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FIBRATIONS BY AFFINE LINES ON RATIONAL AFFINE SURFACES WITH IRREDUCIBLE

BOUNDARIES

ADRIEN DUBOULOZ

ABSTRACT. We consider fibrations by affine lines on smooth affine surfaces obtained as complements of smooth rational
curves B in smooth projective surfaces X defined over an algebraically closed field of characteristic zero. We observe that
except for two exceptions, these surfaces X \B admit infinitely many families of A1-fibrations over the projective line with ir-
reducible fibers and a unique singular fiber of arbitrarily large multiplicity. For A1-fibrations over the affine line, we give a new
and essentially self-contained proof that the set of equivalence classes of such fibrations up to composition by automorphisms
at the source and target is finite if and only if the self-intersection number B2 of B in X is less than or equal to 6.

INTRODUCTION

Affine surfaces whose automorphism groups act with a dense orbit with finite complement were studied by M.H.
Gizatullin and V.I. Danilov in a series of seminal papers in the seventies [20, 21, 6, 7]. There, they established that except
for finitely many special cases, these are the affine surfaces which admit projective completions whose boundaries are
chains of smooth proper rational curves. Up to the exceptionA1\{0}×A1, such surfaces are equivalently characterized
by the property that they admit two fibrations over the affine line A1, whose general fibers are pairwise distinct and
isomorphic to A1, see [21, 1, 10]. Many of these surfaces actually admit infinitely many such A1-fibrations with
pairwise different general fibers up to the equivalence relation given by composition by automorphisms on the source
and the target. This richness of A1-fibrations contributes in a central way to the complexity of their automorphism
groups, see e.g. [2, 19, 3, 13, 23, 24].

In this article, we consider A1-fibrations on the subclass consisting of affine surfaces S defined over an algebraically
closed field k of characteristic zero and which admit smooth projective completions X with boundary B = X \S isomor-
phic to the projective line P1. A surface of this type is isomorphic either to the affine plane A2, or to the complement
of a smooth conic in P2 or to the complement of an ample section of a P1-bundle πn : Fn = P(OP1 ⊕OP1(−n))→ P1

for some n ≥ 0. Furthermore, the famous Danilov-Gizatullin isomorphism theorem asserts that the isomorphism class
of an affine surface of the form Fn \B depends only on the self-intersection B2 of the boundary B.

While A2 and the complements of smooth conics in P2 only admit A1-fibrations over A1, a surface Fn \B admits an
A1-fibration π : Fn \B→ P1 given by the restriction of the P1-bundle πn : Fn→ P1. These fibrations are actually locally
trivial A1-bundles, and one can check that their equivalence classes are in one-to-one correspondence with the orbits of
the natural action of the group PGL2(k) on the space P(H1(P1,OP1(−B2)) (see Remark 5). In particular, for B2 ≥ 3,
these surfaces admit infinitely many equivalence classes of A1-fibrations over P1. The geometry and equivalence classes
of other families of A1-fibrations over P1 on surfaces Fn \B has been much less studied than those of A1-fibrations over
A1. Our first result, inspired by a construction due to Blanc-van Santen [4] of infinite families of pairwise non-equivalent
closed embedding of the affine line in the complement of the diagonal in P1×P1, reads as follows:

Theorem 1. Let (Fn,B) be a pair consisting of a Hirzebruch surface πn : Fn → P
1 and an ample section B of πn.

Then for every m≥ 4, there exist infinite families of equivalence classes of A1-fibrations π : Fn \B→ P1 with a unique

singular fiber, irreducible and of multiplicity m.

The proof of Theorem 1 given in Section 2 actually provides a natural bijection between a set of equivalence classes
of A1-fibrations π : Fn \B→ P1 with a unique singular fiber, irreducible and of multiplicity m, and the elements of
the set-theoretic quotient of the set of closed points of a certain Zariski dense open subset of Pm−1 by the algebraic
action of a linear algebraic group whose general orbits are at most 2-dimensional. This construction strongly suggests
that by replacing the consideration of set-theoretic quotients by, for instance, that of GIT quotients of suitable open
subsets, one should be able to strengthen Theorem 1 in a form asserting the existence of algebraic families of A1-
fibrations s π : Fn \B→ P1 with a unique singular fiber, irreducible and of multiplicity m parametrized by the closed
points of an algebraic variety of dimension m− 3. Tackling the necessary additional constructions which are needed
to give a rigorous and accurate formulation of this coarse moduli viewpoint falls beyond the scope of the present article.
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In a second step, we consider equivalence classes of A1-fibrations over A1 on affine surfaces X \B. It is a well-
known result of Danilov-Gizatullin [6, 7] that every such surface other than the complement of a smooth conic in P2

has a unique equivalence class of smooth A1-fibration over A1. As already observed by Danilov-Gizatullin again, for
every d = 1, . . . ,5, the finiteness of the number of equivalences classes of A1-fibrations over A1 on surfaces X \B with
B2 = d is then a consequence of the finiteness of isomorphism types of pairs (X ,B) with B2 = d. Over the field of
complex numbers, equivalence classes of non-smooth A1-fibrations over A1, equivalently A1-fibrations having non-
reduced components in their degenerate fibers, have been extensively studied in [19] in a broader context, see especially
Corollary 6.3.19 and Corollary 6.3.20 in loc. cit.. The techniques there consist in first constructing a finite-to-one
correspondence between equivalence classes of such A1-fibrations and collections of points in a configuration space.
The latter encodes the standard construction of a completion of an A1-fibered smooth affine surface π : S→A1 into a P1-
fibered smooth projective surface π̄ : S̄→ P1 obtained by performing a suitable sequence of blow-ups of closed points
starting from a Hirzerbruch surface πn : Fn→ P1. The second step consists in describing the possible configurations and
determining their respective numbers of moduli. A consequence of this extensive description is that for every B2 ≥ 7,
the surface X \B admits families of pairwise non-equivalent A1-fibrations X \B→ A1 parametrized by a space whose
dimension is an increasing function of B2 (see [19, Example 6.3.2]). Our second result consists of an alternative direct
proof of the following theorem, based on the use of a different point of view.

Theorem 2. Let (X ,B) be a pair consisting of a smooth projective surface X and an ample smooth rational curve B on

X. Then the following alternative holds:

a) If B2 ≤ 6 then X \B admits at most seven equivalence classes of A1-fibrations over A1,

b) If B2 ≥ 7 then the set of equivalence classes of A1-fibrations X \B→ A1 is infinite, of cardinality larger than or

equal to that of the field k.

For B2 ≤ 6, the different equivalence classes are derived by an explicit case by case study. For B2 ≥ 7, our argument
is based on the study of the equivalence classes of a subclass of A1-fibrations Fn \B→ A1 which have an irreducible
component of multiplicity two inside their degenerate fiber. We show that for every B2 ≥ 7, the set of equivalence
classes of A1-fibration of this type is infinite. More precisely, we actually construct explicit families of equivalences
classes of A1-fibered smooth affine surfaces S→A1 with a unique degenerate fiber, irreducible and of multiplicity two,

depending algebraically on a parameter varying in an affine space of dimension
⌊

B2−5
2

⌋

(see Example 33) and which

are all realized as restrictions of A1-fibrations Fn \B→A1 on suitable Zariski open subsets. This indicates in an indirect
fashion that the “number of moduli” of A1-fibrations over A1 on surfaces X \B with B2 = d is bounded from below by
⌊

d−5
2

⌋

.

The article is organized as follows. In section one, after setting some notations, we review basic properties of smooth
affine surfaces completable by smooth rational curves. We then proceed in section two to the proof of Theorem 1. The
third section is devoted to the proof of Theorem 2, which combines several known facts together with new results on
equivalence classes of A1-fibrations π : Fn \B→ A1 having an irreducible component of multiplicity two inside their
unique degenerate fiber.

1. PRELIMINARIES

All varieties and schemes considered are defined over a fixed algebraically closed field k of characteristic zero.

1.1. Notations and basic definitions. We briefly recall basic definitions on SNC divisors and standard properties of
A1-fibrations and P1-fibrations which we use throughout the paper, see e.g [25, Chapter 3] for the details.

1.1.1. SNC divisors and rationals trees on smooth surfaces.

(i) Let X be a smooth projective surface. An SNC divisor on X is a curve B⊂ X with smooth irreducible components
and ordinary double points only as singularities. We say that B is SNC-minimal if its image by any strictly birational
proper morphism τ : X → X ′ onto a smooth projective surface X ′ with exceptional locus contained in B is not an
SNC divisor. A rational tree on X is an SNC divisor whose irreducible components are isomorphic to P1 and whose
incidence graph is a tree. A rational chain is a rational tree whose incidence graph is a chain. We use the notation
B = B0 ⊳B1 ⊳ · · · ⊳Br to indicate a rational chain whose irreducible components Bi are ordered in such a way that for
0≤ i < j ≤ r, one has Bi ·B j = 1 if j = i+1 and 0 otherwise. The sequence of self-intersections [B2

0, . . . ,B
2
r ] is referred

to as the type of the oriented rational chain B.
(ii) An SNC completion of a smooth quasi-projective surface V is a pair (X ,B) consisting of a smooth projective

surface X and an SNC divisor B ⊂ V such that X \B ≃ V . The completion is said to be SNC-minimal if B is SNC-
minimal and to be smooth if B is smooth.
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1.1.2. Recollection on A1-fibrations and P1-fibrations on smooth surfaces.

(i) A P1-fibration on a smooth projective surface X is a morphism ρ : X→C onto a smooth projective curve C whose
generic fiber is isomorphic to the projective line over the function field of C. Every P1-fibration ρ : X →C is obtained
from a Zariski locally trivial P1-bundle over C by performing a finite sequence of blow-ups of points. In particular,
every P

1-fibration has a section and its singular fibers are supported by rational trees on X . If X is rational, then for
every smooth proper rational curve F with self-intersection 0, the complete linear system |F| of effective divisors on X

linearly equivalent to F defines a P1-fibration ρ |F | : X → P1
k having F as a smooth fiber.

(ii) An A1-fibration on a smooth quasi-projective surface V is a surjective morphism ρ : V → A onto a smooth curve
A whose generic fiber is isomorphic to the affine line over the function field of A. Every A1-fibration is the restriction
of a P1-fibration ρ : X →C over the smooth projective model C of A, defined on an SNC completion (X ,B) of Vwith
boundary B =

⋃

c∈C\A Fc ∪H ∪
⋃

a∈A Ga where, Fc = ρ−1(c) ≃ P1 for every c ∈ C \ A, H is a section of ρ , and for

every a ∈ A, Ga is a union of SNC-minimal rational subtree of the rational tree (ρ−1(a))red. The pair (X ,B) is called
a relatively minimal P1-fibered completion of ρ : V → A. If ρ : V → A is affine, every nonempty Ga is connected and
has an irreducible component intersecting H, and the closure in X of every irreducible component of ρ−1(a) intersects
Ga transversely in a unique point. In particular, every irreducible component of ρ−1(a) is isomorphic to A1 when
equipped with its reduced structure. A scheme-theoretic closed fiber of ρ : V → A which is not isomorphic to A1 is
called degenerate.

(iii) A smooth A1-fibered surface is a pair (V,π) consisting of a smooth quasi-projective surface V and an A1-
fibration π : V → A onto a smooth curve A. The A1-fibration π is said to be of affine type if A is affine and of complete
type otherwise. Two A1-fibered surfaces (V,π : V → A) and (V ′,π ′ : V ′→ A′) are said to be equivalent if there exist an
isomorphism Ψ : V →V ′ and an isomorphism ψ : A→ A′ such that π ′ ◦Ψ = ψ ◦π .

1.2. Models of smooth affine surfaces with irreducible rational boundaries. We review known basic properties of
smooth affine surfaces admitting smooth completions (X ,B) with boundaries B∼= P1. Recall [22, Theorem 2] that for
such a pair (X ,B), the affineness of X \B implies that B is the support of an ample effective divisor on X .

Lemma 3. [20, Proposition 1] A pair (X ,B) consisting of a smooth projective surface X and a divisor B∼= P1such that

X \B is affine is isomorphic to one of the following:

a) (P2,B) where B is either a line L or a smooth conic Q,

b) (Fn,B) where πn : Fn = P(O
P1 ⊕O

P1(−n))→ P1, n≥ 0, is a P1-bundle and B is an ample section of πn.

Proof. The log-canonical divisor KX +B is not nef since (KX +B) ·B = −2 by adjunction formula. Given a KX +B

extremal smooth rational curve R on X , the conditions B ·R > 0 and (KX +B) ·R < 0 imply that R2 ≥ 0. If R2 > 0 then
X is a smooth log del Pezzo surface of Picard rank 1, hence is isomorphic to P

2, and B is either a line or a smooth
conic. If R2 = 0, then the associated extremal contraction is a Zariski locally trivial P1-bundle h : X →C over a smooth
projective curve C and B is a section of h. Thus, C ∼= B∼= P1 and (X ,h)∼= (Fn,πn) for some n≥ 0. �

For a pair (Fn,B) as in Lemma 3 b), we denote by C0 ⊂ Fn a section of πn with self-intersection C2
0 =−n and by F

a closed fiber of πn. Recall [8, Corollary V.2.18] that for m≥ 1, the complete linear system |C0 +mF| contains prime
divisors if and only if m≥ n. Since B is a section of πn, we have B∼C0 +

1
2 (B

2 + n)F , where B2 ≥ n+ 2 because B is
ample. For a fixed d ≥ 2, the Hirzebruch surfaces Fn containing an ample section B with B2 = d are those of the form
Fd−2i, i = 1, . . . ,

⌊

d
2

⌋

, with B belonging to the complete linear system |C0 +(d− i)F|.
Since the divisor class group of Fn is freely generated by the classes of F and of a section of πn, the divisor class

group of Fn \B is freely generated by the class of F |Fn\B. A canonical divisor KFn
of Fn being linearly equivalent

to −2C0− (n+ 2)F, we have KFn
∼ −2B+(B2− 2)F and hence KFn\B ∼ (B2− 2)F|Fn\B. A result due to Danilov-

Gizatullin asserts conversely that the integers B2 are a complete invariant of the isomorphism classes of surfaces Fn \B,
namely:

Theorem 4. [7, Theorem 5.8.1] (see also [5, Corollary 4.8], [12, §3.1], [18] and [19, Corollary 6.2.4]) The isomorphism

class of the complement of an ample section B in a Hirzebruch surface Fn depends only on the self-intersection B2 of B.

Remark 5. For a pair (Fn,B) as in Lemma 3 b) with B2 = d, the closed immersion B →֒ Fn is determined by a surjection
O
P1 ⊕O

P1(−n)→L onto an invertible sheaf L on P1, with kernel K isomorphic to O
P1(− 1

2(d + n)). The locally
trivial A1-bundle ν = πn|Fn\B : Fn \B→ P1 thus carries the additional structure of a non-trivial torsor under the line
bundle associated to the invertible sheaf L

∨⊗K ∼= OP1(−d). Isomorphism classes of such A
1-bundles are in one-

to-one correspondence with the elements of the projective space P(Ext1(L ,K ))∼= P(H1(P1,O
P1(−d)))∼= Pd−2. By

[7, Remark 4.8.6] (see also [12, §3.1] and [11, Proposition 2]), every non-trivial OP1(−d)-torsor arises as a restriction
πn|Fn\B : Fn \B→ P1 for some pair (Fn,B) as in Lemma 3 b) with B2 = d.
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Example 6. The pairs (X ,B) of Lemma 3 a) are unique up to isomorphism. In particular every affine surface isomorphic
to the complement of a smooth conic in P2 is isomorphic to the complement of the conic Q0 = {xz+ y2 = 0} in P2

[x;y:;z].

A model of an affine surface Fn \B with B2 = d is given for d = 2e≥ 2 by the complement in F0 = P1
[u0:u1]

×P1
[v0:v1]

of

the section ∆e = {u
e
1v0−ue

0v1 = 0} of π0 = pr1, and for d = 2e+1≥ 3 by the complement in π1 : F1→ P
1 viewed as the

blow-up of P2
[x:y:z] at the point p = [0 : 1 : 0] of the proper transform of the rational cuspidal curve Ce = {yze+xe+1 = 0}.

The next examples illustrate some other representatives of isomorphism classes of affine surfaces Fn \B.

Example 7. [12] For every d ≥ 2 and every pair of integers p,q ≥ 1 such that p+ q = d, the geometric quotient
Sd of the smooth affine threefold Xp,q = {xpv− yqu = 1} in A4 by the free Gm-action defined by λ · (x,y,u,v) =

(λ x,λ y,λ−qu,λ−pv) is a representative of the isomorphism class of surfaces of the form Fn \ B such that B2 = d.
Indeed, Sd is isomorphic to the complement in the geometric quotient

π|p−q| : F|p−q|
∼= P(OP1(p)⊕OP1(q))→ P

1 = Proj(k[x,y])

of (A2 \ {0})× (A2 \ {0}) by the G2
m-action (λ ,µ) · (x,y,u,v) = (λ x,λ y,λ−pµu,λ−qµv) of the ample section B of

π|p−q| with self-intersection d determined by the vanishing of the polynomial xpv− yqu of bi-homogeneous degree
(0,1).

Example 8. [11] For every d ≥ 2, the surface Wd in A4 = Spec(k[x1,x2,x2,x4]) defined by the equations

x1x3− x2(x2 + 1) = 0, xd−2
2 x4− xd−1

3 = 0, xd−2
1 x4− (x2 + 1)d−2x3 = 0

is a representative of the isomorphism class of surfaces of the form Fn \B such that B2 = d. Indeed, the morphism
ν : Wd → P1, (x1,x2,x3,x4) 7→ [x1 : x2 + 1] = [x2 : x3] is a locally trivial A1-bundle with local trivializations

ν−1(P1 \ [0 : 1])∼= Spec(k[w][x4]) and ν−1(P1 \ [1 : 0])∼= Spec(k[w′][x1])

and gluing isomorphism (w,x4) 7→ (w′,x1) = (w−1,wdx4−wd−1), hence is a torsor under the line bundle associated to
O
P1(−d). By Remark 5, the surface Wd isomorphic to Fn \B for some pair (Fn,B) as in Lemma 3 b) with B2 = d.
The surface W2 is isomorphic to the surface in A3 = Spec(k[x,y,z]) given by the equation xy= z(z+1). For d ≥ 3, the

morphism Wd → A3, (x1,x2,x3,x4) 7→ (x1,x4,x2) has image equal to the non-normal surface Vd given by the equation
xd−1y = z(z+1)d−1 and the induced morphism νd : Wd→Vd is finite and birational, expressing Wd as the normalization
of Vd . This recovers the other description of representative of surfaces Fn \B such that B2 = d as normalizations of
surfaces of the form Vd given in [19, §1.0.8].

2. FAMILIES OF A1-FIBRATIONS OF COMPLETE TYPE

Since they have torsion class groups, the affine plane A2 = P2 \L and the complements of smooth conics in P2 do not
admit A1-fibrations over complete curves. In contrast, a surface Fn \B admits a smooth A1-fibration πn|Fn\B : Fn \B→

P1. In this section, we are interested in the properties of certain A1-fibrations Fn \B→ P1 with multiple fibers.

Lemma 9. Let (Fn,B) be a pair as in Lemma 3 b), let q be a point of B and let m≥ 1. Then the linear subsystem Zq(m)

of the complete linear system |B+mF| consisting of divisors intersecting B with multiplicity B2 +m at q has dimension

m. Furthermore, the open subset Uq(m) of Zq(m) consisting of prime divisors is Zariski dense.

Proof. Put d = B2 and Fq = π−1
n (πn(q)). Let IB

∼= OFn
(−B) denote the ideal sheaf of B and consider the long exact

sequence of cohomology associated to the short exact sequence of coherent sheaves

0→IB⊗OFn
(B+mF)∼= OFn

(mF)→ OFn
(B+mF)→ OFn

(B+mF)|B ∼= OB(d +m)→ 0

Since H1(Fn,OFn
(mF)) = 0, the map H0(Fn,OFn

(B+mF))→ H0(B,OB(d +m)) is surjective, with kernel of dimen-
sion dimH0(Fn,OFn

(mF)) = m+1. It follows that Zq(m)∼= Pm. A singular element of Zq(m) decomposes as the sum
of a prime member Bm′ of the complete linear system |B+m′F |, 0 ≤ m′ < m, intersecting B with multiplicity d+m′ at
q and of (m−m′)Fq. By the same computation as above, these elements form a closed linear subspace Zq(m

′) ∼= P
m′

of Zq(m) and so, Uq(m) = Zq(m)\
⋃m−1

m′=0 Zq(m
′) is a dense open subset of Zq(m). �

Example 10. Let F0 = P1
[u0:u1]

×P1
[v0:v1]

, ∆ = {u1v0− u0v1 = 0} and let q = ([0 : 1], [0 : 1]). For every m ≥ 1, denote

by Vm ⊂ k[t] the m-dimensional vector space of monic polynomials of degree m. Writing P(u,v) = p( v
u
)um for the

homogenization of a polynomial p(t) ∈ k[t], the map which associates to p ∈ Vm the section

Bm,p = {u0P(u0,u1)v1− (um+1
0 + u1P(u0,u1))v0 = 0}

of π0 = pr1 defines an open immersion Vm→Uq(m)⊂Zq(m)∼= Pm. These curves Bm,p were considered by Blanc-van
Santen [4, Section 2] for the fact that their restrictions Bm,p∩ (F0 \∆)∼= A1 provide examples of non-equivalent closed
embeddings of the affine line into the smooth affine quadric surface F0 \∆.
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Let (Fn,B) be a pair as in Lemma 3 b), let m≥ 2 and let Bm be a section of πn corresponding to a closed point of the
scheme Uq(m) for some q ∈ B. Let Lq,Bm ⊂ |B+mF| be the pencil generated by the divisors Bm and B+mFq.

Lemma 11. Every member of Lq,Bm other than B+mFq is a smooth rational curve.

Proof. Every divisor in the complete linear system |B+mF | has self-intersection B2 + 2m. The minimal resolution
τ : F̃n→ Fn of the rational map γ : Fn 99K P

1 defined by Lq,Bm is obtained by performing B2 +2m successive blow-ups
with center at q on the successive proper transforms of Bm, with exceptional divisors E1, . . . ,EB2+2m. Letting τ−1

∗ Bm

be the proper transform of Bm, the composition γ̃ = γ ◦ τ : F̃n → P1 is the P1-fibration defined by the complete linear
system |τ−1

∗ Bm|. The total transform of Bm is a rational chain E1 ⊳ · · ·⊳EB2+2m ⊳ τ−1
∗ Bm, where EB2+2m is a section of

γ̃ . Since every singular member of Lq,Bm is the sum of a prime member B′ of the linear system |B+m′F| for some
0≤m′ < m and of (m−m′)Fq, every fiber of γ̃ other than that containing the proper transform of B∪Fq is smooth. This
implies that every member of Lq,Bm other than B+mFq is a smooth rational curve. �

For every q ∈ B, the space of pencils Lq,Bm identifies with a dense open subset Sq(m) of the projective space Pm−1

of lines passing through the point of Zq(m) \Uq(m) corresponding to the reducible divisor B+mFq and a point of
Uq(m). The linear action on H0(Fn,OFn

(B+mF)) of the algebraic subgroup Aut(Fn,B∪Fq) of automorphisms of Fn

preserving B∪Fq induces an action of Aut(Fn,B∪Fq) on Sq(m). On the other hand, the rational map γq,Bm : Fn 99K P
1

associated to a pencil Lq,Bm restricts to a surjective A
1-fibration δq,Bm : Fn \B→ P

1 having Fq ∩ (Fn \B) ∼= A
1 as a

unique degenerate fiber, of multiplicity m. We have the following characterization:

Lemma 12. Let (Fn,B) be a pair as in Lemma 3 b), let m ≥ 3 and let Bm and B′m be sections of πn : Fn→ P1 corre-

sponding to points of the scheme Uq(m) for some q∈ B. Then the A1-fibered surfaces (Fn \B,δq,Bm) and (Fn \B,δq,B′m
)

are equivalent if and only if the pencils Lq,Bm and Lq,B′m
belong to the same Aut(Fn,B∪Fq)-orbit.

Proof. Let Ψ : (Fn \B,δq,Bm)→ (Fn \B,δq,B′m
) be an equivalence of A1-fibered surfaces, let Ψ̄ be its extension to a

birational automorphism of Fn and let Fn
σ
← Y

σ ′
→ Fn be the minimal resolution of Ψ̄. If σ ′ is not an isomorphism, then

σ is not an isomorphism and Ψ contracts B onto a point. By the minimality assumption, the proper transform σ−1
∗ (B)

of B is the only σ ′-exceptional (−1)-curve contained in σ−1(B). It follows that σ has B2 + 1 proper or infinitely near
base points on B and hence, since B ·Bm = B2 +m, that σ−1

∗ Bm ·σ
−1
∗ (B) ≥ m− 1 ≥ 2. But then, σ ′(σ−1

∗ Bm) is an
irreducible singular member of Lq,B′m

, which is impossible by Lemma 11. Thus, σ ′ is an isomorphism and Ψ̄ is an
automorphism of Fn, which preserves B and the closure Fq of the unique common degenerate fiber Fq∩ (Fn \B) of δ
and δ ′. Furthermore, Ψ̄ maps Bm onto a certain smooth member of Lq,B′m

, hence maps Lq,Bm onto Lq,B′m
. The converse

implication is clear. �

Remark 13. For every m≥ 2 and every point q ∈ B, one can find distinct points Bm and B′m in the scheme Uq(m) such
that the pencils Lq,Bm and Lq,B′m

have distinct general members. The associated A1-fibrations δq,Bm and δq,B′m
have

distinct general fibers but share Fq∩ (Fn \B) as a degenerate fiber. This contrasts with A1-fibrations of affine type for
which no curve can be contained simultaneously in fibers of two A1-fibrations with distinct general fibers, see [10,
Corollary 2.22].

Proposition 14. Let (Fn,B) be a pair as in Lemma 3 b). Then for every m≥ 4, there exist infinitely many equivalence

classes of A1-fibrations π : Fn \B→ P1 with a unique degenerate fiber of multiplicity m.

Proof. By Theorem 4, it suffices to construct such families from the two pairs (Fn,B) = (F0,∆e) and (F1,σ
−1
∗ Ce) of

Example 6. If B2 = 2e ≥ 2, let q = ([1 : 0], [0 : 1]) ∈ ∆e = {u
e
1v0− ue

0v1 = 0} ⊂ F0. The group Aut(F0,∆e ∪Fq) is
isomorphic to the affine group Gm ⋉Ga acting by

(λ , t) · ([u0 : u1], [v0 : v1]) = ([λ u0 + tu1 : u1], [v0 +λ−1tv1 : λ−1v1])

if e= 1 and for every e≥ 2 to the groupGm acting by λ ·([u0 : u1], [v0 : v1])= ([λ u0 : u1], [v0 : λ−ev1]). If B2 = 2e+1≥ 3,
viewing F1 as the blow-up σ :F1→P2

[x:y:z] of the point p= [0 : 1 : 0] with exceptional divisor C0, let q be the intersection

point of σ−1
∗ Ce with the proper transform of the tangent line L = {z = 0} to Ce = {yze + xe+1 = 0} at p. The group

Aut(F0,σ
−1
∗ Ce ∪Fq) is then isomorphic to the group Aut(P2,Ce ∪L). The latter is isomorphic to Gm ⋉Ga acting by

(λ , t) · [x : y : z] = [λ x+tz : λ 2y−2λ tx−t2z : z] if e= 1 and for every e≥ 2 to Gm acting by λ · [x : y : z] = [λ x : λ e+1y : z].
In both cases, the Aut(Fn,B∪Fq)-orbit of a point of the open subset Sq(m)⊂ Pm−1 is at most 2-dimensional. Since

m−1≥ 3, the set-theoretic orbit space Sq(m)/Aut(Fn,B∪Fq) is infinite and the assertion follows from Lemma 12. �

3. EQUIVALENCE CLASSES OF A1-FIBRATIONS OF AFFINE TYPE

3.1. Special pencils of rational curves and associated A1-fibrations of affine type. Let (X ,B) be a pair as in Lemma
3. For every point q∈ B, denote by Pq the linear subsystem of the complete linear system |B| on X consisting of curves
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with local intersection number with B at q equal to B2. If (X ,B) ∼= (P2,L) where L is a line, then Pq is simply the
pencil of lines through q. More generally, if B2 ≥ 2 then the same type of computation as in the proof of Lemma
11 implies that Pq is a pencil. The minimal resolution σ : X̃ → X of the rational map ρq : X 99K P1 defined by Pq

is obtained by performing B2 successive blow-ups with center at q on the successive proper transforms of B, with
respective exceptional divisor E1, . . . ,EB2 . The total transform of B in X̃ is a rational chain σ−1

∗ B⊳EB2 ⊳EB2−1 ⊳ · · ·E1

of type [0,−1,−2, . . . ,−2] and the morphism ρ̃q = ρq ◦σ : X̃ → P1 is the P1-fibration defined by the complete linear
system |σ−1

∗ B|.

Example 15. For every point q on a smooth conic Q⊂ P2, Pq is the pencil of conics intersecting Q with multiplicity
4 at q, generated by Q and twice its tangent line TqQ at q. The total transform of Q∪TqQ by σ is the rational tree

(σ−1
∗ Q,0)⊳ (E4,−1) ⊳ (E3,−2) ⊳ (E2,−2) (σ−1

∗ TqQ,−1)

(E1,−2),

where the displayed numbers in the parenthesis are the self-intersection numbers of the corresponding irreducible
components. The P1-fibration ρ̃q : P̃2→ P1 has ρ̃−1

q (ρq(TqQ)) =
⋃3

i=1 Ei∪σ−1
∗ TqQ as a unique singular fiber.

For pairs (Fn,B) as in Lemma 3 b), we have the following description (see also [13, Section 3]):

Lemma 16. Let (Fn,B) be a pair as in Lemma 3 b). Then for every point q ∈ B, the following hold:

a) The pencil Pq has a unique singular member consisting of a divisor of the form C+mqFq, where C is a section

of πn, Fq = π−1
n (πn(q)) and mq ∈ {1, . . . ,B2− 1}.

b) The P1-fibration ρ̃q : F̃n→ P1 has ρ̃−1
q (ρq(C∪Fq)) =

⋃B2−1
i=1 Ei∪σ−1

∗ (C∪Fq) as a unique singular fiber.

c) For a general point q ∈ B, the unique singular member of Pq is reduced.

Proof. With the notation of subsection 1.2, put d = B2 ≥ 2 and B∼C0 + ℓF with ℓ= 1
2 (d+n)≤ d−1. Since d ≥ 2 and

E2
d−1 = −2, ρ̃−1

q (ρ̃q(Ed−1)) is a singular fiber of ρ̃q and its image by σ is a singular member of Pq. Since a singular
member of Pq decomposes as the union of a section C∼C0+ ℓ′F of πn for some 0≤ ℓ′ < ℓ≤ d−1 intersecting B with
multiplicity d− (ℓ− ℓ′) at q and of (ℓ− ℓ′)Fq, it follows that σ(ρ̃−1

q (ρ̃q(Ed−1))) =C+(ℓ− ℓ′)Fq is the unique singular
member of Pq. This proves a) and b). For assertion c), see [7, Proposition 4.8.11] or [12, Lemma 3.2]. �

For a pencil Pq on a pair (X ,B) as in Lemma 3, the rational map ρq : Fn 99K P
1 defined by Pq restricts to an A1-

fibration πq : X \B→ A1 = P1 \ρq(B). In the case where (X ,B) = (P2,L) for some line L, πq is a trivial A1-bundle on
A2 = P2 \L, and in the case where (X ,B) = (P2,Q), πq has a unique degenerate fiber consisting of TqQ∩ (P2 \Q)∼=A1

occurring with multiplicity 2 (see Example 15). For pairs (Fn,B), it follows from Lemma 16 a) that πq : Fn \B→ A1

has unique degenerate fiber which is reducible, consisting of the disjoint union of C∩ (Fn \B) ∼= A1 occurring with
multiplicity 1 and of Fq ∩ (Fn \ B) ∼= A1 occurring with a certain multiplicity mq ∈ {1, . . . ,B2− 1}. The following
lemma shows conversely that for a pair (X ,B) as above, every A1-fibration π : X \B→ A1 is induced by a pencil Pq

on a suitable smooth completion (X ′,B′) of X \B.

Lemma 17. Let (X ,B) be a pair as in Lemma 3 and let π : X \B→ A1 be an A1-fibration. Then there exists a smooth

completion (X ′,B′) of X \B by some pair as in Lemma 3, an isomorphism Ψ : X \B→ X ′ \B′ and a point q′ ∈ B′ such

that π = πq′ ◦Ψ.

Proof. Note that X \B admits an SNC completion by a rational chain of type [0,−1] if (X ,B) ∼= (P2,L) and of type
[0,−1,−2, . . . ,−2] with B2− 1 ≥ 1 curves of self-intersection number −2 otherwise. Now let (Y,D) be a relatively
minimal SNC completion of π : X \B→A1 into a P1-fibration π̄ : Y →P1 as in subsection 1.1.2 (ii). By [10, Proposition
2.15], D is a rational chain F∞ ⊳H ⊳E , where F∞

∼= P1 is the fiber of π̄ over the point P1 \A1, H is a section of π̄ and
E is either the empty divisor or a rational chain E1 ⊳ · · ·⊳Ed−1 consisting of curves with self-intersection number≤−2
contained in a fiber of π̄ . By making elementary transformations consisting of the blow-up of a point of F∞ followed
by the contraction of the proper transform of F∞, we can further assume from the beginning that H2 = −1. By [6,
Corollary 2] (see also [16, Corollary 3.32] or [2, Corollary 3.2.3]), the number of irreducible components of E and their
self-intersection numbers are independent on (Y,D). Thus, D is a chain of one of the types listed above and so, letting
τ : Y → X ′ be the contraction of the subchain H ⊳E onto a smooth point q′ ∈ B′ = τ(F∞) ∼= P1, we obtain a smooth
completion (X ′,B′) of X \B and an isomorphism Ψ = τ|Y\D : X \B∼= Y \D→ X ′ \B′ such that π = πq′ ◦Ψ. �

Corollary 18. The affine plane A2, the complement P2 \Q of a smooth conic Q ⊂ P2 and the affine quadric surface

P1×P1 \∆ all have a unique equivalence class of A1-fibrations over A1.

Proof. In each case, given an A1-fibration π : X \B→ A1, Lemma 17 provides a smooth completion (X ′,B′) of X \B

such that π = πq′ ◦Ψ for some isomorphism Ψ : X \B→ X ′ \B′ and some point q′ ∈ B′. If (X ,B) = (P2,L) or (P2,Q)
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then X ′ = P2 and B′ is respectively a line L′ or a smooth conic Q′. If (X ,B) = (P1×P1,∆) then X ′ = P1×P1 and B′ is
a prime divisor of type (1,1). The assertion then follows from the fact that in each case, the automophism group of the
surface X ′ = X acts transitively on the set of pairs (B′,q′). �

Corollary 19. Every A1-fibration π : Fn \B→ A1 on an affine surface Fn \B has a unique degenerate fiber which

consists of the disjoint union of a reduced irreducible component and an irreducible component of multiplicity m ∈
{1, . . . ,B2− 1}.

In contrast to Corollary 18, the following lemma, whose proof reproduces that of [9, Theorem 16.2.1] (in french),
implies that every affine surface Fn \B with B2 ≥ 3 admits more than one equivalence class of A1-fibrations over A1.

Lemma 20. Let (Fn,B) be a pair as in Lemma 3 b). Then for every integer m ∈ {1, . . . ,B2 − 1}, there exists an

A1-fibration πm : Fn \B→ A1 whose degenerate fiber has a reduced component and a component of multiplicity m.1

Proof. We use the notation introduced in subsection 1.2 and put d = B2 ≥ 2. Let n′ = d− 2i for some i = 1, . . .
⌊

d
2

⌋

,
let Cn′ be a prime member of the complete linear system |C0 + n′F | and let q0 ∈ C0 and qn′ ∈ Cn′ be a pair of closed
points contained in two different fibers Fq0 and Fqn′

of πn′ : Fn′ → P1. Note that B′ ·C0 = i and B′ ·Cn′ = d− i for
every member B′ of |C0 +(d− i)F |. Applying a sequence of i elementary transformations with center at q0 followed
by a sequence of d− i elementary transformations with center at qn′ yields a birational map β : Fn′ 99K F0 = P1×P1

such that πn′ = pr1 ◦β . The composition pr2 ◦β : Fn′ 99K P
1 is given by a pencil L ⊂ |C0 +(d− i)F | whose general

members are sections B′ of πn′ which satisfy B′ ∩C0 = q0 and B′ ∩Cn′ = qn′ . Since (B′)2 = 2(d− i)− (d− 2i) = d,
Fn′ \B′ is isomorphic to Fn \B by Theorem 4. On other hand, the pencil Pq0 has a unique singular member equal to
C0 +(d− i)Fq0 whereas the pencil Pqn′

has a unique singular member equal to Cn′ + iFqn′
. The degenerate fibers of

the associated A1-fibrations πq0 : Fn′ \B′ → A1 and πqn′
: Fn′ \B′ → A1 have Fq0 ∩ (Fn′ \B′) and Fqn′

∩ (Fn′ \B′) as

irreducible components of multiplicity d− i and i respectively. Since i ranges from 1 to
⌊

d
2

⌋

, the assertion follows. �

3.2. Some classes of A1-fibrations of affine type on surfaces Fn \B. By Corollary 19 and Lemma 20, the classifica-
tion of equivalences classes ofA1-fibrations π :Fn\B→A1 is divided into that of each type according to the multiplicity
m ∈ {1, . . . ,B2− 1} of the possibly non-reduced irreducible component of their unique degenerate fiber. Hereafter, we
first recall known results on the two extremal cases: A1-fibrations with a component of maximal multiplicity B2− 1
on the one hand, and smooth A

1-fibrations on the other hand. We then proceed to the study of equivalence classes of
A1-fibrations with a component of multiplicity two in their unique degenerate fiber.

3.2.1. Equivalence classes of A1-fibrations with maximal multiplicity.

Proposition 21. For every pair (Fn,B) as in Lemma 3 b), the affine surface Fn \B has a unique equivalence class of

A1-fibration π : Fn \B→A1 with a degenerate fiber containing an irreducible component of multiplicity B2− 1.

Proof. A pair (Fn,B) with B2 = d + 2≥ 2 such that B contains a point q for which the singular member of the pencil
Pq has the form C + (d + 1)Fq for some irreducible curve C is necessarily equal to (Fd ,B) for some section B ∼
C0 +(d + 1)F of πd intersecting C0 transversely at the point q, the curve C being then equal to C0. Then the assertion
follows from the fact that the group Aut(Fd) acts transitively on the set of sections B ∼C0 +(d + 1)F of πd . Let us
recall the argument. Since the restriction homomorphism Aut(Fd ,C0)→ Aut(C0) is surjective, it suffices to show that
for some chosen fiber F0 of πd , the action of Aut(Fd ,C0∪F0) on the set of sections B0 ∼C0+(d+1)F intersecting C0 at
the point F0∩C0 is transitive. Identifying Fd \(C0∪F0) to A2 = Spec(k[x,y]) in such a way that πd |A2 = prx and that the
closures in Fd of the level sets of y are sections of πd linearly equivalent to C0 + dF , these sections B0 are the closures
in Fd of curves Γp ⊂ A

2 defined by equations of the form y = p(x) where p(x) ∈ k[x] is a polynomial of degree d + 1.
Since every automorphism of A2 of the form (x,y) 7→ (λ x+µ ,νy+r(x)), where r(x)∈ k[x] is a polynomial of degree at
most d, extends to an element of Aut(Fd ,C0∪F0), it follows that every section B0 belongs to the Aut(Fd ,C0∪F0)-orbit
of the closure of the curve Γxd+1 = {y = xd+1}. �

3.2.2. Equivalence classes of smooth A1-fibrations. The following lemma is a reformulation of [7, Lemma 5.5.5],
which appeared, stated in a different language, in the Appendix of [12].

Lemma 22. Let (Fn,B) be a pair as in Lemma 3 b) and let q∈ B be a point such that the singular member of the pencil

Pq is reduced. Then the isomorphism type of the A1-fibered surface πq : Fn \B→A
1 depends only on the integer B2.

Proof. Put d = B2 and S = Fn \B. The singular member of Pq has the form C+Fq where C is a prime member of the
complete linear system |B−Fq|. Without loss of generality, we can fix an isomorphism A = P1 \ρq(B) ∼= Spec(k[x])

1Iin particular, there exist at least B2−1 equivalence classes of A1-fibrations over A1 on Fn \B. The lower bound
⌊

B2−1
2

⌋

was discovered earlier by

Peter Russell (unpublished) and was proven by Flenner-Kaliman-Zaidenberg [17, Corollary 5.16 a)] using a closely related construction.
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so that ρq(C ∪Fq) = {0} ∈ A. With the notation of subsection 3.1, the total transform of B∪C ∪Fq in the minimal
resolution σ : F̃n→ Fn of the rational map map ρq : Fn 99K P

1 defined by Pq is a rational tree of the form

(σ−1
∗ B,0) ⊳ (Ed ,−1) ⊳ (Ed−1,−2) ⊳ (Ed−2,−2)⊳ · · · · · · ⊳ (E1,−2) (σ−1

∗ Fq,−1)

(σ−1
∗ C,−1).

Furthermore, the singular fiber ρ̃−1
q (ρq(C∪Fq)) =

⋃d−1
i=1 E1∪σ−1

∗ C∪σ−1
∗ Fq of the P1-fibration ρ̃q = ρq ◦σ : F̃n→ P1

is reduced. By contracting successively σ−1
∗ Fq, E1, . . . ,Ed−2 and σ−1

∗ C, we get a birational morphism τ : F̃n→ F1 of
P

1-fibered surfaces over P1. The later restricts to a morphism

τ : S ∼= F̃n \σ−1(B)−→ F1 \ τ̄(σ−1
∗ (B)∪Ed)≃ A×A

1

of schemes over A, inducing an isomorphism S \ (C∪Fq)
∼
→ A \ {0}×A1 and contracting C∩ S and Fq ∩ S to a pair

of distinct points supported on {0}×A1. One can choose a coordinate on the second factor of A×A1 and a pair of
isomorphisms of A-schemes S\Fq ≃ A×Spec(k[u]) and S\C≃ A×Spec([u′]) so that the restrictions of τ to S\Fq and
S \C coincide respectively with the morphisms

S \Fq→ A×A
1, (x,u) 7→ (x,xu+ 1) and S \C→ A×A

1,
(

x,u′
)

7→ (x,xd−1u′).

Thus, πq : S→ A is A-isomorphic to the surface Wd obtained by gluing two copies U± = Spec(k[x][v±]) of A×A1

along the open subset (A\ {0})×A1 by the isomorphism U+ ∋ (x,v+) 7→ (x,x2−dv++ x1−d) ∈U−, endowed with the
A1-fibration ξ d : Wd → A induced by the first projections on each of the open subsets U±. �

Corollary 23. For every pair (Fn,B) as in Lemma 3 b), the affine surface Fn \B has a unique equivalence class of

smooth A1-fibration π : Fn \B→ A1.

Remark 24. The proofs of Lemma 16 and Lemma 22 do not depend on the Danilov-Gizatullin isomorphism theorem,
and, when combined together, they actually provide a proof of Theorem 4. Indeed, Lemma 16 c) asserts in particular
that for every pair (Fn,B) there exists a point q ∈ B such that the A1-fibration πq : Fn \B→ A1 associated to the pencil
Pq is a smooth morphism. On the other hand, Lemma 22 implies that the isomorphism type of πq : Fn \B→A1 as an
A

1-fibered surface over A1, hence in particular as an abstract affine surface, depends only on the integer B2.

3.2.3. Equivalence classes A1-fibrations with an irreducible component of multiplicity two. Given a pair (Fn,B) as in
Lemma 3 b), denote by A2(B

2) the set of equivalence classes of A1-fibrations π : Fn \B→A
1 whose unique degenerate

fiber has an irreducible component of multiplicity two. By Corollary 19 and Lemma 20, A2(2) = /0 and A2(d) 6= /0
for every d ≥ 3. The aim of this subsection is to establish the following more precise description of the sets A2(d) for
d ≥ 3.

Proposition 25. With the notation above, the following hold:

a) The sets A2(3) and A2(4) both consist of a single element,

b) The sets A2(5) and A2(6) both consist of two elements,

c) For every d ≥ 7, A2(d) has cardinality larger than or equal to that of the field k.

The proof follows from a combination of several intermediate results established below. By Lemma 17, for a surface
S = Fn \B every element of A2(B

2) is represented by an A1-fibration πq : S→ A1 associated to a pencil Pq on some
smooth completion (Fn′ ,B

′) of S whose unique singular member is a divisor of the form C+2Fq for some prime element
C of the complete linear system |B′−2F|. The unique degenerate fiber of πq then consists of the disjoint union of C∩S

with multiplicity one and of Fq∩S with multiplicity two.

Lemma 26. Let (Fn,B) be pair as in Lemma 3 b) with d = B2 ≥ 3 and such that there exists a point q ∈ B for which

the singular member of the pencil Pq is a divisor of the form C+ 2Fq for some prime element C of the complete linear

system |B− 2F|. Then the total transform σ−1
∗ B∪Dq ∪ σ−1

∗ (C)∪σ−1
∗ (Fq) of B∪C ∪Fq in the minimal resolution

σ : F̃n→ Fn of the rational map ρq : Fn 99K P
1 defined by Pq is a rational tree of the form

(σ−1
∗ B,0) ⊳ (Ed ,−1) ⊳ (Ed−1,−2) ⊳ (Ed−2,−2) ⊳ · · · · · · ⊳ (E1,−2) (σ−1

∗ Fq,−1)

(σ−1
∗ C,−2).

Proof. The assertion is straightforward to verify from the description of σ : F̃n→ Fn given in subsection 3.1. �

Notation 27. Let (Fn,B) be a pair as in Lemma 3 b) with d = B2 ≥ 3 and such that there exists a point q ∈ B for which
the singular member of Pq is a divisor of the form C+ 2Fq. We denote by Ŝq the affine open subset Fn \ (B∪C) of
S = Fn \B and we denote by π̂q : Ŝq→A1 the A1-fibration with degenerate fiber Fq∩ Ŝq of multiplicity two induced by
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πq : S→A1. With the notation of Lemma 26, the P1-fibered surface ρ̃q = ρq ◦σ : F̃n→ P1 is a relatively minimal SNC
completion of π̂q : Ŝq→A1 with boundary divisor D̂q = σ−1

∗ (B)∪Dq∪σ−1
∗ C = σ−1

∗ B∪
⋃d

i=1 Ei∪σ−1
∗ C.

Let (Fn,B) and (Fn′ ,B
′) with B2 = (B′)2 = d ≥ 3 be smooth completions of an affine surface S such that for some

points q∈ B and q′ ∈ B′, the pencils Pq and P ′
q have a singular member of the form C+2Fq and C′+2F ′

q′
respectively.

Let πq : S→ A1, π̂q : Ŝq = S \C→ A1, πq′ : S→ A1 and π̂q′ : Ŝq′ = S \C′→ A1 be the associated A1-fibrations. The
next lemma reduces the study of equivalence classes of A1-fibered surfaces (S,πq) to those of the simpler ones (Ŝq, π̂q).

Lemma 28. The A1-fibered surfaces (S,πq) and (S,πq′) are equivalent if and only if (Ŝq, π̂q) and (Ŝq′ , π̂q′) are equiva-

lent.

Proof. Since C∩S (resp. C′∩S) is a reduced fiber of πq (resp. πq′) whereas Fq∩S (resp. Fq′∩S) is a fiber of multiplicity
two of it, every equivalence of A1-fibered surface Ψ : (S,πq)→ (S,πq′) maps C∩S onto C′∩S and Fq∩S onto Fq′ ∩S,
hence restricts to equivalence between Ψ̂ : (Ŝq, π̂q)→ (Ŝq′ , π̂q′). Now assume conversely that there exists an equivalence
of A1-fibered surfaces Ψ̂ : (Ŝq, π̂q)→ (Ŝq′ , π̂q′). With the notation of Lemma 26, let

(F̃n, D̂q = σ−1
∗ B∪Dq∪σ−1

∗ C) and (F̃n′ , D̂
′
q′ = σ ′

−1
∗ B′∪D′q′ ∪σ ′

−1
∗ C′)

be the relatively minimal SNC completions of π̂q and π̂q′ respectively. The isomorphism Ψ̂ induces a birational map
of P1-fibered surfaces Ψ̂ : (F̃n, ρ̃q) 99K (F̃n′ , ρ̃q′). In particular, Ψ̂ maps the section Ed of ρ̃q isomorphically onto the
section E ′d of ρ̃q′ , which implies that any proper base point of Ψ̂ is supported either on Dq∪σ−1

∗ C or on σ−1
∗ B. Assume

that Ψ̂ has a proper base point supported on Dq∪σ−1
∗ C and let F̃n

η
← Z

η ′
→ F̃n′ be the minimal resolution of Ψ̂. Since

Ψ̂ maps Ed isomorphically onto E ′d and Fq onto Fq′ , it follows that η ′ contracts η−1(Dq ∪σ−1
∗ C) onto D′

q′
∪σ ′−1

∗ C′.

Since Dq∪σ−1
∗ C and D′

q′
∪σ ′−1

∗ C′ are SNC divisors with the same number of irreducible components, the minimality

assumption implies that the proper transform in Z of Dq ∪σ−1
∗ C contains an η ′-exceptional (−1)-curve. But this is

impossible since all these curves have self-intersection ≤ −2 in Z. For the same reason, Ψ̂−1 has no proper base point
on D′

q′
∪σ ′−1

∗ C′. So, Ψ̂ is well-defined on an open neighborhood U of D̂q \σ−1
∗ B in F̃n and Ψ̂|U is an isomorphism

onto an open neighborhood U ′ of D̂q′ \σ ′−1
∗ B′ in F̃n′ . The geometry of the divisors D̂q \σ−1

∗ B and D̂q′ \σ ′−1
∗ B′ and

the fact that Ψ̂ maps σ−1
∗ Fq onto σ ′−1

∗ F ′
q′

imply that Ψ̂(σ−1
∗ C) = σ ′−1

∗ C′ and hence, that Ψ̂ induces an equivalence of

A
1-fibered surfaces Ψ : (S,πq)→ (S,πq′). �

To study equivalence classes of A1-fibered surfaces (Ŝq, π̂q), we now introduce two auxiliary families of surfaces.

Notation 29. For every integer ℓ≥ 1 and every polynomial s ∈ k[x2]⊂ k[x] of degree < ℓ with s(0) = 1, denote by S̃ℓ,s
the surface in A3 = Spec(k[x,y,z]) with equation xℓz = y2− s2(x). The morphism π̃ℓ,s = prx : S̃ℓ,s→A1 is a smooth A1-
fibration with unique degenerate fiber π̃−1

ℓ,s (0) consisting of two irreducible components {x= y±1= 0}. The morphism

π̃ℓ,s is equivariant for the actions of the group µ2 = {±1} given by (−x,−y,(−1)ℓz) on S̃ℓ,s and by x 7→ −x on A1. As

a scheme over A1, S̃ℓ,s is µ2-equivariantly isomorphic to the surface W
(−1)1−ℓ

2xℓs(x)
obtained by gluing two copies

U± = S̃ℓ,s \ {x = y∓ s(x) = 0}= Spec(k[x][u±]), where u± = x−ℓ(y− s(x)) = (y+ s(x))−1z

of A1×A1 over (A1 \ {0})×A1 by the isomorphism U+ ∋ (x,u+) 7→ (x,u++ 2x−ℓs(x)) ∈U−, endowed with the µ2-

action U+ ∋ (x,u+) 7→ (−x,(−1)1−ℓu+) ∈U− and with the A1-fibration θ2xℓs(x) : W
(−1)1−ℓ

2xℓs(x)
→ A1 induced by the first

projections on each of the open subsets U±.

Notation 30. The categorical quotient Sℓ,s = S̃ℓ,s//µ2 in the category of affine schemes of the fixed point free µ2-action
on S̃ℓ,s is a geometric quotient and the quotient morphism Φℓ,s : S̃ℓ,s→ Sℓ,s is a nontrivial µ2-torsor, in particular, Sℓ,s is a
smooth affine surface. The A1-fibration π̃ℓ,s : S̃ℓ,s→ A1 descends to an A1-fibration πℓ,s : Sℓ,s→ A1//µ2 = Spec(k[x2])

with π−1
ℓ,s (0) as a unique degenerate fiber and we have a commutative diagram

S̃ℓ,s
Φℓ,s

//

π̃ℓ,s
��

Sℓ,s = S̃ℓ,s//µ2

πℓ,s

��

A1 = Spec(k[x])
φ

// A1 = Spec(k[x2]),

where φ : A1→A1//µ2 is the quotient morphism induced by the inclusion k[x2]⊂ k[x]. Since Φ−1
ℓ,s (π

−1
ℓ,s (0)) = π̃−1

ℓ,s (0)
consists of two component which are exchanged by the µ2-action and since Φ is étale whereas φ is totally ramified
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of ramification index 2 over 0, it follows that π−1
ℓ,s (0) is irreducible, of multiplicity 2. The Picard group Pic(Sℓ,s) is

isomorphic to Z2, generated by the class of the ideal sheaf of the curve Fℓ,s = (π−1
ℓ,s (0))red of Sℓ,s.

Lemma 31. Every smooth affine surface S endowed with an A1-fibration π : S→ A1 whose unique degenerate fiber is

irreducible and of multiplicity two is equivalent to an A1-fibered surface πℓ,s : Sℓ,s→ A1 for some ℓ≥ 1.

Proof. We can assume that A1 = Spec(k[t]) and that π−1(0) is the degenerate fiber of π . Let φ : A= Spec(k[x])→A1 be
the ramified µ2-cover x 7→ t = x2 and let ν : S̃→ S×π ,A1,φ A be the normalization of S×π ,A1,φ A, endowed with the µ2-

action lifting that on the second factor. By [15, Example 1.6 and Theorem 1.7], π̃ = pr1 ◦ν : S̃→ A is µ2-equivariantly
isomorphic as an A-scheme to an affine surface W ε

f obtained by gluing two copies U± = Spec(k[x][u±]) of A×A1 over

(A \ {0})×A1 by an isomorphism of the form U+ ∋ (x,u+) 7→ (x,u++ f (x)) ∈U− for some f ∈ k[x−1] \ k, endowed
with a µ2-action of the form U+ ∋ (x,u+) 7→ (−x,εu+)∈U−, where ε = 1 or−1, viewed as a scheme over A via the A1-
fibration θ f : W ε

f →A induced by the first projections on each of the open subsets U±. If ε = 1, we have f (−x) =− f (x),

which implies that the pole order ℓ = −ord0 f of f at 0 is odd. The polynomial σ = 1
2 xℓ f (x) ∈ k[x2] \ x2k[x2] can be

written in the form σ = λ (s(x) + xℓr(x)) for some s ∈ k[x2] of degree < ℓ with s(0) = 1 and λ ∈ k∗ and the local
isomorphisms

U± = Spec(k[x][u±])→U ′± = Spec(k[x][u′±]), (x,u±)→ (x,λ−1(u±± r(x)))

glue to a µ2-equivariant isomorphism W 1
f →W 1

2x−ℓs(x)
∼= S̃ℓ,s of A-schemes. The latter induces in turn an isomorphism

S = S̃//µ2 =W 1
f
∼= S̃ℓ,s//µ2 = Sℓ,s of A1-fibered surfaces over A1. If ε = −1, then f (−x) = f (x), ℓ = −ord0 f is even

and the same argument shows that π : S→ A1 is isomorphic as a scheme over A1 to πℓ,s : Sℓ,s = W−1
2x−ℓs(x)

//µ2→ A1

where s is the unique polynomial of degree < ℓ with s(0) = 1 such that 1
2 xℓ f (x) = λ (s(x)+xℓr(x)) ∈ k[x2]\x2k[x2]. �

Lemma 32. Let (Sℓi,si
,πℓi,si

), i= 1,2 be A1-fibered affine surfaces as in Notation 30. Then the following are equivalent:

a) The A1-fibered surfaces (Sℓ1,s1 ,πℓ1,s1) and (Sℓ2,s2 ,πℓ2,s2) are equivalent,

b) The surfaces Sℓ1,s1 and Sℓ2,s2 are isomorphic,

c) There exists λ ∈ k∗ such that s2(λ x) = s1(x).

Proof. The implication a)⇒b) is clear. Now put S1 = Sℓ1,s1 , S2 = Sℓ2,s2 and assume that there exists an isomorphism
Ψ : S1→ S2. Since Pic(S2) ∼= H1

ét(S2,O
∗
S2
) ∼= Z2 and H0(S2,O

∗
S2
) = k∗, the long exact sequence of étale cohomology

associated to the short exact sequence of sheaves of abelian groups

1→ µ2→ O
∗
S2

f 7→ f 2

−→ O
∗
S2
→ 1

implies that H1
ét(S2,µ2) = Z2, generated by the class of the µ2-torsor Φℓ,s : S̃ℓ2,s2 → S2. Since Ψ ◦Φℓ1,s1 : S̃ℓ1,s1 → S2

is a nontrivial µ2-torsor, it follows that there exists a unique µ2-equivariant isomorphism Ψ̃ : S̃ℓ1,s1 → S̃ℓ2,s2 such that
Ψ̃◦Φℓ1,s1 = Φℓ2,s2 ◦Ψ. We deduce from [14, Proposition 3.6] that ℓ1 = ℓ2 and that there exists a pair (λ ,µ) ∈ k∗× k∗

such that s2
2(λ x) = µ2s2

1(x). Since s1(0) = s2(0) = 1, the only possibility is that µ = ±1 and the implication b)⇒c)
follows. The last implication c)⇒a) follows from the observation that for ℓ1 = ℓ2 = ℓ and s2(λ x) = s1(x), the morphism
Ψ̃ : S̃ℓ,s1 → S̃ℓ,s2 defined by (x,y,z) 7→ (λ x,y,λ−ℓz) is a µ2-equivariant equivalence between the A1-fibered surfaces
(S̃ℓ,s1 , π̃ℓ,s1) and (S̃ℓ,s2 , π̃ℓ,s2) which descends to an equivalence between (Sℓ,s1 ,πℓ,s1) and (Sℓ,s2 ,πℓ,s2). �

Example 33. For every ℓ ≥ 5, put m =
⌊

ℓ−3
2

⌋

, R = k[a1, . . .am] and s(x) = 1 + x2 + ∑m
i=2 aix

2i ∈ R[x2]. Let V =

Spec(R) ∼= Am and let Sℓ be the quotient of the closed subscheme S̃ℓ ⊂ V ×A3 with equation xℓz = y2− s
2(x) by the

µ2,V -action (x,y,z) 7→ (−x,−y,(−1)ℓz). By Lemma 32, the closed fibers of the smooth morphism Θ : Sℓ→V induced
by the µ2-invariant projection pr1 : S̃ℓ→V are pairwise non-isomorphic surfaces of the form Sℓ,s.

We now relate the family of surfaces π̂q : Ŝq→A1 of Notation 27 to those πℓ,s : Sℓ,s→A1 of Notation 30.

Lemma 34. An A1-fibered affine surface πℓ,s : Sℓ,s→A1 admits a relatively minimal SNC completion (Yℓ,s,Dℓ,s) into a

P1-fibered surface π̄ℓ,s : Yℓ,s→ P1 such that the union of Dℓ,s and of the closure Fℓ,s of Fℓ,s is a rational tree of the form

(F∞,0) ⊳ (H,−1) ⊳ (G0,−2) ⊳ (G2,−2) ⊳ · · · · · · · · · ⊳ (Gℓ+1,−2) (F̄ℓ,s,−1)

(G1,−2),

where F∞ is the fiber of π̄ℓ,s over P1 \A1, H is a section of π̄ℓ,s and π̄−1
ℓ,s (0) = Fℓ,s∪

⋃ℓ+1
i=0 Gi.

Proof. For every ℓ ≥ 2 and every polynomial sℓ ∈ k[x2] of degree < ℓ with s(0) = 1, write sℓ = sℓ−1 + axℓ−1 where
sℓ−1 ∈ k[x2] is a polynomial of degree < ℓ− 1 and a ∈ k. The endomorphism (x,y,z) 7→ (x,y,xz+ 2asℓ−1 + a2xℓ−1) of
A3 induces a µ2-equivariant birational morphism σ̃ : S̃ℓ,sℓ → S̃ℓ−1,sℓ−1 of A1-fibered surfaces. It descends to a birational



FIBRATIONS BY AFFINE LINES ON RATIONAL AFFINE SURFACES WITH IRREDUCIBLE BOUNDARIES 11

morphism σ : Sℓ,sℓ → Sℓ−1,sℓ−1 of A1-fibered surfaces restricting to an isomorphism over A1 \ {0} and contracting Fℓ,sℓ
onto a point xℓ,sℓ of Fℓ−1,sℓ−1. This morphism σ expresses Sℓ,sℓ as the surface obtained from Sℓ−1,sℓ−1 by blowing-up the
point xℓ,sℓ and then removing the proper transform of Fℓ,sℓ . Assume that (Yℓ−1,sℓ−1 ,Dℓ−1,sℓ−1) is a relatively minimal SNC
completion of πℓ−1,sℓ : Sℓ−1,sℓ−1 → A1 into a P1-fibered surface πℓ−1,sℓ−1 : Yℓ−1,sℓ−1 → P1 which satisfies the claimed
properties. Then the pair (Yℓ,sℓ ,Dℓ,sℓ), where τ : Yℓ,sℓ → Yℓ−1,sℓ−1 is the blow-up of the point xℓ,sℓ ∈ Fℓ−1,sℓ−1 and Dℓ,s is
the proper transform of Dℓ−1,sℓ−1 ∪Fℓ−1,sℓ−1, endowed the P1-fibration π̄ℓ,sℓ = πℓ−1,sℓ−1 ◦ τ is a relatively minimal SNC
completion of πℓ,sℓ : Sℓ,sℓ → A1 which also satisfies the claimed properties. Now the assertion follows by induction
from Example 15 and the fact that π1,1 : S1,1 = {xz = y2−1}//µ2→A1 is isomorphic to the complement of the smooth
conic Q = {−xz+ y2 = 0} in P2

[x:y,z], endowed with the A1-fibration associated to the pencil P[0:0:1]. �

By combining Lemma 26, Lemma 31 and Lemma 34, we obtain that every A1-fibered surface π̂q : Ŝq→ A1 as in
Notation 27 is equivalent to some surface of the form πd−2,s : Sd−2,s→ A1 of Notation 30, and, conversely, that every
equivalence class of A1-fibered surface πd−2,s : Sd−2,s → A1 is realized by an A1-fibration π̂q : Ŝq → A1 induced by
restriction of an A1-fibration on an affine surface S = Fn \B with B2 = d. Combining in turn this result with Lemma
28, we obtain the following:

Corollary 35. Let (Fn,B) be a pair as in Lemma 3 b) with d = B2 ≥ 3. Then equivalence classes of A1-fibered surfaces

((Fn \B)q,πq) where q ranges through the set of closed points of the boundaries B′ of smooth completions (Fn′ ,B
′) of

Fn \B such that Pq has a singular member of the form C + 2Fq are in one-to-one correspondence with equivalence

classes of A1-fibered surfaces (Sd−2,s,πd−2,s) of Notation 30.

Proposition 25 is now a straightforward consequence of Corollary 35 and of the description of equivalence classes of
A

1-fibered surfaces (Sd−2,s,πd−2,s) given in Lemma 32. Namely, for d = 3,4, the unique equivalences classes are those
of (S1,1,π1,1) and (S2,1,π2,1) respectively. For d = 5, the two equivalence classes are those of the surfaces (S3,1,π3,1)
and (S3,x2+1,π3,x2+1). The case d = 6 is similar. Finally, if d ≥ 7, then Example 33 provides a family pairwise non-

equivalent A1-fibered surfaces (Sd−2,s,πd−2,s) parametrized by the elements of km, where m =
⌊

d−5
2

⌋

≥ 1, showing in
particular that the cardinality of A2(d) is at least equal to that of k.

Remark 36. The “number of moduli” m=
⌊

d−5
2

⌋

≥ 1 for equivalence classes of A1-fibered surfaces (Sd−2,s,πd−2,s) with
a unique singular fiber of multiplicity two deduced from the explicit family in Example 33 is the same as that computed
by different techniques in [19], as can be seen by taking k = 2 in Corollary 6.3.20 of loc. cit.. The results in [19] apply
more generally, in particular, to any smooth affine A1-fibered surface S→A1 having a unique singular fiber, irreducible
of arbitrary multiplicity e ≥ 2. On the other hand, it follows from [15] that similarly as in the case e = 2 described
above, every such surface can be realized as a quotient of smooth affine surface S̃ endowed with a smooth A1-fibration
π̃ : S̃→A

1 by a suitable free action of a cyclic group µe of e-th roots of unity. This suggests the possibility to construct
for every e≥ 2 explicit families as in Example 33 over a base scheme V whose dimension equals the number of moduli
computed in [19, Corollary 6.3.20].

3.3. Proof of Theorem 2. In this subsection, we finish the proof of Theorem 2. Let S = Fn \B for some pair (Fn,B)
as in Lemma 3 b) with d = B2 ≥ 2. If d ≥ 7, then, by Proposition 25, S has infinitely many equivalence classes of
A1-fibrations π : S→A1. It remains to show that for every d ≤ 6, the number of equivalence classes is finite. For every
d ≥ 2 and every m ∈ 1, . . . ,d− 1, denote by Am(d) the set of equivalence classes of A1-fibrations π : S→ A

1 whose
unique degenerate fiber has an irreducible component of multiplicity m . The following table summarizes the properties
of the sets Am(d):

♯A1(d) ♯A2(d) ♯A3(d) ♯A4(d) ♯A5(d) ∑ ♯Ai(d)

d = 2 1 0 0 0 0 1
d = 3 1 1 0 0 0 2
d = 4 1 1 1 0 0 3
d = 5 1 2 1 1 0 5
d = 6 1 2 2 1 1 7

TABLE 1. Numbers of equivalence classes of A1-fibrations

Indeed, we have Am(d) = /0 if m ≥ d by Corollary 19. On the other hand, the cardinal ♯Am(d) of Am(d) is larger
than or equal to 1 for every 1≤m≤ d−1 by Lemma 20. The sets Ad−1(d) and A1(d) both consist of a single element
by Proposition 21 and Corollary 23 respectively. By Proposition 25, we have ♯A2(d) = 1 for d = 3,4 and ♯A2(d) = 2
for d = 5,6. These observations settle the cases d = 2, 3 and 4. In the next paragraphs, we determine the remaining
numbers of equivalence classes of A1-fibrations displayed in the table. We refer the reader to [13, Section 4] for the
details of the reductions to the chosen particular models of pairs which are used in the argument.
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3.3.1. The case d = 5. The A1-fibrations on S representing elements of A3(5) can only arise form pencils Pq on pairs
(F1,B) for which B ∼ C0 + 3F intersects C0 with multiplicity two at a single point q. Up to isomorphism, there is a
unique such pair, which is given, under the identification of F1 with the blow-up σ : F1→ P2 of P2 with homogeneous
coordinates [x : y : z] at the point p = [0 : 1 : 0] with exceptional divisor C0, by taking for B the proper transform of the
cuspidal cubic C = {x3− z2y = 0} in P2. The section B = σ−1

∗ C ∼C0 + 3F intersects C0 with multiplicity two at the
intersection point q of C0 with the proper transform of the tangent line TpC = {z = 0} to C at p and the pencil Pq is
the proper transform of the pencil generated by C and 3TpC. The associated A1-fibration πq : S→ A1 has Fq∩ S as a
component of multiplicity three in its degenerate fiber. We conclude that ♯A3(5) = 1.

3.3.2. The case d = 6. The numbers to be computed are ♯A3(6) and ♯A4(6). The possible smooth completions (Fn,B)
of S are either of the form (F0,B) where B∼C0 + 3F is a section of π0, or of the form (F2,B) where B∼C0 + 4F is a
section of π2, or the form (F4,B) where B∼C0 + 5F is a section of π4.

The A1-fibrations on S representing elements of A4(6) can arise only from pairs (F2,B) for which B ∼ C0 + 4F

intersects C0 with multiplicity two in a single point. Up to isomorphism, there exists a unique such pair which is given,
after fixing a fiber F∞ of π2 and an identification F2 \ (C0∪F∞)∼= A

2 = Spec(k[x,y]) in such way that π2|A2 = prx and
that the closures in F2 of the level sets of y are sections of π2 linearly equivalent to C0 +2F, by taking for B the closure
of the curve Γx4 = {y = x4} ⊂ A2. For the point q = B∩C0 = B∩F∞, the singular member of the pencil Pq is equal
to C0 + 4F∞. The unique degenerate fiber of the corresponding A1-fibration πq4 : S→A1 has F∞∩S as a component of
multiplicity four and we conclude that ♯A4(6) = 1.

The A1-fibrations representing elements of A3(6) can arise only from pairs (F0,B) on π0 = pr1 : F0 = P
1×P

1→ P
1

for which B ∼ C0 + 3F intersects a fiber of the second projection with multiplicity three at some point q. Up to
isomorphisms, there are exactly two such pairs (F0,B1) and (F0,B2) which, using bi-homogeneous coordinates ([u0 :
u1], [v0 : v1]) on P1×P1, are given by the curves B1 = {u

3
1v0 + u2

0(u0 + u1)v1 = 0} and B2 = {u
3
1v0 + u3

0v1 = 0}. The
only fiber of pr2 which intersects B1 in a single point is the curve C[1:0] = {v1 = 0} with q = C[1,0] ∩B1 = ([1 : 0], [1 :
0]). This yields an A1-fibration πq : S→ A1 which has Fq1 ∩ S as component of multiplicity three in its degenerate
fiber. In contrast, there are two fibers of pr2 which intersects B2 in a single point: the curve C[0:1] = {v0 = 0} at the
point q0 = ([0 : 1], [0 : 1]) and the curve C[1:0] at the point q∞ = ([1 : 0], [1 : 0]). The A1-fibrations πq0 : S→ A1 and
πq∞ : S→ A

1 associated to the pencils Pq0 and Pq∞ have Fq0 ∩ S and Fq∞ ∩ S as components of multiplicity three of
their respective degenerate fibers, and since the points q0 and q∞ belongs to the same orbit of the action of the group
Aut(F0,B2) ∼= Gm×Z2, these A1-fibrations represents a same element of A3(6). The next lemma shows that A3(6)
consists of two elements and completes the proof.

Lemma 37. The A1-fibration πq : S→ A1 is not equivalent to πq0 : S→A1 (hence not equivalent to πq∞ : S→ A1).

Proof. The curve C[1:0] ∩ S ∼= A1 is a 3-section of πq0 : S→ A1 which intersects the multiple irreducible component
Fq0 ∩ S of the degenerate fiber of πq0 transversely in a single point. To verify that πq : S → A1 is not equivalent
to πq0 : S→ A1, it suffices to show that there is no 3-section of πq : S→ A1 isomorphic to A1 and intersecting Fq

transversely in a single point. Suppose on the contrary that such a 3-section D exists. Let σ : F̃0→ F0 be the minimal
resolution of the rational map ρq : F0 99K P1 defined by Pq. The closure D̄ of D in F̃0 is a rational 3-section of the
P1-fibration ρ̃q = ρq ◦σ which intersects the proper transform σ−1

∗ B1 of B1 with multiplicity 3 in a single point p. The
total transform of B1∪Fq∪C[1:0] in F̃0 being rational tree of the form

(σ−1
∗ B,0) ⊳ (E6,−1) ⊳ (E5,−2) ⊳ (E4,−2) ⊳ (E3,−2) ⊳ (E2,−2) ⊳ (E1,−2) (σ−1

∗ Fq,−1)

(σ−1
∗ C[1:0],−3),

there exists a unique birational morphism of P1-fibered surface τ : F̃0→ F1 which contracts σ−1
∗ Fq∪σ−1

∗ C[1:0]∪
⋃4

i=1 Ei

onto a point s ∈ τ(E5) \ τ(E6). The curve τ(D̄) is a 3-section of π1 : F1 → P1 which has a cusp of multiplicity 2 at s

and intersects τ(E5) with multiplicity 3 at s. Let C be the image of τ(D̄) by the contraction α : F1→ P2 of τ(E6) to a
point p′. Assume that m = τ(D̄) · τ(E6)≥ 1. Then C is a curve of degree m+ 3 which intersects the line α(τ(σ−1

∗ B1))
with multiplicity m+ 3 at p′ and the line α(τ(E5)) with multiplicity m at p′ and multiplicity 3 at α(s). Choosing
homogeneous coordinates [x : y : z] on P2 so that α(τ(σ−1

∗ B1)) = {z = 0}, α(τ(E5)) = {x = 0} and α(s) = [0 : 0 : 1],
the curve C is thus given by an equation of the form λ xm+3− µy3zm = 0 for some λ ,µ ∈ k∗. But this is impossible
since on the other hand C = α(τ(D̄)) has multiplicity 2 at α(s). So m = 0 and hence, C is a cubic with a cusp at α(s)
and intersecting τ(σ−1

∗ B) with multiplicity 3 at a point other than p′. It follows that σ(D̄) is a smooth rational curve
which intersects Fq transversely at unique point of Fq \ {q} and B1 at a unique point of B1 \ {q}, with multiplicity 3.
Thus, σ(D̄) is a fiber of pr2 : P1×P1 → P1 which intersects B1 with multiplicity 3 at a point other than q, which is
impossible. �
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