x) such that x(0) = x 0 and

x(t) -y(t) ≤ η(t) := |x 0 -y(0)| e ∥k∥ L 1 ([0,t]) + t 0 e ∥k∥ L 1 ([s,t]) • dist y ′ (s), F s, y(s) ds, ∀ t ∈ [0, T ],
x ′ (t) -y ′ (t) ≤ k(t) • η(t) + dist y ′ (t), F t, y(t) for a.e. t ∈ [0, T ].

The above inequalities mean that the distance between x(•) and y(•) can be estimated from the above by the distance between their initial conditions and the violation by y(•) of the prescribed dynamic.

The main goal of this article is to get the counterpart of the Filippov theorem for mutational inclusions in a metric space (E, d) supplied with a class Θ of transitions. The set-valued map F : [0, T ] × R n ⇝ R n is replaced here by a set-valued map F : [0, T ] × E ⇝ Θ. Then, given an absolutely continuous curve y : [0, T ] -E, we look for an absolutely continuous curve x : [0, T ] -E such that firstly, at a.e. t ∈ [0, T ), a transition ϑ ∈ F t, x(t) ⊂ Θ satisfies condition (1) and secondly, similar estimates w.r.t. y are fulfilled, see Theorem 3.4.

To illustrate our result, we consider a transport inclusion on the metric space of all finite real-valued Radon measures on R n , that are present, for instance, in models of traffic flow and cancer cell migration. Various hyperbolic models using time-dependent probability or Radon measures have already been investigated in the literature by Carrillo, Colombo, Goatin, Piccoli, Rossi and collaborators, see for instance [1, 14-16, 25, 26, 48-51] and the references therein. In comparison with many former results, we extend the setting in mainly two aspects:

The transport equation is considered with a (time-dependent) control u(t) ∈ U and so, becomes a quasilinear first-order partial differential inclusion

∂ t µ ∈ u∈U -div x f (t, µ, u) µ + g(t, µ, u) • µ .
The values of the solutions are (possibly signed) Radon measures on R n . This opens the door to modeling the evolution of the "total mass" quantitatively. Whenever g ≡ 0, the above inclusion is usually called a continuity inclusion, and probability measures (as initial states) stay probability measures for all times.

The outline of this paper is as follows. Section 2 specifies the mutational setting and discusses notions of transitions, mutational derivatives, primitives and their key properties. The corresponding proofs can be found in Section 4. In Section 3 we state the main result in Theorem 3.4, postponing its proof to Section 5. Section 6 is devoted to an example in the metric space of Radon measures on R n , where our main result is illustrated for trajectories of a transport inclusion by establishing a link between weak solutions to transport equations and the developed abstract mutational framework. Finally, the appendix consists of some new analytical tools used in this article such as variants of Scorza-Dragoni-like theorems about almost lower semicontinuous set-valued maps and about almost closed graphs.

Preliminaries

Below we always consider the Lebesgue measure on [0, T ] and the Borel measure on (pseudo-) metric spaces. Consistently, given a metric space E and a pseudo-metric space Θ, "measurability" of a function [0, T ] × E -Θ is understood in the sense of Lebesgue-Borel measurability (unless stated otherwise). We denote by L 1 ([0, T ]) the set of all Lebesgue integrable functions from [0, T ] into R + .

Mutational Setting in a Metric Space

Consider a metric space (E, d) where d : E × E -R denotes a metric and a lower semicontinuous "magnitude" function

• : E -[0, ∞). For a nonempty subset A ⊂ E, we denote A ∞ := sup x ∈ A x and ∅ ∞ := ∞. A subset A ⊂ E is called bounded w.r.t. • if A ∞ < ∞. For any r ≥ 0 define the sublevel set E r := {x ∈ E | x ≤ r}.
In the next definition that extends an earlier one by Aubin [START_REF] Aubin | Mutational and Morphological Analysis. Systems & Control: Foundations & Applications[END_REF], we consider a mapping (t, x) ϑ(t, x) referring to t as the time variable and to x as the state variable.

Definition 2.1 (Transition) A function ϑ : [0, 1] × E -E is called a transition on E, d, • if : (i) for every x ∈ E : ϑ(0, x) = x,
(ii) ϑ has the semigroup property: ϑ t, ϑ(s, x) = ϑ(s + t, x) for all x ∈ E and s, t ∈ [0, 1] with s + t ≤ 1.

(iii) for every r ≥ 0, there exists α r (ϑ) ∈ [0, ∞) such that for any x, y ∈ E r , lim sup

h 0 d(ϑ(h, x), ϑ(h, y)) -d(x, y) h ≤ α r (ϑ) • d(x, y),
(iv) for every r ≥ 0, there is β r (ϑ) ≥ 0 such that for any

x ∈ E r , ϑ(•, x) : [0, 1] -(E, d) is β r (ϑ)- Lipschitz.
(v) at the initial time ϑ has sublinear growth w.r.t. time and • :

lim inf h 0 ϑ(h, x) -x h ≤ γ(ϑ) • 1 + x ∀ x ∈ E.
Conditions (i) -(iv) of Definition 2.1 are typical properties of a quasi-contractive semigroup (often considered for operators on a Banach space). Originally, Aubin suggested an infinitesimal criterion instead of semigroup property (ii). They prove to be equivalent to each other (as verified in section 4 below).

Proposition 2.2 (Infinitesimal characterization of semigroup property) Let ϑ : [0, 1] × E -E satisfy the conditions (i), (iii), (iv) of Definition 2.1. Then ϑ has the semigroup property (ii) if and only if for every x ∈ E and t ∈ [0, 1) :

lim h 0 1 h • d ϑ(t + h, x), ϑ(h, ϑ(t, x)) = 0.
The parameter γ(ϑ) in the above sublinear growth condition (v) lays the basis for a priori bounds of ϑ(•, x) : [0, 1] -E. They concern only the "magnitude" function 

:= max k ∈ {1, ... ,K} γ(ϑ k ) < ∞. For any x 0 ∈ E and partition 0 = t 0 < t 1 < . . . < t K = T with sup k (t k -t k-1 ) ≤ 1, define the curve x(•) : [0, T ] -E by x(0) := x 0 , x(t) := ϑ k t -t k-1 , x(t k-1 ) for t ∈ t k-1 , t k , k ∈ {1, . . . , K}. Then, x(t) ≤ x 0 + Γ • t • e Γ • t for every t ∈ [0, T ].
The following proposition clarifies why each transition can be interpreted as a quasi-contractive semigroup.

It is an immediate consequence of Proposition 2.9 below and so, we do not give a separate proof. Then for all x, y ∈ E with x ≤ r, y ≤ r and every h ∈

[0, 1], d ϑ(h, x), ϑ(h, y) ≤ d(x, y) • e α R (ϑ) h .
To compare the evolutions of two states along two transitions we introduce a pseudo-distance between two transitions that localizes w.r.t. • Aubin's original definition given in [START_REF] Aubin | Mutational and Morphological Analysis. Systems & Control: Foundations & Applications[END_REF]. 

:= ι r (ϑ) ϑ ∈ Θ . Set for any ϑ, τ in Θ r D r (ϑ, τ ) := sup x ∈ Er lim sup h 0 1 h • d ϑ(h, x), τ (h, x)
and let D r (•, • ) = 0 whenever E r = ∅.

To simplify, we use also the notation D r (ϑ, τ ) := D r (ι r ϑ, ι r τ ) for all r ≥ 0 and ϑ, τ ∈ Θ (instead of Θ r ).

Remark 2.6 Let Θ be a subset of transitions on E, d, • and r ≥ 0.

(a) For all ϑ, τ ∈ Θ r , the definition of Θ r guarantees the existence of transitions θ, τ ∈ Θ with ϑ = ϑ |[0,1]×Er and τ = τ |[0,1]×Er . Then the property (iv) from Definition 2.1 of ϑ, τ implies

D r (ϑ, τ ) ≤ sup x ∈ Er lim sup h 0 1 h • d ϑ(h, x), x + d x, τ (h, x) ≤ β r ( ϑ) + β r ( τ ) < ∞.
(b) Clearly for each r ≥ 0, D r is a pseudo-metric on both Θ r and Θ. (Θ, D r ) might not be Hausdorff though because any transitions ϑ, τ ∈ Θ which coincide in

[0, 1] × E r but not in [0, 1] × (E \ E r ) satisfy D r (ϑ, τ ) = 0.
We consider it an advantage that our analytical tools do not require D r to be positive definite in the general theory. In examples (as in section 6 below), the assumptions about the coefficients are often formulated for a distance which might be larger than D r , but is simpler to work with (see also, e.g., [42, § § 1, 2], [START_REF] Kloeden | Nonlocal multi-scale traffic flow models: analysis beyond vector spaces[END_REF][START_REF] Lorenz | Nonlocal hyperbolic population models structured by size and spatial position: well-posedness[END_REF][START_REF] Lorenz | Partial differential inclusions of transport type with state constraints[END_REF][START_REF] Lorenz | Viability in a non-local population model structured by size and spatial position[END_REF]).

(c) In general, given ϑ ∈ Θ, ι r (ϑ) is not a transition on E r because it may happen that ϑ(h, x) / ∈ E r for some h ∈ (0, 1] and x ∈ E r .

From now on, we suppose that a subset Θ of transitions is fixed, i.e., de facto we deal with E, d, • , Θ .

Corollary 2.7 Let r ≥ 0 be such that E r ̸ = ∅, ϑ, τ ∈ Θ and Γ := max{γ(ϑ), γ(τ )}. If D R (ϑ, τ ) = 0 for some R > (r + Γ)e Γ , then ι r (ϑ) = ι r (τ ). Furthermore, if D R (ϑ, τ ) = 0 for all R > 0, then ϑ = τ . Define D(ϑ, τ ) := ∞ k=1 2 -k min{1, D k (ϑ, τ )} ∀ ϑ, τ ∈ Θ.
Clearly D metrize the topology induced by the family D r (•, •) r≥0 .

Proposition 2.8 (Θ, D) is a metric space and the canonical embedding

(Θ, D) -(Θ, D r ), ϑ -ϑ is continuous for every r ≥ 0. If (Θ, D k ) is separable for every integer k ≥ 1, then (Θ, D) is separable. Moreover if sup θ∈Θ γ(θ) < ∞ and (Θ, D k ) is complete for every integer k ≥ 1, then (Θ, D) is complete.
To compare the evolution of two states in E along two (possibly different) transitions we have the following result.

Proposition 2.9 Let ϑ, τ ∈ Θ and r ≥ 0 be given. Then for any x, y ∈ E with x ≤ r, y ≤ r and all t 1 , t 2 ∈ [0, 1), the following estimate is satisfied for every h ∈ [0, 1) with max{t 1 + h, t 2 + h} ≤ 1

d ϑ(t 1 +h, x), τ (t 2 +h, y) ≤ d ϑ(t 1 , x), τ (t 2 , y) + h • D R (ϑ, τ ) • e α R (ϑ) h
for any R ≥ r + max{γ(ϑ), γ(τ )} • e max{γ(ϑ), γ(τ )} .

Mutations of a Curve as Counterpart of Time Derivatives

The notion of first-order approximation leads to the so-called mutation of a curve -as a counterpart of its derivative w.r.t. time: 

Definition 2.10 ( [8]) The mutation of a curve x : [0, T ] -E at time t ∈ [0, T ) is defined as x(t) := ϑ ∈ Θ lim h 0 1 h • d ϑ(h, x(t)), x(t + h) = 0 . The curve x is called mutable at t ∈ [0, T ) if x(t) ̸ = ∅.
h 0 1 h • d ϑ(h, x(t)), x(t + h) ≤ D R (ϑ n , ϑ).
Then taking the limit when n ∞ we deduce that ϑ ∈ x(t).

Proposition 2.12 (Absolutely continuous mutable curves: Modulus) Consider an absolutely continuous x : [0, T ] -E with the following properties:

(i) x(•) is mutable almost everywhere in [0, T ] and R := sup t ∈ [0,T ] x(t) < ∞. (ii) There exists B R ∈ L 1 ([0, T ]) such that for a.e. t ∈ [0, T ], some ϑ t ∈ x(t) satisfies β R (ϑ t ) ≤ B R (t). Then d x(t 1 ), x(t 2 ) ≤ t 2 t 1 B R (s) ds for all 0 ≤ t 1 < t 2 ≤ T .
The following estimate generalizes Proposition 2.9 when t 1 = t 2 .

Proposition 2.13 Let x, y : [0, T ] -E be absolutely continuous and satisfy:

(i) r := sup t y(t) < ∞ and R := max sup t x(t) , r < ∞.

(ii) x(•) and y(•) are mutable almost everywhere in [0, T ].

(iii) For some A R , ∆ r ∈ L 1 ([0, T ]) and for a.e. t ∈ [0, T ], there is a transition ϑ ∈ x(t) with

α R (ϑ) ≤ A R (t), inf τ ∈ ẙ(t) D r (ϑ, τ ) ≤ ∆ r (t).
Then d x(t), y(t) ≤ d x(0), y(0) • e Finally, to be able to use some measurable selection theorems, we need an appropriate topological structure of Θ motivated by a compromise: On the one hand, it should be convenient to verify in examples. On the other hand, it is to provide useful conclusions of convergence in (Θ, D r ) for all r ≥ 0 -so that r can be chosen a posteriori whenever required.

From now on we assume the existence of a metric D loc on Θ such that the convergence w.r.t. D loc always implies the convergence w.r.t. D r for every r ≥ 0, i.e., for every sequence

(ϑ k ) k∈N in Θ lim k ∞ D loc (ϑ k , ϑ) = 0 =⇒ lim k ∞ D r (ϑ k , ϑ) = 0, ∀ r ≥ 0. ( 2 
)
It is worth mentioning that the inverse implication is not required in general, i.e., D loc does not have to metrize the topology induced by the family D r (•, •) r≥0 . The metric D loc might characterize an even finer topology on Θ instead. Proposition 2.8 provides sufficient conditions for the existence of such metric.

Remark 2.14 Aubin's original approach is motivated by the example of so-called morphological equations [START_REF] Aubin | A note on differential calculus in metric spaces and its applications to the evolution of tubes[END_REF][START_REF] Aubin | Mutational equations in metric spaces[END_REF][START_REF] Aubin | Mutational and Morphological Analysis. Systems & Control: Foundations & Applications[END_REF]: K(R n ) denotes the set of nonempty compact subsets of R n and is supplied with the Pompeiu-Hausdorff metric dl. Every bounded Lipschitz set-valued map F : R n ⇝ R n with nonempty compact convex values specifies an autonomous differential inclusion x ′ ∈ F (x) and, its reachable sets induce the so-called morphological transition ϑ ). In particular, Filippov's theorem for ordinary differential inclusions leads to the following parameters and estimates for any of these maps F, G : R n ⇝ R n and every r ≥ 0

F : [0, 1] × K(R n ) -K(R n ) (e.
α r (ϑ F ) = Lip F, γ(ϑ F ) = max ∥F (0)∥ ∞ , Lip F β r (ϑ F ) = sup x ∈ B R ∥F (x)∥ ∞ , D r (ϑ F , ϑ G ) ≤ lim ε 0 sup x ∈ B r+ε dl F (x), G(x) = sup x ∈ Br dl F (x), G(x) ,
where Lip F denotes the Lipschitz constant of F and R := r + γ(ϑ F ) e γ(ϑ F ) . Here we can choose D loc as the following metric of uniform convergence on bounded sets

D loc (ϑ F , ϑ G ) := ∞ k = 1 2 -k • min 1, sup x ∈ B k dl F (x), G(x) .
Then the implication (2) even holds as an equivalence.

The implication (2) can be reformulated equivalently as one of the following properties:

the continuity of each restriction map ι r : (Θ,

D loc ) -(Θ r , D r ), ϑ -ϑ |[0,1]×Er (r ≥ 0) and the continuity of every canonical embedding (Θ, D loc ) -(Θ, D r ), ϑ -ϑ (r ≥ 0).
In Section 6 we provide an example of (Θ, D loc ) as above on the space of finite Radon measures.

Let us summarize all the general hypotheses about E, d, • , Θ and D loc used in the sequel: d) is a metric space and the magnitude • : E -[0, ∞) is given.

Hypothesis (HΘ) : (i) (E,
(ii) For every R ≥ 0, the set E R = x ∈ E x ≤ R is complete and separable w.r.t. d.

(iii) Θ is a given nonempty subset of transitions on E, d, • supplied with the family of pseudo-metrics D r (r ≥ 0).

(iv) There exists a function D loc : Θ × Θ -R such that (Θ, D loc ) is a complete separable metric space and for every R ≥ 0, the restriction map ι

R : (Θ, D loc ) -(Θ R , D R ) is continuous.
In particular, (HΘ) (ii) implies that • is lower semicontinuous. As a consequence of (HΘ) (iv), both (Θ, D R ) and (Θ R , D R ) are weakly Suslin spaces, i.e., they are the images of complete separable metric spaces under continuous mappings, but not necessarily Hausdorff (see, e.g., [START_REF] Kucia | Scorza Dragoni type theorems[END_REF][START_REF] Wagner | Survey of measurable selection theorems[END_REF][START_REF] Wagner | Survey of measurable selection theorems: an update[END_REF]). This allows us to apply a measurable selections result by Leese [START_REF] Leese | Multifunctions of Souslin type[END_REF][START_REF] Leese | Set-Valued Functions and Selectors[END_REF][START_REF] Leese | Corrigendum: "Multifunctions of Souslin type[END_REF] Lemma 5.3] because it avoids some further assumptions. The proof is based on constructing essentially the same approximating sequence of set-valued maps, but their measurability is concluded from closedness of their graphs instead of their respective upper semicontinuity. Then Corollary 2.16 results from the measurable selection theorem, cf. [START_REF] Kuratowski | A general theorem on selectors[END_REF], [START_REF] Aubin | Set-Valued Analysis, volume 2 of Systems & Control: Foundations & Applications[END_REF]Theorem 8.1.3]. Hence, we do not give the proof in detail here.

Mutational Primitives

This subsection concerns "integration" (in time): For a given single-valued curve θ : [0, T ] -Θ of transitions, we aim to find an underlying curve x(•) such that θ(•) is a selection of its mutation x(•).

Definition 2.17 ( [8])

Consider θ : [0, T ] -Θ. A function x : [0, T ] -E is called a mutational primitive of θ(•) if it is absolutely continuous, bounded w.r.t. • and θ(t) ∈ x(t) for a.e. t ∈ [0, T ].
The following estimate extends Proposition 2.13 to mutational primitives and is the key tool for all subsequent constructions.

Proposition 2.18 (Continuous dependence of mutational primitives) Let r, R > 0 and for

k = 1, 2 let θ k : [0, T ] -(Θ, D r ) be measurable, x k : [0, T ] -E be any mutational primitive of θ k (•) satisfying (i) sup t x 2 (t) ≤ r, max sup t x 1 (t) , r ≤ R. (ii) There is A R ∈ L 1 ([0, T ]) with α R θ 1 (t) ≤ A R (t) for a.e. t ∈ [0, T ]. (iii) There is Ψ r ∈ L 1 ([0, T ]) such that D r θ 1 (t), θ 2 (t) ≤ Ψ r (t) for a.e. t ∈ [0, T ]. Then D r θ 1 (•), θ 2 (•) : [0, T ] -R is
integrable and, the following inequality holds for every t ∈ [0, T ],

d x 1 (t), x 2 (t) ≤ d x 1 (0), x 2 (0) • e t 0 A R (σ) dσ + t 0 D r θ 1 (s), θ 2 (s) • e t s A R (σ) dσ ds. Corollary 2.19 (Convergence of mutational primitives) Let 0 ≤ r < R, (θ k ) k∈N be a sequence of measurable functions from [0, T ] into (Θ, D r ), (x k ) k∈N be a sequence of functions from [0, T ] into E and θ : [0, T ] -(Θ, D r ) be measurable. Suppose: (i) Each x k (•) is a mutational primitive of θ k (•) and sup t x k (t) ≤ r. (ii) There exist A R , B r , Γ ∈ L 1 ([0, T ]) such that for a.e. t ∈ [0, T ] and all k ∈ N, α R θ k (t) ≤ A R (t), β r θ k (t) ≤ B r (t), max γ θ k (t) , γ θ(t) ≤ Γ(t). (iii) [0, T ] ∋ t -D r θ(0), θ(t) is integrable. (iv) D r θ(•), θ k (•) L 1 ([0,T ]) -0 (k -∞) and x k (0) k∈N has a limit x 0 ∈ E. Then x k (•) k∈N converges uniformly to an absolutely continuous x : [0, T ] -(E, d) which is a mutational primitive of θ(•) with x(0) = x 0 , sup t x(t) ≤ r, d x(t 1 ), x(t 2 ) ≤ t 2 t 1 B r (s) ds (t 1 , t 2 ∈ [0, T ], t 1 ≤ t 2 ).
Corollary 2.20 (A priori growth bound for mutational primitives) Let θ : [0, T ] -Θ and suppose that there exists

Γ ∈ L 1 ([0, T ]) such that γ θ(t) ≤ Γ(t) for a.e. t ∈ [0, T ]. Assume that r ≥ 0 and R > r + ∥Γ∥ L 1 • e ∥Γ∥ L 1 have the following properties: θ : [0, T ] -(Θ, D R ) is measurable and for some B R ∈ L 1 ([0, T ]) (i) β R θ(t) ≤ B R (t) for a.e. t ∈ [0, T ].
(ii) For every ρ ≥ R, there exists

A ρ ∈ L 1 ([0, T ]) with α ρ θ(t) ≤ A ρ (t) for a.e. t ∈ [0, T ].
(iii) For some (and thus, every)

ϑ 0 ∈ Θ, there is Ψ R ∈ L 1 ([0, T ]) with D R θ(t), ϑ 0 ≤ Ψ R (t) for a.e. t ∈ [0, T ].
Then every mutational primitive x : [0, T ] -E of θ(•) with x(0) ≤ r satisfies for all t ∈ [0, T ],

x(t) ≤ x(0) + t 0 Γ(s) ds • e t 0 Γ(s) ds < R .
The above Corollary and Proposition 2.18 yield the following uniqueness result. 

Γ ∈ L 1 ([0, T ]) such that γ θ(t) ≤ Γ(t) for a.e. t ∈ [0, T ]. If x 0 ∈ E and R > x 0 + ∥Γ∥ L 1 e ∥Γ∥ L 1 are such that θ : [0, T ] -(Θ, D R ) is measurable and
(i) For some (and thus, every)

ϑ 0 ∈ Θ, there is Ψ R ∈ L 1 ([0, T ]) with D R θ(t), ϑ 0 ≤ Ψ R (t) for a.e. t ∈ [0, T ]. (ii) For some A R , B R ∈ L 1 ([0, T ]) it holds α R θ(t) ≤ A R (t), β R θ(t) ≤ B R (t) for a.e. t ∈ [0, T ],
then there exists at least one mutational primitive

x : [0, T ] -E of θ(•) with x(0) = x 0 and x(t) ≤ x 0 + ∥Γ∥ L 1 ([0,t]) e ∥Γ∥ L 1 ([0,t]) for every t ∈ [0, T ].
This mutational primitive is unique if in addition for

every ρ ≥ R, there is A ρ ∈ L 1 ([0, T ]) satisfying α ρ θ(t) ≤ A ρ (t) for a.e. t ∈ [0, T ].

Main Results

Recall that for a set-valued map F : X ⇝ Y between two nonempty sets X, Y its graph is defined by

Graph F (•) = (x, y) ∈ X × Y y ∈ F (x) ⊂ X × Y.
As usual, B(Z) denotes the family of Borel subsets of a topological space Z, L([0, T ]) the family of Lebesgue measurable subsets of [0, T ] and L 1 the Lebesgue measure on [0, T ]. For a set-valued map F :

[0, T ] × E ⇝ Θ and R ≥ 0, define F R : [0, T ] × E ⇝ Θ R by F R (t, x) := ϑ |[0,1]×E R ϑ ∈ F(t, x) ⊂ Θ R .
We first recall a slightly modified notion of solution to a mutational inclusion introduced in [START_REF] Lorenz | Mutational Analysis[END_REF]. 

Definition 3.1 Let a set-valued map F : [0, T ] × E ⇝ Θ be given. A curve x : [0, T ] -E is called a solution to the mutational inclusion x(•) ∩ F • , x(•) ̸ = ∅ in E, d, • if it
(F R ) |[0,T ]×E R : [0, T ]×E R ⇝ Θ R belongs to the σ-algebra L([0, T ])⊗B(E R , d)⊗B(Θ R , D R )
, then the following statements are equivalent:

(a) x(t) ∩ F t, x(t) ̸ = ∅ for almost every t ∈ [0, T ]. (b) There is a measurable θ : [0, T ] -(Θ, D R ) such that θ(t) ∈ x(t) ∩ F t, x(t) a.e. in [0, T ].
Before stating our main result we recall the following definition.

Definition 3.3 Let Y be a pseudo-metric space with the pseudo-metric D(•, •). For nonempty subsets

M 1 , M 2 ⊂ Y , set dist(M 1 , M 2 ) := inf y∈M 1 , z∈M 2 D(y, z), h ♯ (M 1 , M 2 ) := sup y ∈ M 1 dist(y, M 2 ) ∈ [0, ∞].
The Pompeiu-Hausdorff pseudo-distance between M 1 and M 2 is defined as

dl(M 1 , M 2 ) := max h ♯ (M 1 , M 2 ), h ♯ (M 2 , M 1 ) ∈ [0, ∞] . A set-valued map F : (E R , d) ⇝ (Θ, D R ) with nonempty values is called λ-Lipschitz on E R if it satisfies for D = D R : dl(F (x), F (y)) ≤ λ d(x, y) ∀ x, y ∈ E R .
We are ready to state our main result whose proof is postponed to Section 5.

Theorem 3.4 Assume (HΘ). Consider a set-valued map F : [0, T ] × E ⇝ Θ with nonempty values, x 0 ∈ E and an absolutely continuous curve y : [0, T ] -E which is mutable a.e. in [0, T ]. Further suppose that for some R ≥ 0 :

(i) ∃ Γ ∈ L 1 ([0, T ]) satisfying sup γ(ϑ) ϑ ∈ F(t, z), z ∈ E ≤ Γ(t) for a.e. t ∈ [0, T ]. (ii) R > max sup t y(t) , x 0 + ∥Γ∥ L 1 • e ∥Γ∥ L 1 . (iii) There exist A R , B R ∈ L 1 ([0, T ]) satisfying for a.e. t ∈ [0, T ], sup α R (ϑ) ϑ ∈ F(t, z), z ∈ E R ≤ A R (t), sup β R (ϑ) ϑ ∈ F(t, z), z ∈ E R ≤ B R (t).
(iv) For all t ∈ [0, T ] and

x ∈ E R , F R (t, x) is complete and closed in (Θ R , D R ). (v) For every x ∈ E R , F R ( • , x) : [0, T ] ⇝ (Θ R , D R ) is measurable. (vi) There is λ R ∈ L 1 ([0, T ]) such that F R (t, •) |E R : E R , d ⇝ (Θ R , D R ) is λ R (t)-Lipschitz for a.e. t. (vii) ∃ Ψ R ∈ L 1 ([0, T ]) and ϑ 0 ∈ Θ satisfying for a.e. t ∈ [0, T ], dist R ẙ(t), F(t, y(t)) < Ψ R (t) and ϑ ∈ ẙ(t) dist R ϑ, F(t, y(t)) ≤ Ψ R (t), D R (ϑ 0 , ϑ) ≤ Ψ R (t) ̸ = ∅.
Then for each κ > 1, there exists a solution x : [0, T ] -E of the mutational inclusion

x(•) ∩ F • , x(•) ̸ = ∅, x(0) = x 0 ,
such that:

(a) x(t) ≤ x 0 + ∥Γ∥ L 1 ([0,t]) • e ∥Γ∥ L 1 ([0,t]) for every t ∈ [0, T ]. (b) d x(t), y(t) ≤ η κ (t) := d x 0 , y(0) • e t 0 (A R (σ)+κ λ R (σ)) dσ + t 0 κ • dist R ẙ(s), F(s, y(s)) e t s (A R (σ)+κ λ R (σ)) dσ ds . (c) A measurable selection θ : [0, T ] -(Θ, D R ) of x(•) ∩ F(•, x(•)) (a.e.) satisfies for a.e. t ∈ [0, T ] dist R θ(t), ẙ(t) ≤ κ λ R (t) • η κ (t) + κ • dist R ẙ(s), F(s, y(s)) .

Proofs of Results in Section 2

Proof of Proposition 2.3. It is given via induction with respect to k: The claim is obvious at time t 0 = 0. Now assume this estimate on the interval [0,

t k-1 ]. The function x(•) : [t k-1 , t k ] - R is lower semicontinuous. By Definition 2.1 (ii) and (v), for each t ∈ [t k-1 , t k ) lim inf h 0 x(t+h) -x(t) h = lim inf h 0 1 h • ϑ k t + h -t k-1 , x(t k-1 ) -x(t) = lim inf h 0 1 h • ϑ k h, x(t) -x(t) ≤ γ(ϑ k ) • 1 + x(t) < ∞.
Gronwall's inequality A.1 and the induction hypothesis imply for t 

∈ [t k-1 , t k ] x(t) ≤ x(t k-1 ) + γ(ϑ k ) • (t -t k-1 ) • e γ(ϑ k )•(t-t k-1 ) ≤ x 0 + Γ • t k-1 • e Γ t k-1 + Γ • (t -t k-1 ) • e Γ•(t-t k-1 ) ≤ x 0 + Γ • t • e Γ•t . □ Proof of
= ϑ([s, 1], x) ∞ < ∞. Define ψ : [0, 1 -s] -[0, ∞) by ψ(t) = d ϑ t, ϑ(s, x) , ϑ(s + t, x) .
It is Lipschitz due to the condition (iv) of Definition 2.1. Furthermore, ψ(0) = 0. Then (iii) of Definition 2.1 implies that for every t ∈ (0, 1 -s) such that ψ is differentiable at t and for any R > max{r, ϑ([0,

1 -s], ϑ(s, x)) ∞ }, ψ ′ (t) = lim h 0 1 h • d ϑ t + h, ϑ(s, x) , ϑ(s + t + h, x) -ψ(t) ≤ lim sup h 0 1 h • d ϑ t + h, ϑ(s, x) , ϑ h, ϑ(t, ϑ(s, x)) + d ϑ h, ϑ(t, ϑ(s, x)) , ϑ h, ϑ(s + t, x) -ψ(t) + d ϑ h, ϑ(s + t, x) , ϑ(s + t + h, x) ≤ α R (ϑ) • ψ(t)
and we conclude from Gronwall's inequality that

ψ(•) = 0 on [0, 1 -s]. □ Proof of Corollary 2.7. By Proposition 2.3 for R ′ := (r + Γ)e Γ < R and any (h, x) ∈ [0, 1] × E r we have ϑ(h, x), τ (h, x) ∈ E R ′ . Fix x ∈ E r and define ψ(h) := d(ϑ(h, x), τ (h, x)) for h ∈ [0, 1].
Then ψ is Lipschitz by (iv) of Definition 2.1. Consider t ∈ (0, 1) such that ψ is differentiable at t. Since for all small δ > 0, To prove the separability statement of Proposition, for every integer k ≥ 1 consider a dense subset (θ kj ) j∈N in (Θ, D k ). We claim that k,j {θ kj } is dense in (Θ, D). Indeed fix any θ ∈ Θ, ε > 0 and consider n

ψ(t + δ) = d(ϑ(δ, ϑ(t, x)), τ (δ, τ (t, x))) ≤ d(ϑ(δ, ϑ(t, x)), ϑ(δ, τ (t, x))) + d(ϑ(δ, τ (t, x)), τ (δ, τ (t, x))), using that D R (ϑ, τ ) = 0, we obtain ψ ′ (t) ≤ lim sup δ 0 d(ϑ(δ, ϑ(t, x)), ϑ(δ, τ (t, x))) -d(ϑ(t, x), τ (t, x)) δ ≤ α R (ϑ)ψ(t).
such that Σ k≥n+1 2 -k < ε 2 . Let j be such that D n (θ, θ nj ) < ε 2 . Since D k (θ, θ nj ) ≤ D n (θ, θ nj ) for every 1 ≤ k ≤ n we deduce that n k=1 2 -k D k (θ, θ nj ) < ε 2 . Thus D(θ, θ nj ) ≤ ε.
Arbitrariness of ε > 0 yields separability of (Θ, D). To prove the last statement define Γ := sup θ∈Θ γ(θ) and consider a Cauchy sequence (θ j ) j∈N in (Θ, D). By the definition of D(•, •) we know that (θ j ) j∈N is Cauchy in (Θ, D k ) for any k and, by completeness, it converges to some limit in (Θ, D k ), which may be not unique. Let k 0 be the smallest integer such that E k 0 ̸ = ∅ and consider any R 0 > (k 0 + Γ)e Γ . Since for any two limits ϑ 0 and τ of (θ j ) j∈N in (Θ, D R 0 ) we have D R 0 (ϑ 0 , τ ) = 0, Corollary 2.7 yields ι k 0 (ϑ 0 ) = ι k 0 (τ ). We construct θ ∈ Θ using an induction argument. Set θ(h, x) = ϑ 0 (h, x) for every (h, x) ∈ [0, 1] × E k 0 and consider any R 1 > max{R 0 , (k 0 + 1 + Γ)e Γ }. By Corollary 2.7 if ϑ 1 and τ are limits of (θ j ) j∈N in (Θ, D R 1 ), then ι k 0 +1 (ϑ 1 ) = ι k 0 +1 (τ ). Since ϑ 1 is also a limit of (θ j ) j∈N in (Θ, D R 0 ) we deduce that

ι k 0 ϑ 0 = ι k 0 ϑ 1 . We extend θ on [0, 1] × E k 0 +1 by setting θ(h, x) = ϑ 1 (h, x) for any (h, x) ∈ [0, 1] × E k 0 +1 . Assume that for some k ≥ 1 we already constructed reals R 0 < R 1 < ... < R k with R i > (k 0 + i + Γ)e Γ and ϑ i ∈ Θ for i = 0, 1, ..., k with lim j ∞ D R i (ϑ i , θ j ) = 0 satisfying ι k 0 +i (ϑ i ) = ι k 0 +i (ϑ i+1 ) for any 1 ≤ i < k and defined θ(h, x) = ϑ k (h, x) for (h, x) ∈ [0, 1]×E k 0 +k . Consider next any R k+1 > max{R k , (k 0 + k + 1 + Γ)e Γ }
and any limit ϑ k+1 of (θ j ) j∈N in (Θ, D R k+1 ). By the same arguments as before ι k 0 +k (ϑ k ) = ι k 0 +k (ϑ k+1 ) and for any other limit τ of (θ

j ) j∈N in (Θ, D R k+1 ) we have ι k 0 +k+1 (ϑ k+1 ) = ι k 0 +k+1 (τ ). Set θ(h, x) = ϑ k+1 (h, x) for (h, x) ∈ [0, 1] × E k 0 +k+1
. In this way we obtain θ defined on [0, 1] × E. Since ϑ k ∈ Θ for all k, we deduce that θ is a transition. We claim that θ j converge to θ in (Θ, D). Fix any ε > 0 and consider n such that Σ k≥k 0 +n+1 2 -k < ε 2 . By construction, lim j ∞ D R n (ϑ n , θ j ) = 0 and ϑ n (h, x) = θ(h, x) for any (h, x) ∈ [0, 1] × E k 0 +n . Then D k 0 +n (ϑ n , θ j ) < ε 2 for all large j, because R n > k 0 + n. Therefore, for all 1

≤ k ≤ k 0 + n D k (θ, θ j ) ≤ D k 0 +n (θ, θ j ) < ε 2 whenever j is sufficiently large. Consequently, Σ k 0 +n k=1 2 -k D k (θ, θ j ) < ε 2 implying that Σ k≥1 2 -k D k (θ, θ j ) < ε. The arbitrariness of ε > 0 implies our claim. □ Proof of Proposition 2.9. Define ψ : [0, 1 -max{t 1 , t 2 }] -[0, ∞) by ψ(h) = d ϑ(t 1 + h, x), τ (t 2 + h, y) . Proposition 2.
3 ensures that for R as in the statement of Proposition 2.9, ϑ(h, x) ≤ R, τ (h, y) ≤ R for each h. ψ is Lipschitz as so are ϑ(•, x) and τ (•, y). Moreover, it satisfies for every h

∈ (0, 1 -max{t 1 , t 2 }) such that ψ is differentiable at h ψ ′ (h) = lim δ 0 1 δ d ϑ(t 1 +h+δ, x), τ (t 2 +h+δ, y) -d ϑ(t 1 +h, x), τ (t 2 +h, y) ≤ lim sup δ 0 1 δ d ϑ(t 1 +h+δ, x), ϑ δ, ϑ(t 1 +h, x) + d ϑ δ, τ (t 2 +h, y) , τ δ, τ (t 2 +h, y) + d ϑ δ, ϑ(t 1 +h, x) , ϑ δ, τ (t 2 +h, y) -d ϑ(t 1 +h, x), τ (t 2 +h, y) + d τ δ, τ (t 2 +h, y) , τ (t 2 +h+δ, y) ≤ D R (ϑ, τ ) + α R (ϑ) • ψ(h).
This and Gronwall's inequality complete the proof. □ Proof of Proposition 2.12. Let J ⊂ [0, T ] denote the subset of t ∈ [0, T ) at which x(t) ̸ = ∅ and the assumption (ii) holds. J has full measure in [0, T ]. For every t ∈ J, there is

ϑ t ∈ x(t) with β R (ϑ t ) ≤ B R (t)
and so, lim sup

h 0 d x(t + h), x(t) h ≤ lim sup h 0 1 h • d x(t + h), ϑ t (h, x(t)) + lim sup h 0 1 h • d ϑ t (h, x(t)), x(t) ≤ B R (t) .
Fix any t 1 ∈ [0, T ) and define ψ : [t 1 , T ] -R by ψ(s) = d x(t 1 ), x(s) . It is absolutely continuous and satisfies for all s ∈ J such that ψ ′ (s) does exist

ψ ′ (s) = lim h 0 d(x(t 1 ), x(s+h)) -d(x(t 1 ), x(s)) h ≤ lim sup h 0 d(x(s+h), x(s)) h ≤ B R (s)
implying the desired inequality. □

Proof of Proposition 2.13. Define ψ : [0, T ] -R by ψ(t) = d x(t), y(t) . It is absolutely continuous by assumption. Now let J ⊂ (0, T ) denote the subset of full measure such that ẙ(t) ̸ = ∅, ψ is differentiable at t for all t ∈ J and both inequalities in (iii) of our Proposition are satisfied. Fix ε > 0 arbitrarily and choose any t ∈ J. Let ϑ ∈ x(t) be as in (iii) and pick τ ∈ ẙ(t) with D r (ϑ, τ ) ≤ ∆ r (t) + ε.

Similarly to the proof of Proposition 2.9 we get

ψ ′ (t) ≤ lim sup h 0 1 h • d x(t + h), ϑ h, x(t) + d ϑ h, x(t) , ϑ h, y(t) -d x(t), y(t) + d ϑ h, y(t) , τ h, y(t) + d τ h, y(t) , y(t + h) ≤ α R (ϑ) • d x(t), y(t) + D r (ϑ, τ ) ≤ A R (t) • ψ(t) + ∆ r (t) + ε.
Gronwall's inequality and the arbitrariness of ε > 0 complete the proof. (ii) For some (and thus, for every) y 0 ∈ Y , the function M (•) := max{δ y 0 , ψ(•) , δ ψ(•), y 0 : [0, T ] -R is integrable. 

□ Proof of Proposition 2.18. D r θ 1 (•), θ 2 (•) : [0, T ] -R is measurable because both θ 1 (•)

Then, lim

I ℓ -Y is continuous. Set J k := ℓ ≥ k I ℓ ⊂ [0, T ] for k ∈ N. Let χ [0,T ]\ J k : R -{0, 1} denote the characteristic function of [0, T ] \ J k ⊂ R for each k ∈ N. Due to assumption (ii), the product χ [0,T ]\ J k • M : [0, T ] -R is integrable. Hence the set J k := t ∈ [0, T ) lim h 0 1 h t+h t χ [0,T ]\ J k (t) -χ [0,T ]\ J k (s) ds = 0 ∩ t ∈ [0, T ) lim h 0 1 h t+h t (χ [0,T ]\ J k • M )(t) -(χ [0,T ]\ J k • M )(s) ds = 0
is of full measure. We obtain for all k ∈ N and t

∈ J k ∩ J k              lim h 0 1 h • L 1 [t, t + h] \ J k = χ [0,T ]\ J k (t) = 0 lim h 0 1 h • t+h t (χ [0,T ]\ J k • M )(s) ds = χ [0,T ]\ J k (t) • M (t) = 0 lim h 0 1 h • [t, t+h]∩ J k δ ψ(t), ψ(s) ds = 0 because J k ∋ s -δ ψ(t), ψ ( 
s) is a composition of continuous functions. Hence, the inequality t+h t δ ψ(t), ψ(s) ds

= [t, t+h]∩ J k δ ψ(t), ψ(s) ds + [t, t+h]\ J k δ ψ(t), ψ(s) ds ≤ [t, t+h]∩ J k δ ψ(t), ψ(s) ds + [t, t+h]\ J k δ ψ(t), y 0 + δ y 0 , ψ(s) ds ≤ [t, t+h]∩ J k δ ψ(t), ψ(s) ds + [t, t+h]\ J k M (t) + M (s) ds implies lim h 0 1 h t+h t δ ψ(t), ψ(s) ds = 0 for all k ∈ N and t ∈ J k ∩ J k .
Finally, this last equality holds for a.e. t ∈ [0, T ] since

J k ⊂ J k+1 ∀ k ∈ N, L 1 [0, T ] \ J k ≤ ∞ ℓ = k L 1 [0, T ] \ I ℓ ≤ ∞ ℓ = k ε ℓ -0 (k ∞).

□

Proof of Corollary 2.19. Proposition 2.18 implies that for all k, ℓ ∈ N and t ∈ [0, T ],

d x k (t), x ℓ (t) ≤ e ∥A R ∥ L 1 d x k (0), x ℓ (0) + t 0 D r θ k (s), θ ℓ (s) ds ≤ e ∥A R ∥ L 1 d x k (0), x ℓ (0) + D r θ k (•), θ ℓ (•) L 1 .
Due to assumption (iv), x k (•) k∈N is a Cauchy sequence in C 0 [0, T ], (E, d) . (E r , d) is complete by assumption (HΘ) (ii) and thus, x k (•) k∈N converges uniformly to a function x : [0, T ] -(E r , d) with x(0) = x 0 . In particular, we have x(t) ≤ r < R for all t ∈ [0, T ].

x(•) is absolutely continuous because for all t 1 , t 2 ∈ [0, T ] (t 1 < t 2 ), assumption (ii) and Proposition 2.12 lead to

d x(t 1 ), x(t 2 ) = lim k ∞ d x k (t 1 ), x k (t 2 ) ≤ t 2 t 1 B r (s) ds.
It remains to prove that θ(t) ∈ x(t) for a.e. t ∈ [0, T ), i.e., lim h 0

1 h • d θ(t) h, x(t) , x(t + h) = 0.
The construction of x(•) and Proposition 2.18 guarantee for every t ∈ [0, T ) and all sufficiently small h > 0

d θ(t) h, x(t) , x(t + h) = lim k ∞ d θ(t) h, x(t) , x k (t + h) ≤ lim sup k ∞ e ∥A R ∥ L 1 d x(t), x k (t) + h 0 D r θ(t), θ k (t+σ) dσ ≤ lim sup k ∞ e ∥A R ∥ L 1 h 0 D r θ(t), θ(t+σ) + D r θ(t+σ), θ k (t+σ) dσ ≤ lim sup k ∞ e ∥A R ∥ L 1 h 0 D r θ(t), θ(t+σ) dσ + D r θ, θ k L 1 (iv) = e ∥A R ∥ L 1 • h 0 D r θ(t), θ(t+σ) dσ .
Finally, Lemma 4.1 implies that for a.e. t ∈ [0, T )

lim h 0 1 h • d θ(t) h, x(t) , x(t + h) ≤ e ∥A R ∥ L 1 • lim h 0 1 h • h 0 D r θ(t), θ(t+σ) dσ = 0.

□

The next goal is to prove Corollary 2.20. On the one hand, the transition-valued curve θ : [0, T ] -(Θ, D R ) is assumed to be (merely) measurable. On the other hand, Proposition 2.3 provides only a priori bound w.r.t. • so far and it is restricted to piecewise constant curves of transitions. This gap is to be bridged by a Lusin-type argument relating measurability to almost continuity. The following lemma lays the foundations and is a key tool for several similar conclusions below.

Lemma 4.2 Let (Y, d Y ) be a pseudo-metric space, J ⊂ [0, T ] be a compact subset such that L 1 [0, T ] \ J < ε
2 for some ε > 0. Then for any measurable ψ : [0, T ] -Y and ε ψ > 0 there exist a compact subset J ε ⊂ J and a finite partition 0 = t 0 < t 1 < . . . < t L = T with the following properties:

(a) L 1 [0, T ] \ J ε < ε, ψ |Jε : J ε -Y is continuous. (b) For each ℓ ∈ {1, . . . L}, it holds d Y ψ(s 1 ), ψ(s 2 ) < ε ψ for all s 1 , s 2 ∈ [t ℓ-1 , t ℓ ] ∩ J ε . (c) For each ℓ ∈ {1, . . . L} with t ℓ-1 ̸ ∈ J ε , [t ℓ-1 , t ℓ ) ∩ J ε = ∅.
Proof. Lusin's Theorem B.6 provides a compact subset J ε ⊂ J with L 1 [0, T ] \ J ε < ε such that ψ |Jε is continuous. Hence, ψ is even uniformly continuous in J ε and so, there exists

δ ε ∈ 0, ε 2 satisfying d Y ψ(s 1 ), ψ(s 2 ) < ε ψ for all s 1 , s 2 ∈ J ε with |s 1 -s 2 | < δ ε . Let 0 = τ 0 < τ 1 < . . . < τ K = T denote any finite partition of [0, T ] with max k |τ k -τ k-1 | < δ ε .
A further step of refinement leads the final partition 0 = t 0 < t 1 < . . . < t L = T of [0, T ] according to the following rule for k = 1, . . . , K:

Whenever τ k-1 / ∈ J ε and (τ k-1 , τ k ) ∩ J ε ̸ = ∅, then the next node is t ℓ := min (τ k-1 , τ k ) ∩ J ε > τ k-1 . Otherwise set t ℓ := τ k . □
Proof of Corollary 2.20. Let x(•) be a mutational primitive of θ with x(0) ≤ r and x 0 := x(0). Set ρ := max{R, sup t x(t) }. Choose any j > max{α ρ (ϑ 0 ), β R (ϑ 0 ), γ(ϑ 0 ) sufficiently large such that the measurable set

I j := t ∈ [0, T ] | Ψ R (t) ≤ j, A ρ (t) ≤ j, B R (t) ≤ j and Γ(t) ≤ j satisfies x 0 + ∥Γ∥ L 1 + γ(ϑ 0 ) • L 1 [0, T ] \ I j • e ∥Γ∥ L 1 + γ(ϑ 0 )•L 1 ([0,T ]\I j ) < R. Define θ j : [0, T ] -Θ and A ρ,j , B R,j , Γ j : [0, T ] -R as θ j (t) := θ(t) if t ∈ I j ϑ 0 if t ̸ ∈ I j A ρ,j (t) := A ρ (t) if t ∈ I j α ρ (ϑ 0 ) if t ̸ ∈ I j B R,j (t) := B R (t) if t ∈ I j β R (ϑ 0 ) if t ̸ ∈ I j , Γ j (t) := Γ(t) if t ∈ I j γ(ϑ 0 ) if t ̸ ∈ I j . For each index k ∈ N, consider a compact subset J k ⊂ [0, T ) with L 1 [0, T ] \ J k < 1 2 j k such that α ρ θ(t) ≤ A ρ (t), β R θ(t) ≤ B R (t), γ θ(t) ≤ Γ(t) and D R θ(t), ϑ 0 ≤ Ψ R (t) hold for every t ∈ J k . Lemma 4.2 applied to J k and θ j : [0, T ] -(Θ, D R ), A ρ,j , B R,j , Γ j , Ψ R ∈ L 1 ([0, T ]
) provides a compact subset J j,k ⊂ J k and a finite partition 0 = t j,k,0 < t j,k,1 < . . . < t j,k, L(j,k) = T with the following properties for each index ℓ ∈ {1, . . . , L(j, k)}:

L 1 [0, T ] \ J j,k < 1 j k , 0 < |t j,k,ℓ -t j,k, ℓ-1 | < 1 k (θ j ) |J j,k : J j,k -(Θ, D R ) and (A ρ,j ) |J j,k , (B R,j ) |J j,k , (Γ j ) |J j,k , (Ψ R ) |J j,k : J j,k -R are continuous α ρ θ j (t) ≤ A ρ,j (t), β R θ j (t) ≤ B R,j (t), γ θ j (t) ≤ Γ j (t) and D R ϑ 0 , θ j (t) ≤ Ψ R (t) for all t ∈ J j,k for all s, t ∈ [t j,k, ℓ-1 , t j,k,ℓ ] ∩ J j,k , max D R θ j (s), θ j (t) , A ρ,j (s) -A ρ,j (t) , B R,j (s) -B R,j (t) , Γ j (s) -Γ j (t) < 1 T k if t j,k, ℓ-1 ̸ ∈ J j,k then [t j,k, ℓ-1 , t j,k,ℓ ) ⊂ [0, T ] \ J j,k .
We define the piecewise constant functions θ j,k : [0, T ) -Θ and Γ j,k : [0, T ) -R as follows: for t ∈ [t j,k, ℓ-1 , t j,k,ℓ ) if t j,k, ℓ-1 ∈ J j,k , then set θ j,k (t) := θ j (t j,k, ℓ-1 ), Γ j,k (t) := γ θ j (t j,k, ℓ-1 ) ≤ j, if t j,k, ℓ-1 ̸ ∈ J j,k , then set θ j,k (t) := ϑ 0 , Γ j,k (t) := γ(ϑ 0 ).

For all t ∈ [0, T ) \ J j,k , we have the obvious bound

max D R ϑ 0 , θ j (t) , D R ϑ 0 , θ j,k (t) , α ρ θ j,k (t) , β R θ j,k (t) , Γ j,k (t) ≤ j.
Furthermore, every t ∈ J j,k is contained in a subinterval [t j,k, ℓ-1 , t j,k,ℓ ) with t j,k, ℓ-1 ∈ J j,k and thus,

D R θ j (t), θ j,k (t) ≤ 1 T k , α ρ θ j,k (t) ≤ A ρ,j (t) + 1 T k , β R θ j,k (t) ≤ B R,j (t) + 1 T k , Γ j,k (t) ≤ Γ j (t) + 1 T k .
Next we construct a mutational primitive x j,k : [0, T ] -E of θ j,k (•) with x j,k (0) = x 0 in a piecewise way as indicated in Remark 2.11 (a), i.e., for ℓ ∈ {1, . . . , L(j, k)},

x j,k (0) = x 0 , x j,k (t) = θ j,k (t j,k, ℓ-1 ) t -t j,k, ℓ-1 , x j,k (t j,k, ℓ-1 ) for t ∈ (t j,k, ℓ-1 , t j,k,ℓ ].
As in the proof of Proposition 2.3, we conclude from condition (v) in Definition 2.1 (via induction w.r.t. the index ℓ of subintervals) that for every t ∈ (t j,k, ℓ-1 , t j,k,ℓ ] and k ∈ N, x j,k (t) ≤

x j,k (t j,k, ℓ-1 ) + γ θ j,k (t j,k, ℓ-1 ) • (t -t j,k, ℓ-1 ) • e γ(θ j,k (t j,k, ℓ-1 ))•(t-t j,k, ℓ-1 )

≤ x 0 + t 0 Γ j,k (s) ds • e t 0 Γ j,k (s) ds .
The choice of Γ j,k and J j,k implies

t 0 Γ j,k (s) ds ≤ [0,t]∩J j,k Γ j (s) + 1 T k ds + [0,t]\J j,k Γ j,k (s) ds ≤ [0,t]∩J j,k Γ j (s) ds + 1 k + j • L 1 [0, t] \ J j,k ≤ t 0 Γ j (s) ds + 2 k ≤ t 0 Γ(s) ds + γ(ϑ 0 ) • L 1 [0, t] \ I j + 2 k .
Hence, lim sup

k ∞ sup [0,t] x j,k (•) ≤ x 0 + t 0 Γ j (s) ds • e t 0 Γ j (s) ds < R.
According to Corollary 2.19 (applied with r := R), x j,k (•) k∈N converges uniformly (as k ∞) to a mutational primitive x j : [0, T ] -E of θ j (•) with x j (0) = x 0 . The lower semicontinuity of • guarantees

x j (t) ≤ lim inf k ∞ x j,k (t) ≤ x 0 + t 0 Γ j (s) ds • e t 0 Γ j (s) ds < R
for all t ∈ [0, T ]. On the other hand, lim j ∞ L 1 [0, t] \ I j = 0. This, the Lebesgue dominated convergence theorem and Corollary 2.19 (applied with r := R) imply that x j (•) j∈N converges uniformly (as j ∞) to a mutational primitive x : [0, T ] -E of θ(•) with x(0) = x 0 . Proposition 2.18 (applied with r := R) yields x = x. The lower semicontinuity of • and the last inequality complete the proof. □

Proof of Proposition 2.22. We apply the same construction as in the proof of Corollary 2.20: Choose any j ∈ N sufficiently large such that j > max{α R (ϑ 0 ), β R (ϑ 0 ), γ(ϑ 0 ) and the measurable set

I j := t ∈ [0, T ] | Ψ R (t) ≤ j, A R (t) ≤ j, B R (t) ≤ j and Γ(t) ≤ j satisfies x 0 + ∥Γ∥ L 1 + γ(ϑ 0 ) • L 1 [0, T ] \ I j • e ∥Γ∥ L 1 + γ(ϑ 0 )•L 1 ([0,T ]\I j ) < R.
Now define θ j : [0, T ] -Θ and A R,j , B R,j , Γ j : [0, T ] -R as before. We already know that for every large j there exists a mutational primitive 

x j : [0, T ] -E of θ j (•) with x j (0) = x 0 and x j (t) < R for all t ∈ [0, T ]. Since D R θ(•), θ j (•) L 1 -0 (j ∞),
F (t) = x(t) if x(t) ̸ = ∅ and F (t) = {ϑ 0 } otherwise is measurable. Indeed, by Proposition 2.15, x(•) : [0, T ] ⇝ (Θ, D loc ) is measurable. In particular, the set {t | x(t) = ∅} is measurable. Consider any open set O ⊂ (Θ, D loc ). If it does not contain ϑ 0 , then the set {t | F (t) ∩ O ̸ = ∅} = {t | x(t) ∩ O ̸ = ∅} is measurable. If O contains ϑ 0 then {t | x(t) ∩ O ̸ = ∅} is measurable and {t | F (t) ∩ O ̸ = ∅} = {t | x(t) ∩ O ̸ = ∅} ∪ {t | x(t) = ∅}.
Consequently, F is measurable with nonempty images. Due to hypothesis (HΘ) (iv) (i.e., the continuity of ι R : (Θ, 

D loc ) -(Θ R , D R )), the composition F R = ι R • F : [0, T ] ⇝ (Θ R , D R )
Graph G ∩ Graph (F R ) |[0,T ]×E R ∈ L([0, T ]) ⊗ B(E R , d) ⊗ B(Θ R , D R ).
This means 

{t} × {x(t)} × F R (t) ∩ F R (t, x(t)) t ∈ [0, T ] ∈ L([0, T ]) ⊗ B(E R , d) ⊗ B(Θ R , D R ). Define Φ(t) = {x(t)} × F R (t) ∩ F R (t, x(t)) if the intersection F R (t) ∩ F R (t, x(t)) is nonempty and Φ(t) = {x(t)} × {ι R ϑ 0 } otherwise. Then the set-valued map Φ : [0, T ] ⇝ E R × (Θ R , D R ) is graph measurable with nonempty values. By Proposition B.5 it has a measurable selection z(t) ∈ Φ(t) for t ∈ [0, T ]. Let θ(t) ∈ Θ R be such that z(t) = x(t), θ(t) . For each t ∈ [0, T ] with ι R x(t) ∩ F R (t, x(t)) ̸ = ∅, we have θ(t) ∈ F R (t) ∩ F R (t, x(t)) = ι R x(t) ∩ F R (t, x(t)) by the definition of F, Φ and let θ(t) ∈ F(t, x(t)) ⊂ Θ such that θ(t) = ι R θ(t). Then θ(t) ∈ x(t) results from θ(t) ∈ F R (t) = ι R x(t)
t 0 κ λ(s) • s 0 φ(r) (Λ(s) -Λ(r)) k-1 (k -1)! dr ds = t 0 φ(s) (Λ(t) -Λ(s)) k k! ds .
Proof of Theorem 3.4.

Step 1 Define ψ : [0, T ] -R ∪ {∞} by ψ(t) = dist R ẙ(t), F(t, y(t)) . We claim that it is measurable.

Due to Hypothesis (HΘ), the pseudo-metric spaces (Θ R , D R ) and E R , d are separable and weakly Suslin. Furthermore,

(F R ) |[0,T ]×E R : [0, T ] × E R , d ⇝ (Θ R , D R
) is graph measurable with nonempty closed values as a consequence of Propositions B.4, B.7 and assumptions (iv) -(vi). Furthermore, assumption (vi) implies that for a.e. t ∈ [0, T ], the graph of

F R (t, •) |E R : E R , d ⇝ (Θ R , D R ) is closed. By Proposition C.1 for each ε > 0, there is a closed subset J ε ⊂ [0, T ] with L 1 [0, T ] \ J ε < ε such that the graph of (F R ) |Jε×E R : J ε × (E R , d) ⇝ (Θ R , D R ) is closed. Due to the continuity of y(•), the graph of the composition F R • , y(•) |Jε : J ε ⇝ (Θ R , D R ), t F R t, y(t)
is also closed and thus, it belongs to L([

0, T ]) ⊗ B(Θ R , D R ). Set Φ(t) = F R t, y(t) for t ∈ J ε and Φ(t) = {ι R ϑ 0 } for t ∈ [0, T ]\J ε . Then the graph of Φ belongs to L([0, T ]) ⊗ B(Θ R , D R ). Proposition B.5
guarantees a Castaing representation of Φ, i.e., there exists a sequence η ε,j j∈N of measurable functions

η ε,j : [0, T ] -(Θ R , D R ) such that for all t ∈ [0, T ], η ε,j (t) j ∈ N is dense in Φ(t) w.r.t. D R . From continuity of D R (•, •) we deduce that for any ϑ ∈ Θ, the function D R ϑ, η ε,j (•) is measurable on [0, T ]. Define g(t, ϑ) = dist R ϑ, F(t, y(t)) for ϑ ∈ Θ, t ∈ [0, T ]. Therefore,
For every ϑ ∈ Θ, the marginal function

J ε ∋ t -g(t, ϑ) := inf j ∈ N D R ϑ, η ε,j (t) is measurable (e.g., [10, Lemma 8.2.12], [13, Theorem 2.1.5]). 
For every

t ∈ [0, T ], the function Θ ∋ ϑ - inf τ ∈ F(t, y(t)) D R (ϑ, τ ) is 1-Lipschitz w.r.t. D R . Consider-
ing its composition with the continuous embedding (Θ, D loc ) -(Θ, D R ) by (HΘ) (iv), we obtain its continuity w.r.t. D loc .

Consider any sequence ε n 0+. Since n≥1 J εn is of full measure in [0, T ], we deduce that g(•, ϑ) is measurable for every ϑ ∈ Θ. By Proposition 2.15, ẙ(•) : [0, T ] ⇝ (Θ, D loc ) is measurable with closed images. Set F (t) = ẙ(t) if ẙ(t) ̸ = ∅ and F (t) = {ϑ 0 } otherwise. Then F : [0, T ] ⇝ (Θ, D loc ) is measurable with closed nonempty images. Furthermore ψ(t) = inf ϑ∈F (t) g(t, ϑ) a.e. in [0, T ]. Since the metric space (Θ, D loc ) is complete and separable, [START_REF] Aubin | Set-Valued Analysis, volume 2 of Systems & Control: Foundations & Applications[END_REF]Theorem 8.2.11] implies our claim. Due to assumption (vii), ψ is even integrable.

Step 2 In this step we construct a sequence θ j (•) j∈N of measurable functions [0, T ] -(Θ, D R ) and the corresponding sequence of their primitives x j (•) j∈N in a recursive way. Now fix κ > 1 arbitrarily and let g(•, •) be as in Step 1. We already know that it is measurable with respect to the first variable and continuous with respect to the second variable on (Θ, D loc ). By [10, Theorem 8.2.9] applied to H(•) ≡ Θ, the set-valued maps

[0, T ] ∋ t - ϑ ∈ (Θ, D loc ) g(t, ϑ) ≤ √ κ ψ(t)}, [0, T ] ∋ t - ϑ ∈ (Θ, D loc ) D R (ϑ 0 , ϑ) ≤ Ψ R (t)
are measurable with closed values. Due to Proposition 2.15, [10, Theorem 8.2.4] (about intersections) and assumption (vii), the set-valued map G : [0, T ] ⇝ (Θ, D loc ) defined by

G(t) := ϑ ∈ ẙ(t) g(t, ϑ) ≤ √ κ ψ(t), D R (ϑ 0 , ϑ) ≤ Ψ R (t) is measurable with nonempty closed values a.e. in [0, T ]. Set G(t) = G(t) if G(t) ̸ = ∅ and G(t) = {ϑ 0 } otherwise. Then G : [0, T ] ⇝ (Θ, D loc ) is measurable with closed nonempty values.
Thus, the selection theorem of Kuratowski and Ryll-Nardzewski (e.g., [START_REF] Kuratowski | A general theorem on selectors[END_REF], [START_REF] Aubin | Set-Valued Analysis, volume 2 of Systems & Control: Foundations & Applications[END_REF]Theorem 8.1.3]) provides a measurable τ 0 : [0, T ] -(Θ, D loc ) such that τ 0 (t) ∈ G(t) for all t ∈ [0, T ]. In particular, for a.e. t ∈ [0, T ],

τ 0 (t) ∈ ẙ(t), dist R τ 0 (t), F(t, y(t)) ≤ √ κ ψ(t), D R ϑ 0 , τ 0 (t) ≤ Ψ R (t) .
Next we claim that there exists a measurable function θ 0 : [0, T ] -(Θ, D R ) satisfying for a.e. t ∈ [0, T ],

θ 0 (t) ∈ F t, y(t) , D R τ 0 (t), θ 0 (t) ≤ √ κ • dist R τ 0 (t), F(t, y(t)) ≤ κ ψ(t).
Indeed, the function [0, T ] ∋ tdist R τ 0 (t), F(t, y(t)) is integrable due to three arguments: First, it is bounded a.e. by

√ κ Ψ R . Second, ϕ : [0, T ] × (Θ, D R ) - [0, ∞) defined by ϕ(t, ϑ) := g(t, ϑ
) is a Carathéodory function because by Step 1 it is measurable in time and it is Lipschitz with respect to ϑ in (Θ, D R ). Third, the measurable function τ 0 : [0, T ] -(Θ, D R ) is the pointwise limit of a sequence of simple functions (Remark B.3) and so, the standard arguments (known for complete separable metric spaces) now guarantee the measurability of the function [0, T ] ∋ tϕ(t, τ 0 (t)) (see, e.g., [START_REF] Aubin | Set-Valued Analysis, volume 2 of Systems & Control: Foundations & Applications[END_REF]Lemma 8.2.3]). Hence, the set-valued map

[0, T ] ⇝ (Θ, D loc ), t ϑ ∈ Θ D R τ 0 (t), ϑ ≤ √ κ • ϕ(t, τ 0 (t))
is measurable with nonempty closed values (due to [10, Theorem 8.2.9]) and so is its composition with the continuous restriction ι R : (Θ,

D loc ) -(Θ R , D R ), i.e., [0, T ] ⇝ (Θ R , D R ), t ϑ ∈ Θ R D R τ 0 (t), ϑ ≤ √ κ • ϕ(t, τ 0 (t))
is measurable with nonempty closed values. The latter is graph measurable due to Proposition B.4. Consider any sequence

ε n 0+. By Step 1 the graph of F R • , y(•) |Jε n : J εn ⇝ (Θ R , D R ) belongs to L([0, T ]) ⊗ B(Θ R , D R ). Since n≥1 J εn is of full measure in [0, T ] we deduce that the graph of F R • , y(•) also belongs to L([0, T ]) ⊗ B(Θ R , D R ). Hence, the map [0, T ] ⇝ (Θ R , D R ), t ϑ ∈ Θ R ϑ ∈ F R t, y(t) , D R τ 0 (t), ϑ ≤ √ κ • dist R τ 0 (t), F(t, y(t))
(as an intersection) is graph measurable with nonempty values. Proposition B.5 provides a measurable selection θ0 : [0, T ] -(Θ R , D R ). For a.e. t ∈ [0, T ], let θ 0 (t) ∈ F t, y(t) be such that its restriction

(to [0, 1] × E R ) is θ0 (t). Then θ 0 : [0, T ] -(Θ, D R ) is measurable since ι R maps every open set in (Θ, D R ) to an open set in (Θ R , D R ). Furthermore θ 0 (•) is a selection of [0, T ] ⇝ (Θ, D R ), t ϑ ∈ F t, y(t) D R τ 0 (t), ϑ ≤ √ κ • dist R τ 0 (t), F(t, y(t)) (as required). Moreover for a.e. t ∈ [0, T ], we have D R ϑ 0 , θ 0 (t) ≤ D R ϑ 0 , τ 0 (t) + D R τ 0 (t), θ 0 (t) ≤ D R ϑ 0 , τ 0 (t) + √ κ • dist R τ 0 (t), F(t, y(t)) ≤ Ψ R (t) + κ ψ(t) ≤ Ψ R (t) 1 + κ .
This is the basis for constructing two sequences x j (•) j∈N , θ j (•) j∈N recursively:

According to Proposition 2.22 there exists a mutational primitive x j : [0, T ] -E of θ j-1 (•) with x j (0) = x 0 and sup t∈[0,T ] x j (t) < R .

Construct θ j : [0, T ] -(Θ, D R ) as a measurable function satisfying for a.e. t ∈ [0, T ],

θ j (t) ∈ F t, x j (t) , D R θ j-1 (t), θ j (t) ≤ κ • dist R θ j-1 (t), F(t, x j (t)) ≤ κλ R (t) • d(x j-1 (t), x j (t)) .
Hence, the assumptions of Proposition 2.22 are satisfied in each step of recursion. Proposition 2.12 implies for every t 1 , t 2 ∈ [0, T ] (t 1 ≤ t 2 )

d x j (t 1 ), x j (t 2 ) ≤ t 2 t 1 B R (s) ds.
Step 3 We claim that for Λ R (t) := κ • t 0 λ R (s) ds and all j ∈ N:

d x j (t), x j+1 (t) ≤ t 0 (Λ R (t) -Λ R (s)) j-1 (j -1)! κ λ R (s) • d y(s), x 1 (s) • e t s A R dσ ds.
This upper bound results, similarly [9, p.122], from Proposition 2.18 and assumption (vi) of our theorem by means of induction w.r.t. j and Lemma 5.1.

Step 4 We claim that x j (•) j∈N is a uniform Cauchy sequence. Thus, it tends uniformly to some absolutely continuous x : [0, T ] -(E, d) and sup

[0,T ] x(•) ≤ R.
The a priori estimate in Step 3 guarantees for every k ∈ N 

k j = 1 sup t ∈ [0,T ] d x j (t), x j+1 (t) ≤ T 0 κ λ R (s) • d y(s), x 1 (s) • e T s (A R +κ λ R )
♯ R dist R ι R θ j (t), F R (t, x(t)) ≤ h ♯ R F R (t, x j (t)), F R (t, x(t)) ≤ λ R (t) • d x j (t), x(t) j ∞ - 0.
According to assumption (iv), F R t, x(t) ⊂ Θ R is complete w.r.t. D R and thus, there exists θ(t)

∈ F R t, x(t) with D R ι R θ j (t), θ(t) -0 (j -∞). Let θ(t) ∈ F t, x(t) ⊂ Θ (instead of Θ R ) be such that its restriction (to [0, 1] × E R ) is θ(t). Then, D R θ j (t), θ(t) -0 (j -∞).
Step 6 We show here that x(•) is a mutational primitive of θ(•) and thus, it is a solution of the muta-

tional inclusion x(•) ∩ F •, x(•) ̸ = ∅ (a.e. in [0, T ]).
This results from Corollary 2.19. In general, every pointwise limit of measurable functions [0, T ] -(Θ, D R ) is measurable (since the proof of [20, Proposition 4.2.2], for example, can be easily adapted to functions with values in a pseudo-metric space). Thus, θ : [0, T ] -(Θ, D R ) is measurable. Finally, the inequalities in Step 5 guarantee for every index k ∈ N

D R θ k (t), θ(t) ≤ ∞ j = k+1 D R θ j-1 (t), θ j (t) ≤ κ λ R (t) • t 0 κ λ R (s) • d y(s), x 1 (s) • e t s (A R +κ λ R ) dσ ds .
Due to assumptions about A R , λ R ∈ L 1 ([0, T ]), the last line provides a dominating function of t in L 1 ([0, T ]) as required for verifying all the assumptions of Corollary 2.19.

Step 7 We next check that x(•) satisfies d x(t), y(t) ≤ η κ (t) for all t ∈ [0, T ].

The construction of x(•) as the uniform limit of x j (•) j∈N and the a priori estimate of Step 3 (with the same arguments as in Step 4) lead to

d x(t), y(t) ≤ lim k ∞ d x k (t), x 1 (t) + d x 1 (t), y(t) ≤ ∞ j = 1 d x j (t), x j+1 (t) + d x 1 (t), y(t) ≤ t 0 e Λ R (t)-Λ R (s) κ λ R (s) • d y(s), x 1 (s) • e t s A R dσ ds + d x 1 (t), y(t) = t 0 κ λ R (s) • d y(s), x 1 (s) • e t s (A R +κ λ R ) dσ ds + d x 1 (t), y(t)
for every t ∈ [0, T ]. We conclude from the choice of θ 0 (•), τ 0 (•) in Step 2 and Proposition 2.18

d y(t), x 1 (t) ≤ d y(0), x 0 • e t 0 A R dσ + t 0 D R τ 0 (s), θ 0 (s) • e t s A R dσ ds ≤ d y(0), x 0 • e t 0 A R dσ + t 0 κ • ψ(s) • e t s A R dσ ds .
Combining the two inequalities we get Step 8 We next claim that for a.e. t ∈ [0, T ], D R τ 0 (t), θ(t) ≤ κ ψ(t) + κ λ R (t) • η κ (t).

t 0 κ λ R (s) • d y(s), x 1 (s) • e t s (A R +κ λ R ) dσ ds ≤ t 0 κ λ R (s) • d y(0), x 0 • e s 0 A R dρ + s 0 κ • ψ(σ) • e σ A R dρ dσ • e t s (A R +κ λ R ) dρ ds ≤ d y(0), x 0 • e t 0 A R dρ • t 0 κλ R (s) • e t s κλ R dρ dσ + t 0 κλ R (s)e
In Step 2 and Step 3, we have concluded that for a.e. t ∈ [0, T ] and all j ∈ N,

D R τ 0 (t), θ 0 (t) ≤ κ ψ(t), D R θ j-1 (t), θ j (t) ≤ κ λ R (t) • d x j-1 (t), x j (t) .

Similarly to

Step 7, it implies that for a.e. t ∈ [0, T ]

D R τ 0 (t), θ(t) ≤ D R τ 0 (t), θ 0 (t) + ∞ j = 1 D R θ j-1 (t), θ j (t) ≤ D R τ 0 (t), θ 0 (t) + κ λ R (t) • ∞ j = 1 d x j-1 (t), x j (t) ≤ κ ψ(t) + κ λ R (t) • t 0 κ λ R (s) • d y(s), x 1 (s) • e t s (A R +κ λ R ) dσ ds.
Step 7 contains an upper bound of the last integral and so, we obtain 

D R τ 0 (t), θ(t) ≤ κ ψ(t) + κ λ R (t) • d y(0), x 0 • e t 0 A R dρ e t 0 κ λ R dρ -1 + + κ λ R (t) • t 0 κ ψ(s) • e t s A R dρ e t s κ λ R dρ -1 ds ≤ κ ψ(t) + κ λ R (t) • η κ (t) .
(R n ), ∥ • ∥ L ∞ [2, Remark 1.57], M c (R n ) denotes the
subset of measures with compact support and M + (R n ) denotes the subset of measures µ ≥ 0. For each

µ ∈ M(R n ), |µ|(R n ) abbreviates the total variation of µ. Recall that a nonempty subset S ⊂ M(R n ) is called (uniformly) tight if for all ε > 0 there is a compact K ε ⊂ R n with sup µ ∈ S µ (R n \ K ε ) < ε. A sequence (µ n ) n∈N in M(R n ) is said to converge narrowly to µ ∈ M(R n ) if for every bounded φ ∈ C 0 (R n ), lim n ∞ R n φ dµ n = R n φ dµ. Definition 6.1 ( [13]) The mapping d M : M(R n ) × M(R n ) -[0, ∞) defined by d M (µ, ν) := sup R n ψ d(µ-ν) ψ ∈ C 1 (R n ), ∥ψ∥ L ∞ ≤ 1, ∥∇ψ∥ L ∞ ≤ 1 is called the Kantorovich-Rubinstein metric on M(R n ).
Whenever µ and ν are Borel probability measures on R n (and thus, µ, ν

∈ M + (R n )), d M (µ, ν) coincides
with their so-called Wasserstein distance of order p = 1 (e.g., [START_REF] Bogachev | Measure Theory[END_REF]Theorem 8.10.45]). Recall that every narrowly continuous function [0, T ] -M(R n ) with tight values has a bounded total variation. Definition 6.2 Let T > 0, a metric space U ̸ = ∅ and functions f :

[0, T ]×M(R n )×U -W 1,∞ (R n , R n ) and g : [0, T ]×M(R n )×U -W 1,∞ (R n ) be given. Consider a measurable u : [0, T ] -U (called control). Then µ : [0, T ] -M(R n ) written as t µ t is called a weak solution to the transport equation ∂ t µ = -div x f (t, µ t , u(t)) µ + g(t, µ t , u(t)) • µ (3) 
on [0, T ] if µ is narrowly continuous and for any 0

≤ t 1 < t 2 ≤ T and φ ∈ C 1 c (R n ), R n φ dµ t 2 - R n φ dµ t 1 = t 2 t 1 R n f (s, µ s , u(s), x) • ∇ x φ(x) + g(s, µ s , u(s), x) φ(x) dµ s (x) ds. Let S k be a closed separable subset of W 1,∞ (R n , R k ) for k ∈ {1, n}, (U, d U ) a compact metric space of controls and f : [0, T ] × M(R n ) × U -S n , g : [0, T ] × M(R n ) × U -S 1
have the following properties:

C f ,∞ := sup ∥f (t, ζ, u)∥ L ∞ (R n ,R n ) t ∈ [0, T ], ζ ∈ M(R n ), u ∈ U < ∞ and C g,∞ := sup ∥g(t, ζ, u)∥ L ∞ (R n ) t ∈ [0, T ], ζ ∈ M(R n ), u ∈ U < ∞. For every r > 0, there exists C r ∈ [0, ∞) such that for all t ∈ [0, T ], u ∈ U and ζ ∈ M(R n ) with |ζ|(R n ) ≤ r, ∥∂ x f (t, ζ, u)∥ L ∞ (R n ,R n×n ) , ∥∇ x g(t, ζ, u)∥ L ∞ (R n ,R n ) ≤ C r . For all ζ ∈ M(R n ) and u ∈ U , f (•, ζ, u), g(•, ζ, u) : [0, T ] -L ∞ , ∥ • ∥ L ∞ are measurable. For every r > 0, there is Λ r ∈ L 1 ([0, T ]) such that for each u ∈ U and a.e. t ∈ [0, T ], f (t, •, u) and g(t, •, u) are Λ r (t)-Lipschitz on µ ∈ M(R n ) |µ|(R n ) ≤ r w.r.t. d M , ∥ • ∥ L ∞ . For a.e. t ∈ [0, T ] and each ζ ∈ M(R n ), f (t, ζ, •), g(t, ζ, •) : U -L ∞ , ∥ • ∥ L ∞ are continuous.
Then Theorem 3.4 leads to the following statement:

A measurable selection theorem provides some measurable u : [0, T ] -U satisfying for a.e. 

µ t |(R n ) ≤ |µ 0 | + C g,∞ T • e Cg,∞ T < R for all t.
(2.) For a.e. t ∈ [0, T ], lim

h 0 1 h • d M µ t+h , ϑ bµ(t), cµ(t) (h, µ t ) = 0.
In addition, we conclude from Lemma 6.5 (by means of Euler approximations) that µ t is characterized by

R n φ d µ t = R n φ(X bµ (t, x)) • exp t 0 c µ (X bµ (s, x)) ds dµ 0 (x) for all φ ∈ C 1 c (R n ) with X bµ (•, x 0 ) : [0, T ] -R n denoting the unique Carathéodory solution of x ′ = b µ (t, x) in [0, T ] with X bµ (0, x 0 ) = x 0 ∈ R n .
It guarantees the properties (4.) -( 6.) of Theorem 6.3 for µ t . Finally, the statements (3.) of Lemma 6.8 and (2.) of Lemma 6.9 lead to lim

h 0 1 h • d M (µ t+h , µ t+h ) -d M (µ t , µ t ) ≤ ( C g,∞ + 2 C R ) • d M (µ t , µ t ) for a.e. t ∈ [0, T ],
and, since d M (µ 0 , µ 0 ) = 0, Gronwall's inequality ensures µ t = µ t for every t ∈ [0, T ].

Appendix. Tools in Topology and Non-smooth Analysis A Gronwall's Inequality for Lower Semicontinuous Functions 

ψ(t + h) -ψ(t) h ≤ f (t) • ψ(t) + g(t) for every t ∈ [a, b).
Then, for every t ∈ [a, b] and ℓ(t) := t a f (s) ds we have

ψ(t) ≤ ψ(a) • e ℓ(t) + t a
e ℓ(t)-ℓ(s) g(s) ds.

Proof. Without any loss of generality we assume that a = 0. Consider the closed set

K := epi(ψ)∪([b, ∞)× R)
, where epi(ψ) denotes the epigraph of ψ and define f (t) = f (b), g(t) = g(b) for t > b. It follows from our assumption, that for any s ∈ [0, b) the vector 1, f (s) • ψ(s) + g(s) ∈ R 2 belongs to the contingent cone T K (s, ψ(s)) to K at (s, ψ(s)) implying that for any y ≥ ψ(s), 1, f (s) • ψ(s) + g(s) ∈ T K (s, y) and, because f ≥ 0, that 1, f (s) • y + g(s) ∈ T K (s, y). Furthermore, for any (s, y) ∈ K with s ≥ b we have {1} × R ⊂ T K (s, y). By the viability theorem, see for instance, [9, p.180] there exists a solution to the system s ′ = 1, s(0) = 0 y ′ = f (s) y + g(s), y(0) = ψ(0) satisfying (s(t), y(t)) ∈ K for all t ∈ [0, T ) for some 0 < T < b. Observing that s(t) = t we deduce that y is uniquely defined on [0, ∞). Using that ψ is lower semicontinuous we obtain ψ(t) ≤ y(t) for all t ∈ [0, T ]. From the viability theorem and the Zorn lemma it follows, in the usual way, that y(•) satisfies the inequality ψ( = ω ∈ Ω F (ω) ∩ O ̸ = ∅ ∈ A. (b) F is called graph measurable if its graph belongs to A ⊗ B(X).

•) ≤ y(•) on [0, b]. Since y(t) = ψ(0) • e ℓ(t) + t 0 e ℓ(t
We also need the following fact.

Remark B.3 Consider a measurable space (Ω, A), a separable pseudo-metric space (Y, d Y ) and a measurable function f : Ω -Y . Then there exists a sequence (f j ) j∈N of simple functions Ω -Y converging to f pointwise in Ω. Indeed, the identity Y -Y is the pointwise limit of a sequence (g j ) j∈N of Borel measurable functions g j : Y -Y each of which has finitely many values as the proof of [START_REF] Dudley | Real Analysis and Probability[END_REF]Proposition 4.2.6] also holds for a separable pseudo-metric space (Y, d Y ). Hence, f j := g j • f : Ω -Y has the claimed properties.

The following two propositions follow from Leese [START_REF] Leese | Multifunctions of Souslin type[END_REF][START_REF] Leese | Set-Valued Functions and Selectors[END_REF][START_REF] Leese | Corrigendum: "Multifunctions of Souslin type[END_REF], see also [START_REF] Wagner | Survey of measurable selection theorems[END_REF]Theorem 4.2 (b) and Theorem 5.10]. Though originally they were stated on an arbitrary topological space X with a measure defined on a Suslin family of subsets of X, in order to simplify the presentation, we restrict our attention to X = [0, T ], with T > 0, supplied with the Lebesgue measure, which suffices for our proofs.

Proposition B.4

Let Y be a topological space having a countable base and F : [0, T ] ⇝ Y be a measurable set-valued map with nonempty closed values. Then F is graph measurable. Proposition B.5 Let Y be a weakly Suslin space and F : [0, T ] ⇝ Y be a graph measurable set-valued map with nonempty values. Then F has a Castaing representation, i.e., there is a sequence (f n ) n∈N of measurable selections of F such that for each t ∈ [0, T ], f n (t) n ∈ N is dense in F (t).

Recall that a topological space is called a weakly Suslin space if it is the image of a complete separable metric space under a continuous mapping [START_REF] Kucia | Scorza Dragoni type theorems[END_REF][START_REF] Wagner | Survey of measurable selection theorems[END_REF][START_REF] Wagner | Survey of measurable selection theorems: an update[END_REF] and f : [0, T ] Y is called a measurable selection of F if f (t) ∈ F (t) for every t ∈ [0, T ]. We also state the following extension of Lusin's Theorem relating the measurability of a vector-valued function to its almost continuity. It can be proved in the same way as in [START_REF] Bogachev | Measure Theory[END_REF]Theorem 7.14.25], [START_REF] Fremlin | Measurable functions and almost continuous functions[END_REF], [START_REF] Kupka | The measurability of uncountable unions[END_REF]Theorem 4.1], where a metric space Y was considered.

Theorem B.6 Let Y be a pseudo-metric space. A function f : [0, T ] -Y is measurable if and only if it is almost continuous, i.e., if for every ε > 0, there is a compact subset K ε ⊂ [0, T ] with L 1 [0, T ] \ K ε < ε such that f is continuous on K ε .

Finally, we formulate a Scorza-Dragoni type result for so-called measurable/Lipschitz maps (essentially in the sense of [START_REF] Aubin | Set-Valued Analysis, volume 2 of Systems & Control: Foundations & Applications[END_REF]Definition 9.5.1]). For a complete separable metric space X, a set-valued map from [0, T ] × X into a metric space Y is not necessarily Lebesgue-Borel measurable if it is Lebesgue measurable w.r.t. the first variable and upper semicontinuous (or lower semicontinuous) w.r.t. the second variable. Counterexamples are presented in [START_REF] Appell | Multifunctions of two variables: examples and counterexamples[END_REF], [START_REF] Hu | Handbook of Multivalued Analysis[END_REF]Ch. 2,Example 7.2]. This general observation explains why we prefer the assumption of graph measurability in Proposition 3.2. The Lipschitz continuity w.r.t. the second variable, however, is sufficient for further conclusions about joint regularity as the next proposition specifies. In comparison with Himmelberg's results about almost semicontinuity [START_REF] Himmelberg | Precompact contraction of metric uniformities, and the continuity of F (t, x)[END_REF][START_REF] Himmelberg | Correction to: "Precompact contraction of metric uniformities, and the continuity of F (t, x)[END_REF], we dispense with the Hausdorff condition on the value space Y and so, its proof cannot rely on characterizing elements in terms of distances as usual.

Proposition B.7 Let X be a complete separable metric space, Y be a weakly Suslin pseudo-metric space and F : [0, T ] × X ⇝ Y be a set-valued map with nonempty values satisfying the following properties: 

d Y f k,ℓ (t 0 ), y 0 ≤ h ♯ F (t 0 , x k ), F (t 0 , x 0 ) + ρ 8 ≤ Λ • d(x k , x 0 ) + ρ 8 < ρ 4 .
The continuity of (f k,ℓ ) |Sε provides some δ k,ℓ > 0 such that for all t ∈ S ε ,

|t -t 0 | < δ k,ℓ =⇒ d Y f k,ℓ (t), f k,ℓ (t 0 ) < ρ
4 . Finally, we obtain for all (t, x) ∈ S ε × X with |t -t 0 | < δ k,ℓ and d X (x, x 0 ) < ρ 8 Λ , dist Y y 0 , F (t, x) ≤ d Y y 0 , f k,ℓ (t 0 ) + dist Y f k,ℓ (t 0 ), F (t, x) 

< ρ 4 + d Y f k,ℓ (t 0 ), f k,ℓ (t) + Λ • d X (x k , x) < ρ 4 + ρ 4 + Λ • 2 ρ 8 Λ < ρ =⇒ ∅ ̸ = F (t,

Proposition 2 . 4 (

 24 Lipschitz dependence of transitions on initial state) Let ϑ : [0, 1] × E -E be a transition and r ≥ 0. Set R := r + γ(ϑ) • e γ(ϑ) .

Definition 2 . 5 (

 25 Pseudo-distance on transitions) Let Θ(E, d, • ) or shortly Θ denote a fixed nonempty subset of transitions on E, d, • . For r ≥ 0 with E r ̸ = ∅ and any ϑ ∈ Θ, define the restriction map ι r (ϑ) := ϑ |[0,1]×Er and let Θ r

Remark 2. 11 (

 11 a) For every transition ϑ ∈ Θ and initial state x 0 ∈ E, the curve x(•) := ϑ(•, x 0 ) : [0, 1] -E has ϑ in its mutation x(t) at each time t ∈ [0, 1

t 0 A

 0 R (s) ds + t 0 ∆ r (s) • e t s A R (σ) dσ ds for every t ∈ [0, T ].

Corollary 2 . 21 (

 221 Uniqueness of mutational primitives) Let x 0 ∈ E, r := x 0 and θ : [0, T ] -Θ, R satisfy the assumptions of Corollary 2.20. Then there exists at most one mutational primitive x : [0, T ] -E of θ(•) with x(0) = x 0 . Proposition 2.22 (Existence of mutational primitives) Let θ : [0, T ] -Θ and suppose that there exists

Since ψ( 0 )

 0 = 0, the Gronwall inequality yields ψ(•) = 0. Consequently, ϑ(h, x) = τ (h, x) for any h ∈ [0, 1]. This proves the first statement. To prove the second one, consider any x ∈ E and set r := x . Then, by the first claim, ϑ(h, x) = τ (h, x) for any h ∈ [0, 1]. The arbitrariness of x ∈ E implies separability. □ Proof of Proposition 2.8. Corollary 2.7 implies that (Θ, D) is a metric space. Clearly the canonical embedding (Θ, D) -(Θ, D k ) is continuous for any integer k ≥ 1. Pick any r ≥ 0 and observe that for any integer k ≥ r we have D k ≥ D r . Thus the canonical embedding (Θ, D) -(Θ, D r ) is continuous for every r ≥ 0.

and θ 2

 2 (•) are measurable and D r is Lipschitz. Assumption (iii) of Proposition 2.18 guarantees its integrability. The rest of the proof is essentially as the one of Proposition 2.13. The only difference concerns the selections θ 1 (•), θ 2 (•) of x1 (•), x2 (•) respectively which are now given explicitly as measurable functions from [0, T ] into (Θ, D r ). □ The proof of Corollary 2.19 uses the following variant of Lebesgue points for measurable metric spacevalued functions: Lemma 4.1 Let Y be a pseudo-metric space and ψ : [0, T ] -Y and δ : Y × Y -[0, ∞) satisfy:(i) ψ(•) is measurable, δ(•) is continuous and satisfies the triangle inequality.

  t), ψ(s) ds = 0 holds for a.e. t ∈ [0, T ). Proof of Lemma 4.1. Choose any sequence (ε ℓ ) ℓ∈N in (0, 1) with ∞ ℓ=1 ε ℓ < ∞. For each ℓ ∈ N, Lusin's Theorem B.6 provides a compact subset I ℓ ⊂ [0, T ] with L 1 [0, T ] \ I ℓ < ε ℓ such that the restriction ψ |I ℓ :

Corollary 2 .

 2 19 yields the uniform convergence of x j (•) j∈N to a mutational primitive x : [0, T ] -E of θ(•) with x(0) = x 0 and x(t) < R for all t ∈ [0, T ]. □ 5 Proofs of Results in Section 3 Proof of Proposition 3.2. The implication "(b) =⇒ (a)" is obvious. The implication "(a) =⇒ (b)" results from Leese's selection statement in Proposition B.5 in combination with Proposition 2.15. Let x : [0, T ] -E be continuous with sup t x(t) ≤ R and satisfy statement (a). Fix any ϑ 0 ∈ E. We claim that the set-valued map F : [0, T ] ⇝ (Θ, D loc ) defined by

  and Definition 2.10 of x(t). For all remaining t ∈ [0, T ] set θ(t) := ϑ 0 . Finally, θ : [0, T ] -(Θ, D R ) is measurable because z(•) is measurable and ι R maps every open set in (Θ, D R ) to an open set in (Θ R , D R ). □ Lemma 5.1 (e.g., [9, p.122]) Consider non-negative φ, λ ∈ L 1 ([0, T ]), k ∈ N, κ ≥ 1 and define Λ : [0, T ] -[0, ∞) by Λ(t) := κ t 0 λ(s) ds. Then for every t ∈ [0, T ],

t s κλ R dρ s 0 κ 0 κ

 00 • ψ(σ) • e t σ A R dρ dσ ds = d y(0), x 0 • e t 0 A R dρ • t 0 κλ R (s) • e t s κλ R dρ dσ + R dρ dσ ds = d y(0), x 0 • e t 0 A R dρ • e t 0 κ λ R dρ -1 + t • ψ(s) • e t s A R dρ e t s κ λ R dρ -1 ds .

□ 6

 6 Example: Measure-Valued Solutions to Transport Inclusions Below C 0 c (R n ) denotes the space of continuous functions R n -R with compact support and C 0 0 (R n ) its closure with respect to the supremum norm. Let M(R n ) be the set of all finite real-valued Radon measures on R n , i.e., it is the dual space of C 0 0

Proposition A. 1

 1 Let ψ : [a, b] -[0, ∞) be lower semicontinuous and f, g ∈ C 0 ([a, b]) satisfy f (•) ≥ 0 and lim inf h 0

  (i) for each x ∈ X, the map F (•, x) : [0, T ] ⇝ Y is graph measurable, (ii) there exists λ ∈ L 1 ([0, T ]) such that for a.e. t ∈ [0, T ],F (t, •) : X ⇝ Y is λ(t)-Lipschitz.Then for every ε > 0, there exists a closed subsetS ε ⊂ [0, T ] with L 1 [0, T ] \ S ε < ε such that the restriction F |Sε×X is lower semicontinuous. Consequently, F is Lebesgue-Borel measurable. If in addition all values of F are closed then its graph is contained in L([0, T ]) ⊗ B(X) ⊗ B(Y ). Proof. Let x 1 , x 2 , . . . denote a dense subset of X. For each index k ∈ N, Proposition B.5 guarantees a Castaing representation of F ( • , x k ) : [0, T ] ⇝ Y , i.e., there exists a sequence (f k,ℓ ) ℓ∈N of Lebesgue measurable functions [0, T ] -Y such that for every t ∈ [0, T ], the set f k,ℓ (t) ℓ ∈ N is dense in F (t, x k ) ⊂ Y . Fixing ε > 0 arbitrarily, Lusin-type Theorem B.6 provides a closed subset S ε ⊂ [0, T ] (inductively w.r.t. k, ℓ ∈ N) satisfying L 1 [0, T ] \ S ε < ε and for every t ∈ S ε , F (t, •) : X ⇝ Y is λ(t)-Lipschitz, λ |Sε : S ε -R is continuous and, for all k, ℓ ∈ N, (f k,ℓ ) |Sε : S ε -Y is continuous.Then, the restrictionF := F |Sε×X : S ε × X ⇝ Y is lower semicontinuous in the sense that for every open set O ⊂ Y , the inverse image F -1 (O) = (t, x) ∈ S ε × X F (t, x) ∩ O ̸ = ∅ is open in S ε × X.Indeed, for each (t 0 , x 0 ) ∈ F -1 (O), choose y 0 ∈ F (t 0 , x 0 ) ∩ O and ρ > 0 with B ρ (y 0 ) ⊂ O ⊂ Y . Set Λ := 1 + sup Sε λ(•) < ∞. There exists k = k(x 0 , Λ) ∈ N with d X (x 0 , x k ) < ρ 8 Λ . Next we select ℓ = ℓ(k) ∈ N with

  x) ∩ B ρ (y 0 ) ⊂ F (t, x) ∩ O . The same condition on inverse images of open sets implies the measurability of F |Sε×X . By means of a sequence ε n 0, we obtain the Lebesgue-Borel measurability of F : [0, T ]×X ⇝ Y . Finally, whenever in addition F has closed values, its graph measurability is concluded from Proposition B.4. □

  dσ ds and thus, x j (•) j∈N is a uniform Cauchy sequence inC 0 [0, T ], (E R , d) . Its limit x : [0, T ] -(E R , d) satisfies for all t 1 , t 2 ∈ [0, T ] (t 1 ≤ t 2 ), Step 5 We claim that θ j (•) j∈N converges to some θ : [0, T ] -(Θ, D R ) almost everywhere in [0, T ] and θ(t) ∈ F t, x(t) for a.e. t ∈ [0, T ].ByStep 2 for a.e. t ∈ [0, T ] and all j ∈ N, D R θ j-1 (t), θ j (t) ≤ κλ R (t) • d x j-1 (t), x j (t) and so, all further conclusions in this step are drawn for a.e. t [0, T ] (without indicating it explicitly). R +κ λ R ) dσ ds.Hence, θ j (t) j∈N is a Cauchy sequence in Θ w.r.t. D R for a.e. t ∈ [0, T ]. Moreover, the construction of θ j (t) ∈ F t, x j (t) and assumption (vi) provide in terms of the excess h

					t 2
		d x(t 1 ), x(t 2 ) = lim j ∞	d x j (t 1 ), x j (t 2 ) ≤	t 1	B R (s) ds.
						From Step
	3 we obtain				
	∞	D R θ j-1 (t), θ j (t) ≤ κ λ R (t)	t	κ λ R (s) • d y(s), x 1 (s) e	t s (A
	j = 2		0		

  t ∈ [0, T ]b µ (t) = f t, µ t , u(t) , c µ (t) = g t, µ t , u(t) (see, e.g.,[START_REF] Aubin | Set-Valued Analysis, volume 2 of Systems & Control: Foundations & Applications[END_REF] Theorem 8.2.10]). In regard to Theorem 6.3, it remains to prove that µ :[0, T ] -M(R n ) is a weak solution of ∂ t µ = -div x f (t, µ t , u(t)) µ + g(t, µ t , u(t)) • µ in [0, T ]with tight values and the supplementary properties (4.) -(6.) of Theorem 6.3. Having specified measurable b µ , c µ , however, we can use some results about weak solutions to nonautonomous linear transport equations. Results of[START_REF] Kloeden | Nonlocal multi-scale traffic flow models: analysis beyond vector spaces[END_REF] Section 3 and 6] imply the following statement. There exists a unique narrowly continuous weak solution µ : [0, T ] -M(R n ) of the nonautonomous linear equation ∂ t µ t + div x (b µ (t) µ t ) = c µ (t) µ t with µ 0 = µ 0 and, it satisfies : (1.) µ is Lipschitz w.r.t. d M and has tight values with |

	Lemma 6.9

  )-ℓ(s) g(s) ds the proof follows. □B Measurability of Set-Valued Maps in Topological SpacesThe example of transitions given as a function of time requests extending standard results about measurable set-valued maps (see, e.g.,[START_REF] Aubin | Set-Valued Analysis, volume 2 of Systems & Control: Foundations & Applications[END_REF] Ch. 8],[START_REF] Hu | Handbook of Multivalued Analysis[END_REF] Ch. 2]) to mappings with values in a pseudo-metric space (thus not necessarily Hausdorff). Let X and Y be topological spaces. If Y is second countable, i.e., Y has a countable base, then B(X × Y ) = B(X) ⊗ B(Y ).Proof. The special case of Hausdorff spaces X, Y is considered in[START_REF] Bogachev | Measure Theory[END_REF] Lemma 6.4.2], but the additional assumption is not used in its proof. □ Definition B.2 Consider a measurable space (Ω, A), a topological space X and a set-valued map F :Ω ⇝ X.(a) F is called measurable if the inverse image of each open set is measurable, i.e., for every open O ⊂ X, F -1 (O)

	Proposition B.1 Def.
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) is tight and bounded w.r.t. the total variation. (ii) η is a weak solution of ∂ t η = -div x b η (t) η + c η (t) • η in [0, T ].

(iii) There is Ψ ∈ L 1 ([0, T ]) satisfying for a.e. t ∈ [0, T ],

Then for every κ > 1 and µ 0 ∈ M(R n ), there exist a control u(•) and a weak solution µ of the transport equation [START_REF] Ambrosio | Gradient Flows in Metric Spaces and in the Space of Probability Measures[END_REF] such that (1.) µ is Lipschitz w.r.t. d M and has tight values with

To link the above result with more general Theorem 3.4 we introduce the corresponding transitions. But first we cite several (rather technical) results about Radon measures and measure-valued solutions to linear transport equations from [42, § 2.5], [34, § § 6,7] which serve as tools here. 

there exists a unique weak solution µ : [0, T ] -M(R n ) written as t µ t to the linear problem

From now on, we use the notation ϑ b,c (t, ν 0 ) := µ t for t ∈ [0, 1] with the weak solution µ to initial value problem (4). It is worth mentioning that

The following statements hold for any µ 0 ,

Now Definitions 2.1 and 2.5 lead directly to the following conclusions about ϑ b,c .

The mutational Filippov Theorem 3.4 yields the following existence result.

Lemma 6.8 Under all the assumptions of Theorem 6.3, for every κ > 1 and

that for R, δ R (t) defined as in Theorem 6.3 the inequality (2.) of Theorem 6.3 holds true and

C Scorza-Dragoni-Like Theorem about Almost Closed Graphs

There are many versions of the Scorza-Dragoni theorem available in the literature (see, e.g., [START_REF] Appell | Multifunctions of two variables: examples and counterexamples[END_REF][START_REF] Appell | Multi-valued superpositions[END_REF][START_REF] Averna | Lusin type theorems for multifunctions, Scorza Dragoni's property and Carathéodory selections[END_REF][START_REF] Castaing | Multivalued differential equations on closed convex sets in Banach spaces[END_REF][START_REF] Frankowska | Measurable viability theorems and the Hamilton-Jacobi-Bellman equation[END_REF][START_REF] Himmelberg | An extension of Brunovský's Scorza Dragoni type theorem for unbounded set-valued functions[END_REF][START_REF] Hu | Handbook of Multivalued Analysis[END_REF][START_REF] Jarník | On conditions on right hand sides of differential relations[END_REF][START_REF] Tolstonogov | On the Scorza-Dragoni theorem for multivalued mappings with a variable domain[END_REF]). We shall prove here the following one.

Proposition C.1 Let (X, d X ) and (Y, d Y ) be separable weakly Suslin pseudo-metric spaces and F : [0, T ] × X ⇝ Y be a set-valued map with nonempty closed values. Assume:

Then, for each ε > 0, there exists a closed subset

Proof of Lemma C.2. By assumption (ii) of Proposition C.1, the graph of F belongs to the σ-algebra

and, we know that B(X

Hence, the graph of F belongs to L([0, T ]) ⊗ B(X × Y ). Since X and Y are weakly Suslin spaces, X × Y is also a weakly Suslin space. Thus, Proposition B.5 guarantees a Castaing representation of the set-valued map [0, T ] ∋ t Graph F (t, •), i.e., there is a sequence (g j ) j∈N of measurable functions

Finally, for every ξ ∈ X × Y , we conclude successively that the real-valued functions

are also measurable (e.g., [START_REF] Aubin | Set-Valued Analysis, volume 2 of Systems & Control: Foundations & Applications[END_REF]Lemma 8.2.12], [START_REF] Bogachev | Measure Theory[END_REF]Theorem 2.1.5]). □

Proof of Proposition C.1. Note that

Indeed, the inclusion "⊂" is obvious. For proving "⊃", choose any (x, y) ∈ (X × Y ) \ Graph F (t, •).

As Graph F (t, •) is closed, we have δ := dist (x, y), Graph F (t, •) > 0. There is some k ∈ N with d X×Y (a k , (x, y)) < δ 3 and, the triangle inequality leads to φ k (t) ≥