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Abstract: Currently, face recognition technology is the most widely used method for verifying
an individual’s identity. Nevertheless, it has increased in popularity, raising concerns about face
presentation attacks, in which a photo or video of an authorized person’s face is used to obtain
access to services. Based on a combination of background subtraction (BS) and convolutional neural
network(s) (CNN), as well as an ensemble of classifiers, we propose an efficient and more robust
face presentation attack detection algorithm. This algorithm includes a fully connected (FC) classifier
with a majority vote (MV) algorithm, which uses different face presentation attack instruments (e.g.,
printed photo and replayed video). By including a majority vote to determine whether the input
video is genuine or not, the proposed method significantly enhances the performance of the face
anti-spoofing (FAS) system. For evaluation, we considered the MSU MFSD, REPLAY-ATTACK, and
CASIA-FASD databases. The obtained results are very interesting and are much better than those
obtained by state-of-the-art methods. For instance, on the REPLAY-ATTACK database, we were able
to attain a half-total error rate (HTER) of 0.62% and an equal error rate (EER) of 0.58%. We attained
an EER of 0% on both the CASIA-FASD and the MSU MFSD databases.

Keywords: biometrics; face presentation attack; deep learning

1. Introduction

Individuals can be successfully identified and authenticated using biometric features
and traits. Hence, it is appropriate for access control and global security systems that
depend on person recognition, which is achieved through the use of a variety of biometric
modalities, ranging from the classic fingerprint through the face, iris, ear [1–4] and, more
recently, vein and blood flow. Furthermore, a number of spoofing methods have been
developed in order to overcome such biometric systems [5]. When someone tries to get
around a face biometric system by placing a fake face in front of the camera, this is known
as a presentation attack. Nevertheless, compared to other modalities, the abundance of still
face images or video sequences on the internet has made it exceptionally easy to obtain a
person’s facial data.

The spoofing detection literature discusses multiple types of presentation attack in-
struments, such as print, replay, silicon masks, and makeup attacks. The focus of our work
is on the first two attacks, namely print and replay attacks. The print attack spoofs 2D
face recognition systems by using printed photographs of a subject, whereas the replay
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attack presents a video of a bona fide presentation to avoid liveness detection. Furthermore,
the low cost of launching a face presentation attack instrument has increased the prevalence
of the problem. Face recognition system spoofing media ranges from low-quality paper
prints to high-quality photographs, as well as video streams played in front of the biometric
authentication system sensor.

Feature extraction is a critical component of the face presentation attack detection
task when using a classical machine learning classifier. Convolutional neural network(s)
(CNN) can also be used to predict scores. This latter is a crucial component of deep learning
algorithms, such as the ResNet-50 [6] pre-trained model, which has been studied for a
few years under a variety of conditions and scenarios. In our work, we used background
subtraction (BS) with CNN to predict each frame in the input video and rank the score
using the MV algorithm to determine whether the input video is real or fake.

Inspired by the work of frame difference and multilevel representation (FDML) [7],
we propose an effective system for face presentation attack detection. To do this, we
suggest using the background substruction method in the preprocessing step to adjust the
face’s motion. The MV algorithm is used to improve the performance rate as well as the
decision of the input video after predicting the score of each frame by ResNet-50. To test our
system, we used videos from numerous public face spoof databases with varying quality,
resolutions, and dynamic ranges. We also compared our results to those of a number of
current state-of-the-art approaches. The following are the main contributions of this work:

• Improving face presentation attack detection using BS that discriminates the motion
of real face from a fake one.

• Fine-tuning the ResNet-50 model for the face presentation attack detection task to
extract meaningful deep facial features.

• Using the MV algorithm to increase the classification rate of the system, which is
clearly observed when the methodology outperformed previous methodologies in the
literature, according to the results of our experiments.

• Tackling the sensor interoperability problem by including the experiments of inter-
database and intra-database tests.

The remainder of the paper is structured as follows. Section 2 describes related
work on face presentation attack detection. Then, our approach is described in detail in
Section 3. Section 4 summarizes the experimental results and provides a comparative
analysis. The section also describes the databases that we used in our tests. Section 5 draws
some conclusions and highlights some future directions. Abbreviations define the main
acronyms used in this paper.

2. Related Work

Presentation attack can be detected in a variety of ways. In this paper, we focus on
two types of face presentation attack detection methods: handcrafted and deep learning-
based methods. In this section, we present most previous work in face presentation attack
detection. However, we only focus on those that are thematically closer to our goals
and contributions.

2.1. Handcraft-Based Techniques

Texture features, which can describe the contents and details of a specific region in an
image, are an important low-level feature in face presentation attack detection methods.
Therefore, the analysis of image texture information is used in many techniques, such
as compressed sensing, which preserves texture information and denoising at the same
time [8,9]. These techniques based on handcrafted features provide accurate features that
increase the detection rate of a spoofing system. Smith et al. [10] proposed a method for
countering attacks on face recognition systems by using the color reflected from the user’s
face as displayed on mobile devices. The presence or absence of these reflections can be
utilized to establish whether or not the images were captured in real time. The algorithms
use simple RGB images to detect presentation attack. These strategies can be classified into
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two categories: static and dynamic approaches. The static is used on a single image, whilst
dynamic is used on the video.

The majority of approaches for distinguishing between real and synthetic faces are
focused on texture analysis. Arashloo et al. [11] combined two spatial–temporal descriptors
using kernel discriminant analysis fusion. They are multiscale binarized statistical image
features on three orthogonal planes (MBSIF-TOP) and multiscale local phase quantization
on three orthogonal planes (MLPQ-TOP). To distinguish between real and fake individuals,
Pereira et al. [12] also experimented with a dynamic texture that was based on local
binary pattern on three orthogonal planes (LBP-TOP). The good results of LBP-TOP are
due to the fact that temporal information is crucial in face presentation attack detection.
Tirunagari et al. [13] used local binary pattern(s) (LBP) for dynamic patterns and dynamic
mode decomposition (DMD) for visual dynamics. Wen et al. [14] proposed an image
distortion analysis-based method (IDA). To represent the face images, four different features
were used: blurriness, color diversity, specular reflection, and chromatic moments, also
relying on the features that can detect differences between real image and fake one without
capturing any information about the user’s identity. Patel et al. [15] investigated the impact
of different RGB color channels (R, G, B, and gray scale) and different facial regions on the
performance of LBP and dense scale invariant feature transform (DSIFT) based algorithms.
Their investigations revealed that extracting the texture from the red channel produces the
best results. Boulkenafet et al. [16] proposed a color texture analysis-based face presentation
attack detection approach. They employed the LBP descriptor to extract texture features
from each channel after encoding the RGB images in two color spaces: HSV and YCbCr,
and then concatenated these features to distinguish between real and fake faces.

Some methods, such as [17], have recently used user-specific information to improve
the performance of texture-based FAS techniques. Garcia et al. [18] proposed face presenta-
tion attack detection by looking for Moiré patterns caused by digital grid overlap where
their detection is based on frequency domain peak detection. For classification, they used
support vector machines (SVM) with an radial basis function kernel. They started to run
their tests on the Replay Attack Corpus and Moiré databases. Other face presentation
attack detection solutions are based on textures on 3D models, such as those used in [19].
Because the attacker in 3D models utilizes a mask to spoof the system, the introduction of
wrinkles might be extremely helpful in detecting the attack. The presented work in [19]
examines the viability of performing low-cost assaults on 2.5D and 3D face recognition
systems using self-manufactured three-dimensional (3D) printed models.

2.2. Deep Learning-Based Techniques

Actually, deep learning is used in a variety of systems and applications for biometric
authentication [20], where the deep network can be trained using a number of patterns.
After learning all of the dataset’s unique features, the network can be used to identify similar
patterns. Deep learning approaches have mostly been used to learn face presentation attack
detection features. Moreover, deep learning is efficient at classification (supervised learning)
and clustering tasks (unsupervised learning). Thus, the system assigns class labels to the
input instances in a classification task, but the instances in clustering approaches are
clustered based on their similarity without the usage of class labels.

To train models with significant discriminative abilities, Yang et al. [21] used a deep
CNN rather than manually constructing features from scratch. Quan et al. proposed a semi-
supervised learning-based architecture to fight face presentation attack threats using only a
few tagged data, rather than depending on time-consuming data annotations. They assess
the reliability of selected data pseudo labels using a temporal consistency requirement. As a
result, network training is substantially facilitated. Moreover, by progressively increasing
the contribution of unlabeled target domain data to the training data, an adaptive transfer
mechanism can be implemented to eliminate domain bias. According to the authors in [22],
they use a type of ground through (GT) termed appr-GT in conjunction with the identity
information of the spoof image to generate a genuine image of the appropriate subject in
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the training set. A metric learning module constrains the generated genuine images from
the spoof images to be near the appr-GT and far from the input images. This reduces the
effect of changes in the imaging environment on the appr-GT and GT of a spoof image.

Jia et al. [23] proposed a unified unsupervised and semi-supervised domain adaptation
network (USDAN) for cross-scenario face presentation attack detection, with the purpose of
reducing the distribution mismatch between the source and target domains. The marginal
distribution alignment module (MDA) and the conditional distribution alignment module
(CDA) are two modules that use adversarial learning to find a domain-invariant feature
space and condense features of the same class.

Raw optical flow data from the clipped face region and the complete scene were used
to train a neural network by Feng’s team et al. [24]. Motion-based presentation attack
detection does not need a scenic model or motion assumption to generalize. They present
an image quality-based and motion-based liveness framework that can be fused together
using a hierarchical neural network.

In their work [25], Liu et al. proposed a deep tree network (DTN) that learns character-
istics in a hierarchical form and may detect unanticipated presentation attack instrument
by identifying the features that are learned.

Yu et al. [26] introduces two new convolution and pooling operators for encoding fine-
grained invariant information: central difference convolution (CDC) and central difference
pooling (CDP). CDC outperforms vanilla convolution in extracting intrinsic spoofing
patterns in a number of situations.

As described in Qin et al. [27], adaptive inner-update (AIU) is a novel meta learning
approach that uses a meta-learner to train on zero- and few-shot FAS tasks utilizing a newly
constructed Adaptive Inner update Meta Face Anti spoofing (AIM-FAS).

According to Yu et al. [28], the multi-level feature refinement module (MFRM) and
material-based multi-head supervision can help increase BCN’s performance. In the first
approach, local neighborhood weights are reassembled to create multi-scale features, while
in the second, the network is forced to acquire strong shared features in order to perform
tasks with multiple heads.

CDC-based frame level FAS approaches, proposed by the authors in [29], have been
developed. These patterns can be captured by aggregating information about intensity
and gradient. In comparison to a vanilla convolutional network, the central difference
convolutional network (CDCN) built with CDC has a more robust modeling capability.
CDCN++ is an improved version of CDCN that incorporates the search backbone net-
work with the multiscale attention fusion module (MAFM) for collecting multi-level CDC
features effectively.

Spatiotemporal anti-spoof network (STASN) is a new attention mechanism invented
by Yang et al. [30] that combines global temporal and local spatial information, allowing
them to examine the model’s understandable behaviors.

To improve CNN generalization, Liu et al. [31] proposed to use innovative auxiliary
information to supervise CNN training. A new CNN-RNN architecture for learning the
depth map and rPPG signal from end-to-end is also proposed.

Wang et al. [32] proposed a depth-supervised architecture that can efficiently encode
spatiotemporal information for presentation attack detection and develops a new approach
for estimating depth information from several RGB frames. Short-term extraction is ac-
complished through the use of two unique modules: the optical flow-guided feature block
(OFFB) and the convolution gated recurrent units (ConvGRU). Jourabloo et al. [33] pro-
posed a new CNN architecture for face presentation attack detection, with appropriate
constraints and supplementary supervisions, to discern between living and fake faces,
as well as long-term motion. In order to detect presentation attacks effectively and ef-
ficiently, Kim et al. [34] introduced the bipartite auxiliary supervision network (BASN),
an architecture that learns to extract and aggregate auxiliary information.

Huszár et al. [35] proposed a deep learning (DL) approach to address the problem of
presentation attack instruments occurring from video. The approach was tested in a new
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database made up of several videos of users juggling a football. Their algorithm is capable
of running in parallel with the human activity recognition (HAR) in real-time. Roy et al. [36]
proposed an approach called the bi-directional feature pyramid network (BiFPN) to detect
presentation attacks because the approach containing high-level information demonstrates
negligible improvements. Ali et al. [37]—based on stimulating eye movements by using the
use of visual stimuli with randomized trajectories to detect presentation attack instrument.
Ali et al. [38]—by the combination of two methods, which are head-detection algorithm
and deep neural network-based classifiers. The test involved various face presentation
attacks in thermal infrared in various conditions.

It appears that most of the existing handcraft and deep learning-based features may
not be optimal for the FAS task due to the limited representation capacity for intrinsic
spoofing features. In order to learn more robust features for the domain shift as well as more
discriminative patterns for liveness detection, we propose deep background subtraction
and majority vote algorithm to take into account both dynamic and static information.

3. Proposed Approach

Figure 1 describes the overall structure of our proposed approach, which is divided
into three modules: background subtraction, feature learning, and data classification.
To begin, we used the background subtraction between consecutive frames to extract
motion, we can also call this technique BS. Then, the features were extracted using the
ResNet-50 transfer learning model on the foreground of BS. Finally, to distinguish between
real and fake faces of each frame, we used a classification layer that employed a fully
connected layer. After that, we used MV to predict whether the input video was real or not.
In the subsections that follow, all subsystems (modules) will be discussed.

Input stream Output masks

Classification Module
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Figure 1. Framework of our proposed approach.

3.1. Background Subtraction Module

In our research work, we used a face presentation attack detection system based
on an extended BS algorithm. The background subtraction approach, which is based on
the premise of obtaining the pixels in the image sequence difference operation to do two
or three continuous frames, is the most commonly used action target detection measure.
Using an image pixel value obtained by subtracting the difference image and the binarized
difference image, if the pixel value change threshold is less than a predefined one, we can
feel this as a background pixel in the adjacent frame. If the pixel value of an image area
changes dramatically, it is possible to deduce that this is due to the action of detecting
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spoof in the image caused by these symbols as foreground pixel regions. While taking
dynamic information into account, a pixel region based on symbolic actions can determine
the position of the target in the image.

Background subtraction is applied to images and the threshold result is displayed
as a foreground image. Figure 2 shows an example of the output. This is a low-cost and
ineffective method of detecting motion in a video stream. The image Pt is transformed
into a grey-scale (intensity) image It. Then, given the image It and the previous image It−1,
the current output is Rt, where:

Rt(x, y) =
{

It(x, y) if |It(x, y)− It−1(x, y)| > T
0 otherwise

(1)

T is the value of the threshold parameter. In our situation, we just utilized a threshold
to remove the pixels with the same values across the two frames. The foreground pixels
take the value of the current frame if there is motion. The foreground pixel is set to zero if
there is no motion.

We apply a moving window mechanism that takes the first frame within a window of
5 frames. This means that we take a frame and drop 4 frames in each cycle. For example,
in a video of 150 frames, we use 30 frames and drops 120 frames.

Real Printed Replay

RG
B

G
ray

BS

Figure 2. Example of a genuine face and corresponding print and replay attacks in grey-scale and BS.

3.2. Feature Learning Module

Feature learning (FL) is a set of approaches in machine learning that allow a system to
discover the representation needed for feature detection, prediction, or classification from a
preprocessed dataset automatically. This enables a machine to learn the features and apply
them to a specific task-like classification and prediction. Feature learning can be achieved in
deep learning by either creating a complete CNN to train and test the collection of images or
adapting a pre-trained CNN for classification or prediction for the new images-set. Transfer
learning is the latter strategy used in the deep learning domain. Transfer learning is a
machine learning technique in which a model created for one task is utilized as the basis
for a model on a different task.

Transfer learning (TL) is commonly used in deep learning (DL) applications to allow
you to use a pre-trained network for solving new classification tasks. To meet the new
learning tasks, the learning parameters of the pre-trained network with randomly initialized
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weights must be fine-tuned. Transfer learning is typically considerably faster and easier
to learn/train than building a network from the initial concept. Transfer learning is an
optimization and a quick way that can save time or improve efficiency.

In this section, a transfer learning technique is applied by fine-tuning a pretrained
ResNet-50 model on ImageNet dataset using multiple spoofing datasets where the output
of the last FC layer is changed to output two classes (real/fake). The network is called
ResNet-50, due to the fact that it has 48 convolution layers, along with 1 MaxPool and 1
Average Pool layer, and it introduced the use of residual blocks.

3.3. Classification Module

Data classification is a vital process for separating large datasets into classes for
decision-making, pattern detection, and other purposes. For multi-class classification
problems with mutually exclusive classes, a classification layer uses a fully connected layer
to compute the cross-entropy loss.

The features from ResNet-50 are passed via a FC layer made of 1024 neurons with a
40% dropout to prevent over-fitting in the classification module. Having followed that,
the units were activated with a rectification mechanism called ReLU. MAX (X, 0) is the
ReLu function, which sets all negative values in the matrix X to zero while keeping all other
values constant. The reason for choosing ReLU is that deep network training with ReLU
tended to converge considerably faster and more reliably than deep network training with
sigmoid activation. Finally, the output layer comprised of one neuron unit programmed
to compute probabilities for the classes using the sigmoid function (binary classifier). A
sigmoid is a mathematical function that takes a vector of k real values and changes it to a
two-probability probability distribution.

We employed voting ensemble in our tests to classify each subject (video) as real or
fake. A voting ensemble (sometimes known as a "majority voting ensemble") is a machine
learning model that incorporates predictions from several other models, such as multiple
predictions in each frame after the input video’s last layer (classification layer). The predic-
tions for each label are combined, and the label with the majority vote is forecasted (see
Figure 1, classification module) to determine if the input video belongs to a real or fake
one. The majority voting ensemble creates forecasts based on the most common one. It is a
strategy that can be utilized to boost performance, with the goal of outperforming every
frame used independently in the ensemble.

4. Experimental Results and Analysis

In this section, the employed benchmark datasets will be introduced first, followed by
a brief description of the evaluation criteria. After that, we present and analyze a series of
experiments that we assume demonstrate the efficacy of the proposed BS-CNN+MV based
face presentation attack detection technique.

4.1. Database and Protocol

In order to assess of the effectiveness of our proposed presentation attack detec-
tion technique, we performed a set of experiments on well known databases where the
top three challenging databases were used: the CASIA-FASD (http://www.cbsr.ia.ac.
cn/english/FaceAntiSpoofDatabases.asp (accessed on 4 July 2014)); face anti-spoofing
database, Replay-Attack (https://www.idiap.ch/dataset/replayattack (accessed on 6 Au-
gust 2014)) database, and MSU (https://drive.google.com/drive/folders/1nJCPdJ7R6
7xOiklF1omkfz4yHeJwhQsz (accessed on 8 May 2014)) mobile face spoofing databases.
Those databases contain video recordings of real and fake attacks. A brief description of
these databases is given as fellow:

The CASIA-FASD database [39] is a dataset for face presentation attack detection.
This database contains 50 genuine subjects in total and the corresponding fake faces are
captured with high quality from the original ones. Therefore each subject contains 12 videos
(3 genuine and 9 fake) under three different resolutions and light conditions, namely low

http://www.cbsr.ia.ac.cn/english/FaceAntiSpoofDatabases.asp
http://www.cbsr.ia.ac.cn/english/FaceAntiSpoofDatabases.asp
https://www.idiap.ch/dataset/replayattack
https://drive.google.com/drive/folders/1nJCPdJ7R67xOiklF1omkfz4yHeJwhQsz
https://drive.google.com/drive/folders/1nJCPdJ7R67xOiklF1omkfz4yHeJwhQsz
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quality, normal quality, and high quality. Moreover, three fake face attacks are designed,
which include warped photo attack, cut photo attack, and video attack. The overall
database contains 600 video clips and the subjects are divided into subsets for performing
training and tests in which 240 videos of 20 subjects are used for training and 360 videos
of 30 subjects for testing. Test protocol is provided, which consists of 7 scenarios for a
thorough evaluation from all possible aspects (see Figure 3).

Low 
Quality

Normal 
Quality

High 
Quality

Real 
Face

Warped Photo 
Attack

Cut Photo 
Attack

Video 
Attack

Figure 3. Samples from the CASIA FASD database.

Among the popular databases designed for the presentation attack detection applica-
tion, one can find the Replay-Attack database [40]. This database consists of 1300 video of
real-access and attack attempts to 50 subjects, (See Figure 4). However, these videos were
taken using a built-in webcam on a MacBook laptop under two separate scenarios (con-
trolled and adverse). In addition, two cameras were used to create the faked facial attack
for each person in high-resolution images and videos: a Canon PowerShot SX150 IS and an
iPhone 3GS camera. Moreover, fixed attacks and hand attacks are the two types of attacks.
There are ten videos in each subset: four mobile attacks with a resolution of 480× 320 pixels
on an iPhone 3GS screen, then, by using a first generation iPad with a screen resolution
of 1024× 768 pixels, four high-resolution screen attacks were performed. On A4 paper,
two hard-copy print attacks (printed on a Triumph-Adler DCC 2520 colour laser printer)
occupied the whole available printing surface. It should be noted that the complete set of
videos is divided into three non-overlapping subsets for training, development, and testing
in order to evaluate them.

The pattern recognition and image processing (PRIP) group at Michigan State Univer-
sity developed a publicly available MSU-MFSD [14] database for face presentation attacks.
The database contains 280 video clips of attempted photo and video attacks on 35 clients. It
was created using a mobile phone to capture both genuine and presentation attack. This
was accomplished using two types of cameras: (1) the built-in camera in the MacBook Air
13 inch (640× 480) and (2) the front-facing camera on the Google Nexus 5 Android phone
(720× 480). Each subject received two video recordings, the first of which was taken using
a laptop camera and the second with an Android camera (See Figure 5). High-resolution
video was recorded for each subject utilizing two devices to create the attacks: (1) Canon
PowerShot 550D SLR camera, which captures 18.0 megapixel photos and 1080p high-
definition video clips; (2) iPhone 5S back-facing camera, which captures 1080p video clips.
There are three types of presentation attack instruments, the first one (1) high-resolution
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replay video, the first type of presentation attack instrument is a high-resolution replay
video attack using an iPad Air screen, with a resolution of 2048× 1536, the second is a
mobile phone replay video attack using an iPhone 5S screen, with a resolution of 1136× 640,
and the third is a printed photo attack using an A3 paper with a fully-occupied printed
photo of the client’s biometry, with a paper size of: 11× 17 (279 mm× 432 mm), printed
with an HP LaserJet CP6015xh printer at a resolution of 1200 × 600 dpi. Finally, to assess
performance, the 35 subjects in the MSU-MFSD database were divided into two subsets: 15
for training and 20 for testing.

Adverse 
Scenario

Controlled 
Scenario

Real Access Photo Attack 
Fixed

Photo Attack 
Hand

Video Attack 
Hand

Video Attack 
Fixed

Figure 4. Examples of real accesses and attacks in different scenarios.

Google Nexus 5 
smart phone 

camera

Mac Book Air 
13" laptop 

camera

Genuine faces
Spoof faces by 
printed photo

Spoof faces by 
iPhone

Spoof faces by 
iPad

Figure 5. Example images of genuine and attack presentation of one of the subjects in the MSU-
MFSD database.
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4.2. Evaluation Metrics

The comparative results for cross-scenario testing are expressed in terms of the HTER,
which is the mean of the false acceptance rate (FAR) and false rejection rate (FRR). On the
development set, we first computed the EER and the corresponding threshold, and then
used the threshold to determine the HTER on the testing set. Additionally, the receiver
operating characteristic (ROC) is reported to assess the method’s performance. We used
HTER for the IDIAP Replay-Attack dataset and EER for the CASIA-FASD and MSU-
MFSD datasets for intra-scenario testing. We employed area under the curve (AUC) as a
performance metric for type-scenario testing.

For a deeper idea about the computational cost of the proposed work, we calculated
the overall cost using two different execution environments, CPU and GPU; the obtained
results are shown in Table 1. We can observe from Table 1 that the difference between
passing one frame as a simple classification model or dealing with the whole video (average
30 frames) is not due much to the use of batches to obtain the results of all the frames, then
apply the majority vote on their predicted results. The experiments were conducted using
a desktop with an Intel(R) Core.

Table 1. Overall computational cost.

Frame Video

Time Accuracy Time Accuracy

CPU 2.08 s 3.23 s
Inference GPU 0.96 s 95.70 % 2.21 s 99.72 %

4.3. Performance Comparison on Intra-Database

We computed the EERs for the seven scenarios, including different quality and me-
dia, to meet the official CASIA-FAS test protocol. Low, normal, and high-quality image
sequences were provided as quality descriptors, and the used media for presentation attack
were warped images, chopped photos, and videos played on an iPad. The last scenario
was the overall test, which looked at how image quality and spoofing media affected
system performance. In this part, we computed two tests, the first of which was performed
per-frame and the second of which was performed per-video. The first test used BS-CNN to
determine whether an image was real or fake, while the second test used MV to determine
whether a video was real or not (See Table 2). In addition, we discovered that the proposed
method (BS-CNN+MV) improved the performance.

Table 2. Comparison EER (in %) between the proposed approach and the state-of-the-art methods on
different scenarios on CASIA FASD.

Scenarios

Methods Low Normal High Warped Cut Video Overall

IQA [41] 31.70 22.20 05.60 26.10 18.30 34.40 32.40
DoG baseline [39] 13.00 13.00 26.00 16.00 06.00 24.00 17.00
visual codebooks [42] 10.00 17.78 13.33 07.78 22.22 08.89 14.07
LBP-overlapping+fisher [43] 07.20 08.80 14.40 12.00 10.00 14.70 13.10
CDD [44] 01.50 05.00 02.80 06.40 04.70 00.30 11.80
ML-LPQ fisher [45] 12.49 08.96 05.22 13.62 09.66 10.10 11.39
LBP- TOP [12] 10.00 12.00 13.00 06.00 12.00 10.00 10.00
FD-ML-BSIF-FS [7] 07.93 11.85 12.42 05.85 03.11 15.84 09.96
MLLBP+MLBSIF [46] 06.56 09.93 07.36 09.98 03.45 10.04 09.81
Kernel Fusion [11] 00.70 08.70 13.00 01.40 10.10 04.30 07.20
YCbCr+HSV-LBP [16] 07.80 10.10 06.40 07.50 05.40 08.10 06.20
Identity-DS [22] - - - - - - 03.30
USDAN-Norm [23] - - - - - - 01.10
S-CNN+PL+TC [47] - - - - - - 00.69
BS-CNN+MV (Ours) 00.83 00.00 00.00 00.74 00.00 00.00 00.00
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Moreover, we found that combining MV with BS-CNN yields the best results for
picture quality (low, normal, and high), as well as with spoof media (warped photo, cut
photo, and video attacks) (see Figure 6). This can be explained by the fact that MV improves
decision-making performance. Table 2 shows that our proposed technique outperforms the
CASIA baseline in all scenarios when compared to the database created by CASIA [39].
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Figure 6. Effect of quality and spoofing media on the performance on the CASIA-FASD. (a) Quality
and (b) spoofing media.

The suggested method is compared to state-of-the-art methods in Table 3 using data
from the Replay-Attack database, despite the fact that our EER and HTER are similar to
the previous approaches. The following are the types of attacks on replay databases that
we computed the performance of using our method: depending on the method used to
hold the attack replay device (paper, mobile phone, or tablet), the three attack subsets
(print, mobile, and high-def) were recorded in two different modes: (i) fixed-support and
(ii) hand-based (See Table 4). We also put our method to the test using the MSU-MFSD
database. (See Table 5). It should be noted that no articles have been published that detail
the results of various sorts of attacks on this database. We can see that our results are better
than the state-of-the-art, with our BS-CNN+MV providing the best results.

The final comparison results on the intra-database are shown in (Tables 2, 3 and 5),
which indicates that our proposed method achieves much lower errors on all three datasets
than other state-of-the-art methods. Meanwhile, from Figure 7 it can be observed that
BS-CNN+MV performs better than BS-CNN, which further verifies the effectiveness of the
proposed background subtraction-based convolution neural network.



Sensors 2022, 22, 3760 12 of 17

Table 3. Comparison between the proposed countermeasure and the state-of-the-art methods on the
REPLAY-ATTACK database.

Methods Overall
EER HTER

IQA [41] 00.00 15.20
LBP [40] 13.90 13.87
MotionCorrelation [48] 11.78 11.79
LBP-TOP [12] 07.90 07.60
IDA [14] 08.58 07.41
Motion+LBP [49] 04.50 05.11
FD-ML-LPQ-Fisher [7] 05.62 04.80
DMD [13] 05.30 03.75
Colour-LBP [16] 00.40 02.90
Spectral cubes [42] - 02.75
CNN [21] 06.10 02.10
USDAN-Norm [23] - 00.30
Bottleneck Feature Fusion+NN [24] 00.83 00.00
Identity-DS [22] 00.20 00.00
S-CNN+PL+TC [47] 0.36 -

BS-CNN+MV (our) 00.58 00.62

Table 4. Testing our proposed countermeasure using all scenarios of the REPLAY-ATTACK database.

BS-CNN+MV (Our)
EER HTER

Scenarios

Digitalphoto 01.25 01.87
Highdef 01.42 03.43
Mobile 00.00 00.31
Photo 00.53 02.50
Print 00.83 00.62
Video 00.00 01.56

Overall 00.58 00.62

Table 5. Comparison EER (in %) between the proposed approach and the state-of-the-art methods in
different scenarios on MSU-MFSD.

Scenarios

Methods HD Android HD Laptop Mobile Android Mobile Laptop Print Android Print Laptop Overall

IDA [14] - - - - - - 08.58
Identity-DS [22] - - - - - - 08.58
FD-ML-BSIF-FS [7] - - - - - - 02.10
S-CNN+PL+TC [47] - - - - - - 00.64
USDAN-Norm [23] - - - - - - 00.00

BS-CNN+MV (our) 00.00 00.00 00.00 00.00 00.00 00.00 00.00
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Figure 7. DET curve of the proposed approach on CASIA, MSU, and REPLAY databases.

4.4. Inter-Dataset Cross-Type Testing

In this part of the experiments, CASIA-FASD, Replay-Attack, and MSU-MFSD were
used to perform the intra-dataset cross-type testing between replay and print attacks. As
shown in Table 6, our proposed method outperforms the state-of-the-art methods in terms
of overall performance (99.99% AUC), indicating that learned features extended well to
unknown attacks. As a result, it appears that our method can learn intrinsic material
patterns from a wide range of materials and so generalizes well to previously unexplored
types of material.

Table 6. AUC (%) of the model cross-type testing on CASIA-FASD, Replay-Attack, and MSU-MFSD.

Methods
CASIA-FASD Replay-Attack MSU-MFSD

Overall
Video Cut Photo Wrapped Video Digital Photo Printed Printed HR Video Mobile Video

OC-SVM+BSIF [50] 70.74 60.73 95.90 84.03 88.14 73.66 64.81 87.44 74.69 78.68± 11.74
NN+LBP [51] 94.16 88.39 79.85 99.75 95.17 78.86 50.57 99.93 93.54 86.69± 16.25
SVM+LBP [52] 91.94 91.70 84.47 99.08 98.17 87.28 47.68 99.50 97.61 88.55± 16.25
NAS-Baseline [26] 96.32 94.86 98.60 99.46 98.34 92.78 68.31 99.89 96.76 93.90± 09.87
DTN [25] 90.00 97.30 97.50 99.90 99.90 99.60 81.60 99.90 97.50 95.90± 06.20
AIM-FAS [27] 93.6 99.7 99.1 99.8 99.9 99.8 76.3 99.9 99.1 96.40± 07.80
CDCN [29] 98.48 99.90 99.80 100.00 99.43 99.92 70.82 100.00 99.99 96.48± 09.64
CDCN++ [29] 98.07 99.90 99.60 99.98 99.89 99.98 72.29 100.00 99.98 96.63± 09.15

BCN [28] 99.62 100.00 100.00 99.99 99.74 99.91 71.64 100.00 99.99 96.77± 09.99
NAS-FAS [26] 99.62 100 100 99.99 99.89 99.98 74.62 100.00 99.98 97.12± 08.94
BS-CNN+MV (our) 100 100 99.98 100 100 100 100 100 100 99.99± 0.0067

4.5. Inter-Dataset Cross-Dataset Testing

This experiment includes six cross-dataset testing protocols. The first is that we
perform CASIA-FASD training and testing on Replay-Attack, which is known as protocol
CR; the second is that we perform CASIA-FASD training and testing on MSU-MFSD,
which is known as protocol CM; and the third is that we exchange the training and testing
datasets that we have in the first, which is known as protocol REPLAY CASIA (RC).
The rest of the protocols are identical, with the exception that we utilize the data to train
one time and test the next; the protocols are protocol RM, protocol MSU CASIA (MC),
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and protocol MSU REPLAY (MR), as may be seen in Table 7. Regarding protocol CR, our
suggested BS-CNN+MV has 17.62% HTER, exceeding the previous state-of-the-art by a
convincing margin of 2%. Increasing the size of the training set with data augmentation
could increase performance even more. For protocol RC, we also outperformed state-of-
the-art frame-level techniques (see Table 7, third column). Furthermore, we can see in the
same table for our suggestion that the convincing margin between protocols RC and CR is
3% in the same technique, compared to the other most convincing methods in the same
protocol, such as in [29] (17%). As a result, we can presume that our approach outperforms
current approaches.

Table 7. The results of cross-dataset testing among CASIA-FASD, MSU-MFSD, and Replay-Attack.
The evaluation metric is HTER(%).

Method

Protocol CR Protocol CM Protocol RC Protocol RM Protocol MC Protocol MR

Training Testing Training Testing Training Testing Training Testing Training Testing Training Testing

Casia Replay Casia MSU Replay Casia Replay MSU MSU Casia MSU Replay

FD-ML-LPQ-FS [7] 50.25 50.41 42.59 38.00 50.00 48.00
Motion-Mag [53] 50.10 NP 47.00 NP NP NP
LBP-TOP [54] 49.70 NP 60.60 NP NP NP
LBP [16] 47.00 NP 39.60 NP NP NP
Spectral cubes [42] 34.40 NP 50.00 NP NP NP
STASN [30] 31.50 NP 30.90 NP NP NP
Color Texture [55] 30.30 NP 37.70 NP NP NP
FaceDs [33] 28.50 NP 41.10 NP NP NP
Auxiliary [31] 27.60 NP 28.40 NP NP NP
MEGC [56] 20.20 NP 27.90 NP NP NP
FAS-TD [32] 17.50 NP 24.00 NP NP NP
BASN [34] 17.50 NP 24.00 NP NP NP
Patch+BCN+MFRM [28] 16.60 NP 36.40 NP NP NP
CDCN [29] 15.50 NP 32.60 NP NP NP

BS-CNN+MV (our) 17.62 23.75 20.35 24.16 35.45 44.33

5. Conclusions and Future Directions

Fake face detection is a problem that was addressed in this work. We analyzed seven
scenarios from the MSU-MFSD, the REPLAY-ATTACK, and the CASIA-FASD databases.
In fact, texture and motion-based characteristics were used by the majority of authors in
the field of face presentation attack detection. However, BS and a CNN with a majority
vote seems to determine well if a person is using a fake face. In our paper, we evaluated
our approach under different protocols. Firstly, we used all three types of databases to
evaluate if they produced satisfactory results when compared to the current state-of-the-art.
The proposed technique was then put to the test using cross-type testing to ensure that
it could handle all attributes and attacks across the three databases. In the final test, we
used cross-dataset testing to compare each train of any data with the test, to other data, in
order to improve the validity of our approach. The obtained results have shown that our
proposed methods outperform the current state-of-the-art. We should point out that the
BS-CNN+MV investigation is still in its early stages, as evidenced by the limitations listed
below; (1) the limitation of the state-of-the-art face presentation attack detection methods
is that they require a perfect result in real-time. Thus, we envision trying to tackle and
investigate this problem by using cross-database performance, database limitations, and
usability; (2) the problem in FAS with 3D masks or makeup cannot be detected with our
proposal. So we need to handle it in future work by using background subtraction with
3D CNN models; (3) applicability to various vision tasks with domain generalization. As
a future direction, face presentation attack detection research could focus on making the
system more robust across all databases. It is also of interest to create a common training
model for each face presentation attack detection using transformers.
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The following abbreviations are used in this manuscript:

AIM-FAS Adaptive Inner-update Meta Face Anti-spoofing
AUC Area Under Curve
BASN Bipartite Auxiliary Supervision Network
BS Background Subtraction
CDC Central Difference Convolution
CDCN Central Difference Convolutional Network
CM CASIA MSU
CNN Convolutional Neural Networks
CR CASIA Replay
DET Detection Error Tradeoff
DMD Dynamic Mode Decomposition
DTN Deep Tree Network
EER Equal Error Rate
FAS Face Anti-Spoofing
FC Fully Connected
GT Ground Through
HTER Half Total Error Rate
IDA Image Distortion Analysis
IQA Image Quality Assessment
LBP Local Binary Patterns
LBP-TOP Local Binary Pattern on Three Orthogonal Planes
MC MSU CASIA
MEGC Multiple Explainable and Generalizable
MFRM Multi-level Feature Refinement Module
MR MSU Replay
MV Majority Vote
RC Replay CASIA
RM Replay MSU
STASN Spatiotemporal Anti-Spoof Network
SVM Support Vector Machines
USDAN Unsupervised and Semi-supervised Domain Adaptation Network
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