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Abstract—
This paper presents a framework and implementation guide-

lines to set up nested compartmentalisation in constrained de-
vices. All memory spaces are protected by the Memory Protection
Unit (MPU). Current MPU-based systems offer efficient memory
protection but are mostly tied to the fixed permission model
provided by their operating system, kernel, hypervisor or by code
instrumentation. New use cases evolve with the rise of the Internet
of Things (IoT) ecosystems where software components could
benefit from locally and dynamically established permissions.
This includes a temporary nested subspace with restricted mem-
ory access rights. Our framework integrates subspace creation
and management for runtime dynamic changes of the permission
model for any level of abstraction. Global security policies of fixed
permission models are reflected in the software architecture and
the implementation of the framework. We also demonstrate the
feasibility of providing nested compartmentalisation by showing
how to leverage the MPU features.

Keywords-nested compartmentalisation, constrained devices,
MPU

I. INTRODUCTION

The rise of the Internet of Things (IoT) gives birth to
increasing and novel use cases invested in various IoT verticals
(smart grid, smart agriculture, smart city...). IoT devices are
very heterogeneous, ranging from very constrained sensors to
heavier embedded systems, in order to deal with all the new
and various business opportunities. For instance, some new
use cases incorporate the Cloud-to-Thing Continuum [1] and
increased virtualisation [2] for the smallest devices to make
the IoT device simpler to code, more portable, easier to deploy
and in the end cheaper to produce with increased efficiency
for the ecosystem.

However, constrained devices [3] are also very vulnerable to
attacks when exposed to the outside world due to their limited
resources and protection mechanisms. This is decoupled in
IoT devices since they are connected and thus exposed to
distant attackers. As many IoT devices are cyber-physical
systems, it could end with disastrous consequences to the
environment or with human damage. IoT cloud applications
might as well receive erroneous data misleading decision
makers. IoT cyberattacks may also lead to a snowball effect
in the ecosystem and hit critical infrastructures by interfering

with neighbour systems through lateral compromission [4] and
with distant systems through Distributed Denial of Service
(DDoS) attacks [5], [6].

Business opportunities and security challenges stress the
development of IoT devices which are in stringent need to be
supported. In this paper, we propose a framework which copes
with the software dynamism requested by newer use cases,
while at the same time protecting all software components’
memory spaces by hardware protection mechanisms. We base
our framework on the Memory Protection Unit (MPU) or
vendor-specific alternatives available on low-end embedded
systems which role is to protect memory regions. We propose
a technical implementation of the framework to demonstrate
the feasibility of nested compartmentalisation with an MPU
without requiring hardware modifications. This allows to set
up isolated subspaces where each software component can
manage its own memory space like a separation kernel [7].

Paper structure Section II presents our target scenario and
the current status of MPU-protected systems in constrained
devices. Based on the conclusion that state-of-the-art solutions
are not generic enough to address the targeted scenario, we
propose in Section III a framework and its MPU-based API
that dynamically set up any number of subspaces during
runtime. Section IV leverages the MPU features and demon-
strates the feasibility of setting up nested compartmentalisation
with an MPU. We expose some identified limitations that we
discuss in Section V. The paper ends with conclusion remarks
in Section VI.

II. MPU-BASED MEMORY PROTECTION IN CONSTRAINED
DEVICES: TARGET SCENARIO AND CURRENT STATUS

A. Target scenario

A running constrained IoT device would like to set up
an isolated memory area in its own memory space, so to
create a protected subspace. For example, it might be a third-
party application dynamically downloaded and installed on a
device, that has a doubtful origin or, in the contrary, a critical
feature that must remain sandboxed. Thus, we want to control
the subspace’s memory accesses to protect it from unwanted
external interferences or to block any of its attempts to access
memory it doesn’t own.



The target scenario considers a constrained IoT device (at
least of type II in the IETF terminology [3]) with an MPU.

B. Attacker model

We consider a powerful distant attacker who can install
software components on an IoT device at reach. The adversary
tries to access memory out of its memory space. Our attacker
is nevertheless not able to perform any fault attacks from a
distant location because we need integrity of the hardware
components and we assume they are functionally correct and
fully operational and thus physical attacks are out of scope.
Side-channel attacks are also ruled out.

C. The Memory Protection Unit or MPU

The Memory Protection Unit (MPU) [8] is an optional
component on many ARM Cortex-M processors. Its role is to
restrict memory accesses according to a defined configuration.
The configuration consists in a set of memory blocks called
MPU regions having various permission rights (read, write,
execute) and additional attributes (caching, buffering...). That
is, a system usually has a default memory map that can be
changed by configuring the MPU and each running process
must stick to the active MPU configuration. A faulty memory
access ends in a memory fault.

Systems protected by an MPU offer a higher level of secu-
rity compared to their counterpart without MPU or not using
it. Naturally, this goes along with a proper MPU configuration
and self-protections in order to set up the protection measures
as intended.

From a broad perspective, the MPU is for small embedded
systems what the Memory Management Unit (MMU) is for
general-purpose systems, since both share the memory pro-
tection role in a similar fashion. However, the MPU is much
more constraint and systems with MPU support up to 16 MPU
regions compared to millions of memory pages for an MMU.

D. State-of-the-art of MPU-based systems

We study in this section current MPU-based systems pub-
licly available for application developers and which security
characteristics are actively studied [9]–[11]. We do not include
any bare-metal systems as they are tied to their platform
while we consider wider applicable solutions. Hence, software
components on the studied systems are passively protected by
the memory protection mechanisms generally set up by the
operating system, kernel, hypervisor or directly instrumented
in the code. The study consisted in technical documentation
and source code readings.

For our target device classes, memory protection is provided
by the MPU or equivalent units. We set aside systems with
only TrustZone [12] protection on purpose, since they only
provide two protected areas while we strive for many more.
While the protection mechanisms are most of the time use
case specific, some criteria are shared between the systems.
We differentiate them based on their runtime dynamism and
flexibility (categorised in Table I), hardware configuration and
exposed limitations due to design choices.

1) Static systems: Some systems only configure the MPU
once and for all, so that the MPU offers a fixed segmentation
throughout the device’s lifetime, limited by the number of
MPU regions. These systems benefit from a global protection
mechanism. This is proposed by TrustLite [13] that configures
each MPU protected trustlet at bootime and never touches the
MPU configuration again.

2) Dynamic systems: Other systems permit instead a local
memory protection at process or function level. The MPU is
then dedicated to protect one software component at a time
and enables many more protected domains by reconfiguring
the MPU each time there is a context switch. The permission
model can be either immutable (generally fixed at compile-
time) or mutable (changed during runtime). Only a few sys-
tems also allow memory extension to their protection domains.

For dynamic systems with immutable permission models,
the MPU configuration is fixed for each software component
before boot time. However, the MPU is constantly reconfig-
ured when a new protected domain is loaded, like with a
new process. This is the case for many systems like µVisor,
ACES, MINION, EwoK, Choupi-OS, TockOS [11], [14]–[18].
Most of the systems fall into this category and allow no user
configuration. Their inherent differences on the isolation level,
guarantees and security policies they enforce are translated in
as many different ways to configure the MPU.

For dynamic systems with mutable permission models,
the MPU configuration is not decided at boot time yet. For
instance, FreeRTOS-MPU [19] and Zephyr (MPU) [20] offer
some runtime defined regions that user applications or threads
can configure. However, this is only a partial user configuration
because of the limited number of user regions available.
Furthermore, this feature can cause serious security issues if
badly configured by the user.

For the vast majority of dynamic systems, software compo-
nents are given a fixed size protection domain that cannot be
extended at runtime. Exception is made with TockOS, but is
very limited, that can dynamically allocate a bit of a process’
memory by enabling subregions. These are initially disabled
when the process is initialized. Of course, previously discussed
customizable regions in FreeRTOS-MPU and Zephyr (MPU)
can be seen as extension in addition to access permission
changes, but are again limited in number.

3) Flexible systems: Flexible systems allow another dimen-
sion of adaptation to new use cases. Previously mentioned
systems are not flexible in this sense. Indeed, software com-
ponents are fully tied to their protection mechanism’s set-up,
which is based on the different abstraction layers (mainly flat
isolation) they consider. There is no way to configure the
MPU differently beyond the attribution scheme defined by the
underlying operating system or instrumentation. That is, the
MPU configuration is usually pre-defined with at least some
reserved registers for a specific use.

4) Hardware base: The MPU architecture also dictates how
the MPU can be used.

First, constraints differ on versions. The ARMv7 version
embeds constraints like the multiple of the region size align-



ment and that the region size must be a power of two that the
more recent ARMv8 version does not have.

Second, two systems based on the same MPU architec-
ture may not use the MPU features and constraints in the
same manner and for the same purposes. For example, the
ARMv7 architecture integrates subregions of equal size and
independently enabled, and allows MPU region overlapping.
This allows many combination for systems heavily relying
on subregions for their protection domains, like TockOS and
EwoK. Indeed, they both reconfigure the MPU at context
switch to match the current process or application. However,
TockOS loads one process at a time in its MPU configuration
and uses the subregions for a process’ inner workings, like ex-
panding its memory or granting accesses to peripherals. In the
contrary, EwoK makes coexist several applications at a given
moment in the MPU configuration, only discriminating the
active application by enabling associated subregions while the
remaining disabled subregions contain the other applications.

5) Limitations and trade-offs: The MPU hardware con-
straints limit the memory protection mechanism to be used by
system designers. The trade-off between hardware constraints,
security and performances has often to be assessed manually
even with some automated parts in the design pipeline.

Some systems had to rework their idealised protection to fit
to the hardware constraints like ACES and MINION scaling
down the final number of protection domains which may lead
to less security.

For others systems like EwoK, no trade-off with security
is allowed and the MPU is just enough to protect what is
craved by their use case. However, any use case requiring
more than the number of MPU subregions is not qualified for
the protection offered by this kernel. This also shows how
dependent some systems are with the underlying hardware.

Furthermore, most of these systems provide protection at
some level of inner abstraction, like a process or thread, and
are not protecting heterogeneous components.

Finally, some systems like TrustLite chose to modify the
MPU and made it execution-aware in order to strengthen
security but still have other limitations like a static runtime
configuration.

Each system tailored their memory protection at best for
a specific use case which is translated in different use of
the MPU. As our target scenario requires another level of
abstraction than the current systems are dealing with, we
cannot directly reuse one of the operating systems nor their
memory protection mechanisms without deeply modifying
them.

If we chose to do so anyway, this new adapted system
would suffer from the same inconveniences we find in current
solutions: a specialised solution for few use cases, not deeply
customizable and not reusable directly for other systems that
are not similar, requiring users to understand concepts specific
to the use case, as well as asking them to understand how the
MPU is used and what protection it really offers, likewise the
eventual hardware modifications we had to set up, and possibly

trade-offs we could have made to stick to the hardware
limitations and finally what choice made us eventually drop
part of the idealised security solution by grouping isolated
domains together.

Instead, we explore in the next section a generic approach
that lets any component decide to create a subspace and which
will inherit the same ability. This framework is in line with our
target scenario and generic enough to be reused by any systems
for any level of abstraction decided at runtime, with no trade-
off in terms of security and based on the MPU without any
hardware modifications. That is, any abstraction can leverage
the hardware protection mechanisms to set up dynamical and
locally decided protections.

III. PROVIDING NESTED COMPARTMENTALISATION WITH
THE MPU

A. Design principles

1) Ubiquitous MPU control: We argue that the MPU com-
ponent is suited to reach the generic and strong protection
mechanism we are looking for, without any hardware modifi-
cations.

We propose that a software component, whatever its level of
abstraction (hypervisor, OS, thread, sandboxed application...),
holds the ability to design its inner memory space at runtime
and in particular creating and managing a sub-layer of abstrac-
tion (a subspace). In other words, any software component is
empowered with the capacity to manage its memory space
without following any fixed scheme of resource attribution. It
can create sub-components having the same ability in a nested
manner.

The dynamic attribution of resources is controlled by the
MPU which is configured to reflect the component’s available
memory space. In particular, any system component is en-
dowed the same rights to configure the MPU for its memory
space, even if it is nested in another system component. Hence,
we propose to delegate the power to control the MPU to any
system component and enable them to resketch their memory
space at will.

2) Centralized MPU configuration via system calls: The
MPU is part of the privileged ISA (Instruction Set Architec-
ture) which means the configuration should be done while
in a privileged mode. For the software entities to reconfigure
the MPU at will, it is not an option to give this level of
privilege to all of them (that include not trusted components)
for obvious security concerns. Thus, we propose the exclusive
role of configuring the MPU is given to a single trusted entity
lying in the (privileged) kernel space. Any other component
should access the MPU and change the MPU configuration
via system calls to this privileged entity.

In current dynamic systems, the customizable MPU recon-
figuration is at most partially possible, but mostly tied to
the scheduler by loading the MPU configuration associated
to the current context. This proposition goes beyond these
systems, letting the user decide for each component how the
MPU should be configured, dynamically at runtime, and do



TABLE I
COMPARISON OF COMPARTMENTALISATION FEATURES IN MPU-BASED SYSTEMS.

OS/kernel/hypervisor/tool Dynamism Flexibility

MPU Permission Extendable Compartmentalisation Nested
reconfiguration model memory nature compartmentalisation

TrustLite 7 immutable 7 process 7
Choupi-OS 3 immutable 7 process 7

EwoK 3 immutable 7 process 7
µVisor 3 immutable 7 thread 7
ACES 3 immutable 7 generic 7

TockOS 3 immutable ( 3) process 7
Zephyr(MPU) 3 (mutable) ( 3) thread 7
FreeRTOS-MPU 3 (mutable) (3) task 7

proposed framework 3 mutable 3 generic 3

not assume any reserved registers for a particular use or tied
with specific permission rights.

We define then an API, detailed in subsection III-B, that
the privileged MPU configuration entity should implement.
This API exposes the system calls that create and manage the
subspace to set up a local permission model.

3) Customized security policy: The components should
also be restricted in their use of the MPU reconfiguration,
otherwise it would be the same thing as giving them all the
privileges. For example, malicious components could attack
other components by expanding their own memory and by
giving themselves more access rights than originally given.
This means there should be a global restriction associated
to the local permissions. Our proposition is then not only
locally flexible, but at the same time globally restricted by
a security policy. For example, one component could locally
create a sub-component and give it some code and data for
processing, while respecting a global strict rule to not add any
supplementary memory access permissions to the given data.
The global security policy is then reflected in each memory
space definition and embedded within the implementation of
the API.

In current systems, this global security policy would be
reflected in their valid static configurations and pre-defined use
of the MPU registers. However, we let the components decide
themselves how they organise their memory in order to free
them from the frozen MPU segmentations or limitations.

B. Dynamic and flexible MPU-based API

This proposition aims to extend the dynamic MPU reconfig-
uration of current solutions and enhance their flexibility. Our
API is both dynamic and flexible.

1) Dynamic API: Reconfiguration of the MPU registers
at runtime is already present in most dynamic solutions. It
usually protects a specific process and the MPU is reconfigured
at context switch. This allows to overcome the limitation of
the MPU regions number with registers recycled to be used
with other processes instead of making all processes coexist
at the same time. However, we are interested in extending the
memory of the processes during runtime to cope with their
needs like adding memory if the process runs short of memory
space or giving temporary access to a shared peripheral. There
should be sufficient latitude to be independent of the number
of MPU regions which limit current possibilities. This marks a

significant difference with solutions choosing to combine MPU
regions in a last effort to stick to the hardware constraint with
a trade-off made on security, while we strive to be as close as
possible of the ideal security solution. Memory blocks should
then be extendable and modifiable.

The API integrates six system calls for dynamism:

• add, remove: these system calls extend, respectively
restrict, the memory space of a software component. They
can be used to move around memory chunks especially
to sandbox some code or convey messages.

• prepare, collect: these system calls are for man-
agement. They are supposed to be called respectively
before adding memory and after removing memory in
order to split the act of extending memory from the
management operations that make it possible.

• cut, merge: these system calls are specific to systems
that don’t have pre-defined chunks of memory, like in
the case of MPU-based systems. As our target scenario
is dynamic, memory blocks are expected to grow and
shrink as required by the application. Cutting and merging
blocks permit to redefine the memory blocks attributed to
a software component.

2) Flexible API: We propose a major enhancement of the
current solutions in terms of flexibility. Our target scenario
does not require to know how many layers or enclaves at
compile and boot-time in order to get the extra layer of
abstraction when needed. This ability is not offered by any
system we are aware of. Indeed, they all limit their abstractions
to the hardware protection mechanisms like the limited number
of MPU regions which combination is not flexible enough to
nest any number of protection layers. Only one sub-layer of
eight equally sized subregions is allowed in ARMv7 MPU.

The API integrates two system calls to enhance the flexi-
bility and to create a subspace:

• create, delete: these system calls respectively cre-
ate and destroy a subspace. The creation consists of
declaring the new subspace. The destruction of this sub-
layer sets back any memory blocks given to the subspace
into the current memory space.

This enables to break the flat memory model and, to the best
of our knowledge, goes beyond the current MPU configuration
use that only enables an arbitrary number of static layers
(usually one to three) and cloned memory attribution schemes.



In the next section, we detail how the MPU features are
leveraged to implement this API.

IV. TECHNICAL IMPLEMENTATION BY LEVERAGING THE
MPU FEATURES AND DESIGN CHOICES

This section presents the design choices which have con-
ducted the system calls’ implementation and we discuss each
procedure’s complexity, as well as the use of the MPU and
required structures to set up a memory space and subspaces.

A. Overview

A software component’s memory space is composed of a
list of memory blocks, each configured as MPU region to
protect. A memory space can be composed of more memory
blocks than available MPU regions and as such we propose a
virtualisation of the MPU (but still no virtual memory as in
the MMU). As such, we created a blocks selection algorithm
to pick up which blocks should be configured in the MPU at a
given moment. The memory space definitions are also isolated
from the userland components to protect their integrity, as well
as the system call procedures and data.

The design choices are evaluated in terms of complexity
and desired behaviour. Sharing and cutting memory should be
as fast as possible so all system calls are tailored to allow this.

B. Memory space definition with create and delete

It merely consists in setting up the structures to hold a
memory space definition.

1) MPU protection of the memory blocks: A software
component has a set of memory blocks which are protected by
the MPU. Each block is configured in a corresponding MPU
region which holds the block’s start and end addresses as well
as its permission access rights. The MPU architecture dictates
some hardware constraints (like size and alignment) that are
discussed later.

2) Protection of the memory space definition: The memory
space definition should not be directly accessible by the
software components but only by the privileged entity via
the system calls. Otherwise, the userland components could
change theirs or others’ memory space definition like changing
the access rights or expanding their memory.

The MPU can achieve this requirement by several means.
First, these regions could stay enabled in the MPU but with
modified permissions for privileged accesses only. Userland
components lose access to these regions. Second, the MPU
can be configured with the background region enabled. The
background region roughly gives a privileged access to all
memory not configured in enabled MPU regions. Hence two
means: either by disabling the regions containing the defini-
tions or by pulling out these regions from the MPU. Since
the MPU regions are limited, we chose the last option and
configure the MPU with only enabled regions so that no MPU
regions are wasted with disabled regions. It can be noted that
the same means can be obtained by disabling the MPU and
without enabling the default memory map when the kernel
code executes. However, keeping the MPU always enable frees
us from the risks of not enabling it when it should be.

In any case, we don’t know a priori which memory blocks
are memory space definitions since the API is generic and
can transform any memory block into a definition when
creating a subspace. In fact, they are first enabled in the MPU
before becoming definitions and set inaccessible. We must
then create a selection algorithm that picks up the accessible
memory blocks and reconfigures the MPU accordingly when
this happens. The algorithm is presented in subsection IV-C.

3) More memory blocks than available MPU regions: A
software component’s memory space will mostly be composed
of code, data and peripherals memory blocks. A typical eight-
region MPU is sufficient to hold these enabled memory blocks
(since we pull out from the MPU the disabled regions).

However, code and data could be fragmented over the whole
memory and require several memory blocks for the memory
space to be consistent. Also, the memory space holds some
blocks that are part of a subspace. These may be tempo-
rary blocks while performing a subspace memory addition
or permanent blocks like shared memory with subspaces.
Thus, the number of memory blocks for a memory space
depends on how well fragmentation is reduced, what amount
of shared blocks is necessary and temporary situations. For
these reasons, an eight-region MPU may not be enough. As we
don’t want to reject any system with only eight MPU regions,
we chose to virtualise the MPU regions, i.e. a memory space
definition might hold more memory blocks than available
MPU regions. We enhance the previously mentioned selection
algorithm with a larger set of memory blocks to choose from.

4) List of memory blocks: The memory blocks are packed
together (enabled and disabled blocks) in a common list.
There is one list per memory space. Enabled and disabled
blocks are not split in different lists as only enabled blocks
are really configured in the MPU so there are no security
consequences. In addition to that, having split lists implies
a block copy between the lists, as they become enabled or
inaccessible, which we are glad to avoid. Finally, we could
also have chosen to forbid block sharing by default, i.e. when
a memory space shares a memory block with a subspace, it
would loose instead the access to this block. Thus, the memory
space could satisfy itself with its own blocks, there is no
need for more enabled blocks than MPU regions. However,
there would still subsist the temporary state when the current
memory space forges blocks to subspaces out of its own with
the cut system call. So if the memory space needs all MPU
regions for itself, it would still need additional blocks for
the subspace management, getting back to the problematic of
dealing with extra blocks than at disposal by the MPU. And
we consider this feature essential for performances, so blocks
are still enabled by default when sharing.

We considered first to link the blocks in a sorted tree
structure in order to speed up the retrieval of blocks in the
system calls. But this would encapsulate each block in a
wrapped structure containing the pointers to chain the tree
together. This requires memory taken from the block which
needs to be protected (usually a minimum MPU region size
of 32 bytes) and a heavier processing to organise the structure.



5) Performance considerations of create and delete:
The creation consists in transforming a block into a memory
space definition, i.e. hosting the default memory space defini-
tion. But as it should be protected, the block must be discarded
from all memory spaces in the system. The overall complexity
is then in O(k), with k the number of memory spaces.

The deletion procedure consists in setting back the state
before the creation, and thus is also in O(k).

The subspace creation and respective deletion don’t need to
be fast operations and the complexities are then reasonable.

C. Blocks selection algorithm

The blocks selection algorithm configures the MPU accord-
ing to the list of memory blocks. It only picks enabled blocks.
The MPU configuration holds in the MPU registers and not
in RAM as with the MMU. When changing memory space
and thus the current context, the MPU should be reconfigured
entirely as in all dynamic systems of Section II.

1) MPU virtualisation: At memory space initialisation, the
MPU is populated with some of the enabled blocks chosen
by the initiator. Indeed, only a subset of all memory blocks
can be configured in the MPU because the number of memory
blocks exceeds the number of available MPU regions. Thus,
a memory fault can occur with a legitimate access if the
targeted and enabled memory block is not configured in the
MPU at that moment. In such case, the algorithm should
look for the memory block, verify its legitimacy, and replace
an MPU region with the faulted memory block. Hence, we
introduce virtualisation of the MPU and the MPU acts like
a cache. Memory faults here are direct consequences of the
fragmentation that can be limited by the developer. To a certain
extent, this feature is similar to a copy-on-write operation in
Linux.

2) Complexity of the selection algorithm: When a memory
fault occurs, as the access can be legitimate and since the list
of memory blocks is not sorted in any ways, the algorithm
must go through the whole list to find and verify the block.
For a list of n elements, the complexity is O(n) < N, with
N being an arbitrary upper bound set at compile-time.

Static permission model systems algorithms are usually in
O(1) complexity because the whole MPU configuration is
often saved in an identical structure that just needs to be
loaded. When no operations changed the memory space be-
tween two context switches, it is desirable to achieve the same
complexity for our algorithm. For this purpose, we store the
MPU configuration (the selected subset) in a special structure
in the memory space when a context switch occurs and restores
the exact configuration when the current context is activated
again. As only the subset is taken as reference to configure the
MPU, its structure should resemble as much as possible as the
MPU registers to achieve the fastest reconfiguration. Blocks in
the list may then be of any shape because they will be copied
in the subset structure before being configured in the MPU.

3) MPU constraints: Memory faults can also occur when
the MPU constraints are not satisfied with all memory blocks.
Indeed, the MPU regions usually have a minimum size of

32 bytes that can be enforced by the developer, but other
constraints could be more difficult to set up like alignment.
For example, in ARMv7, the MPU region must be a power of
two aligned on a multiple of its size. The developer can align
a memory space’s blocks properly, but must always deal with
blocks intended to a subspace that are first part of the current
memory space. This means the current memory space may
have blocks that later will be cut and shared to a subspace,
fulfilling the MPU region constraints of the memory space
and its subspace only after some time. In the meantime, the
memory blocks are not aligned and result in memory faults. As
such, in a non-aligned case, the selection algorithm extracts a
subregion of a legitimate block that fulfils all constraints of the
platform. If there is a memory fault for a memory block that
has only been partially configured, the algorithm selects the
subregion that respects all constraints and covers the faulted
legitimate memory access. The MPU can then be configured
with partial memory blocks and reconfigured at memory fault.
Thus, there is a penalty for temporary memory blocks or badly
configured ones, while there are no penalties for final blocks
that have been properly configured.

4) Algorithm triggers: The selection algorithm is triggered
by several operations in addition to the MPU virtualisation
feature and the MPU hardware constraints.

The algorithm is called when a block is consumed to hold
metadata and so becomes inaccessible due to a create or
prepare. Any other operation adds new enabled blocks or
makes blocks accessible again which do not invalidate the
enabled blocks currently configured in the MPU. For example,
adding a block to a subspace does not invalidate the current
memory space MPU configuration as it is shared by default,
nor the subspace’s as the current selected subset stays valid.
However, when the subspace would like to access the new
shared block, it will end in a memory fault and trigger the
selection algorithm.

D. Sharing and sharing tagging with add, remove,
prepare and collect

It merely consists in tagging a memory block of the memory
space’s list as shared with one or more subspaces, e.g. enhanc-
ing the block’s attributes with pointers to these subspaces, and
copy the block in the subspace. Since we target single-core
platforms, block copies in different memory spaces are never
accessed simultaneously.

1) Performance considerations of add and remove:
Sharing may need fast execution when conveying messages
or setting up a shared memory space. The add and remove
procedures are thus thought to be as fast as possible with a
O(1) complexity.

For sharing, the block needs to be copied in the subspace,
and there should be a free slot where to make the copy. Instead
of going through the list of memory blocks and find a free
slot, we keep a reference to this free slot in the memory space
definition. Retrieving the free slot this way and making the
copy perform with the desired O(1) complexity.



For unsharing, the block needs to be retrieved, but as it was
copied in the first free slot the user has no clue where it lies in
the list and so cannot just use an index to point to it. We added
a reference to the index of the copied block into the original
memory block. Thus, retrieving the block copy is immediate
when knowing the original block. The freed slot is inserted
at the head of the free slot list where it was taken from the
beginning. All operations are then in O(1) complexity.

2) Performance considerations of prepare and
collect: In order to have fast sharing and unsharing,
the management of the references is separated in the
prepare and collect procedures. These can be called
whenever required and especially in advance so to not impact
the fast sharing and unsharing procedures.

In order to always have a fresh free slot, all free slots in
the memory blocks list are chained at creation of the list
with prepare. When a free slot is used for an operation,
it is pulled out of the list of free slots and the next free slot
is pointed in the memory space for a future operation. The
prepare operation requires to go through the whole list of
memory blocks and hence a O(n) complexity, with n being
the size of the list of memory blocks.

The reverse operation with the collect procedure scans
the memory blocks list (so again in O(n)) to verify its
emptiness and is responsible to set back the memory space
to the state before the previous prepare.

E. Cutting and cutting tagging with cut and merge

Cutting a block splits it in two subblocks of size determined
by the location of the cut. Tagging cut subblocks merely con-
sists in enhancing the subblocks’ definition with a reference to
the original block and links the two created sibbling subblocks.

1) Performance considerations of cut and merge: As
cut and merge are operations on the current memory space
only, there are expected to be fast.

They can be seen as add and remove in the same memory
space, without consequences in the subspaces, and so also have
a complexity of O(1). However, as a cut subblock is expected
to be used as memory space definitions for subspaces, as soon
as they are cut, the blocks are set inaccessible in the ancestor
memory spaces. The overall complexity is then O(p), with
p being the number of levels of subspaces until the current
one. But the number of subspace levels is not expected to be
higher than 3 or 4 which sets the upper bound.

F. Protection of the privileged MPU responsible entity

The privileged entity implementing the API should never
be userland accessible which could harm its integrity.

The involved protection mechanisms of this entity can then
be similar to the protection of the memory space definition. For
the same reasons as exposed earlier, the entity’s code and data
sections are only accessible as part of the MPU background
region and are never configured in the MPU registers.

Whenever there is a system call, the system shifts to
the privileged mode and thus all system call procedures are
available for the privileged entity. At the end of the system call,

the system shifts back to the user mode. Hence, the privileged
entity’s memory space is never configured in the MPU nor
visible for the software components at any time.

Of course, the privileged entity is exposed to the other
entities in the kernel space, one of which might be the OS.
As for any security critical features, it depends on the trusted
components.

V. DISCUSSION AND LIMITATIONS OF THE APPROACH

We presented an implementation of the API to show the
MPU can be used to create MPU protected nested subspaces.

Current protection mechanisms are efficient but not flexible
to deal with use cases requiring more protected domains
with runtime flexibility requirements. Even if compatible,
this generic approach may not be relevant for many of the
current use cases as they just define a global security policy.
However, we argue that the possibility to have a dynamic
local permission model could enhance their features or will
leverage new use cases. Furthermore, the framework does not
imply any hardware modifications. In a broader perspective,
the nested compartmentalisation goes beyond other systems’
architectures based on flat or limited nested memory protec-
tions, e.g. with Intel SGX enclaves [21] or with TrustZone.

In addition to that, memory spaces can hold more blocks
than available MPU regions. This enhanced flexibility never
engages security compared to the trade-off present in some
other MPU-based systems. Compatible security policies may
include the least privilege principle, kernel self-protection, and
temporary isolated memory spaces, which we will illustrate in
future works.

The system calls’ complexities match expectations for nom-
inal operations in embedded systems. However, all operations
depend on the user inputs that could be invalid. An additional
checking phase adds up some processing and penalizes the
overall complexity for both sharing and unsharing to O(n),
where n is the number of memory blocks in a memory
space, upper bounded with N the maximum allowed number of
blocks. This is not an issue for our target scenario, like many
others primarily interested in better security, but we acknowl-
edge it could be critical for some use cases. Benchmarks and
detailed expected performances are intended in future works.

The MPU virtualisation implies memory faults on legitimate
memory blocks that ideally should be avoided. As a matter of
fact, the MPU cache strategy follows a random replacement
and may not be called at efficient moments. If this strategy
shows considerable downsides, we aim to make the selection
algorithm callable and customizable by the developer. Indeed,
the developer knows the best which MPU configuration is the
most efficient at some point in the system’s lifetime and would
match as closely as possible the perfect cache policy.

One rigid limitation is of course the availability of the MPU,
which is an optional unit. Many reasons let developers put
aside the MPU even when there is one, should it be because
of the hardware constraints, the power it drains or the time-
to-market pressure and lack of time to set it up [22]–[24].
However, we argue the protection it provides is sufficient to



reach a high level of security when correctly configured and
our proposition aims to ease its adoption. For current systems,
like the ones studied in Section II, some non-trivial changes
are required to pass over to the proposed generic approach.
Future works encompass the modifications needed to adapt an
OS and assess the complexity of the task.

Our framework and proposed implementation do not depend
on the MPU version. Indeed, the framework is designed for
and encapsulates both ARMv7 and ARMv8 MPU programmer
models, but is extendable to similar hardware components
like RISC-V Physical Memory Protection (PMP). Many of
the studied systems did not have at development time the
most recent ARMv8 version enhanced with the TrustZone
and more MPU regions, and which releases some of the
hardware constraints of the previous MPU version. However,
the number of subspaces that can be established will still be
limited with a raw usage while our framework only requires
memory blocks protection with constraints absorbed in the im-
plementation. Furthermore, ARM-powered systems and their
MPUs are broadly used for embedded systems and the trend
shows an increase of IoT devices in the next years [25]. As
vulnerabilities will certainly continue to strike the ecosystem
in the near future, our proposition is in line with an immediate
hardening of deployed constrained devices.

VI. CONCLUSION

New use cases upset the small embedded devices, requiring
more complexity and dynamism than ever before, carried along
with increasing IoT devices, interconnectivity and installed
verticals. Creation of dynamically defined protected subspaces
is one of these use cases but are not compatible with cur-
rent systems without deeply adapting them. We propose a
framework which permits any number of nested compartments.
These could be seen as implicit privilege levels. In order to
address constrained devices, the framework is based on the
memory protection provided by the MPU without requiring
hardware modifications. The security harness is built by cen-
tralising the MPU configuration role to a sole privileged entity.
To the best of our knowledge, the proposed framework enables
a degree of flexibility not yet reached by any existing systems.

We then present a possible technical implementation of
the framework. We explain how to leverage the MPU fea-
tures to create the protected nested compartmentalisation.
We provide an MPU virtualisation in order to manipulate
more memory blocks than MPU regions. We also discuss
the design choices that conducted the implementation and
guided the performances of each of the framework’s system
calls. This demonstrates the feasibility of providing nested
compartmentalisation with the MPU. Any software component
can then locally control and isolate its subspaces as it intends,
while conforming to a global security policy integrated in the
implementation and in the chosen software architecture.
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