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Résumé. Les procédures de calcul bayésien approché (ABC) reposent sur l’éva-
luation de l’écart entre les données simulées et les données observées. Cet écart est
souvent évalué en comparant des statistiques résumées plutôt que directement les données.
Le choix d’une distance et de résumés appropriés est donc une étape cruciale qui peut
affecter la qualité des approximations. Dans ce travail, nous introduisons une étape
d’apprentissage préliminaire dans laquelle des lois de substitution, issues d’un modèle
de mélange d’experts, sont construites pour approximer les lois a posteriori visées. Ces
lois a posteriori de substitution sont ensuite utilisées à la place des statistiques résumées
et comparées à l’aide de métriques entre distributions. On montre que la quasi-loi a
posteriori résultante converge vers la vraie loi a posteriori, sous des conditions standard.
Des expériences montrent que notre approche est particulièrement performante lorsque la
loi a posteriori est multimodale.

Mots-clés. Approximate Bayesian computation, Mélanges d’experts, statistiques
résumées, distance de Wasserstein, modèles de substitution, lois a posteriori mulitmodales.

Abstract. A key ingredient in approximate Bayesian computation (ABC) procedures
is the choice of a discrepancy that describes how different the simulated and observed data
are, often based on a set of summary statistics when the data cannot be compared directly.
Unless discrepancies and summaries are available from expert or prior knowledge, which
seldom occurs, they have to be chosen and this can affect the quality of approximations.
The choice between discrepancies is an active research topic, which has mainly considered
data discrepancies requiring samples of observations or distances between summary statis-
tics. In this work, we introduce a preliminary learning step in which surrogate posteriors
are built using a specific instance of a Mixture of Experts model. These surrogate pos-
teriors are then used in place of summary statistics and compared using metrics between
distributions in place of data discrepancies. The resulting ABC quasi-posterior distribu-
tion is shown to converge to the true one, under standard conditions. Experiments show
that our approach is particularly useful when the posterior is multimodal.

Keywords. Approximate Bayesian computation, Gaussian mixtures, summary statis-
tics, Wasserstein distance, surrogate models, multimodal posterior distributions.
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1 Introduction

Approximate Bayesian computation (ABC) appears as a natural candidate for addressing
estimation problems where there is a lack of availability or tractability of the likelihood,
but when the data generating process is available as a tractable simulation procedure.
The fundamental idea of ABC is to generate parameter proposals θ in a parameter space
Θ using a prior distribution π(θ) and accept a proposal if the simulated data z for that
proposal is similar to the observed data y, where z,y ∈ Y . This similarity is usually
measured using a distance or discriminative measure D, whereby a simulated sample
z is retained if D(z,y) is smaller than a given threshold ϵ. In this simple form, the
procedure is generally referred to as rejection ABC. Other variants are possible and often
recommended, for instance using MCMC or sequential procedures. We will focus on the
rejection version as all developments can be easily adapted to more sophisticated variants.

In the case of a rejection algorithm, selected samples are drawn from the so-called
ABC quasi-posterior, which is an approximation to the true posterior π(θ | y). Under
conditions similar to those of Bernton et al. (2019), regarding the existence of a probability
density function (pdf) fθ(z) for the likelihood, the ABC quasi-posterior depends on D
and on a threshold ϵ, and can be written as

πϵ(θ | y) ∝ π(θ)

∫
Y
1{D(y,z)≤ϵ} fθ(z) dz . (1.1)

More specifically, the similarity between z and y is evaluated based on two components:
the choice of summary statistics s(·) to account for the data in a more robust manner,
and the choice of a distance to compare the summary statistics. That is, D(y, z) in (1.1)
should then be replaced by D(s(y), s(z)), whereupon we overload D to also denote the
distance between summary statistics s(·).

However, there is no general rule for constructing good summary statistics for complex
models and if a summary statistic does not capture important characteristics of the data,
the ABC algorithm is likely to yield samples from an incorrect posterior (Fearnhead
and Prangle, 2012). Great insight has been gained through the work of Fearnhead and
Prangle (2012), who introduced the semi-automatic ABC framework and showed that
under a quadratic loss, the optimal choice for the summary statistic of y was the true
posterior mean of the parameter: s(y) = E[θ | y]. This conditional expectation cannot
be calculated analytically but can be estimated by regression using a learning data set
prior to the ABC procedure itself.

Our first contribution is to investigate an alternative efficient way to construct sum-
mary statistics, in the same vein as semi-automatic ABC, but based on combinations of
posterior moments, not restricted to the posterior means. For this purpose, the Gaus-
sian Locally Linear Mapping (GLLiM) method (Deleforge et al., 2015) appears as a good
candidate regression model, with properties that balance between computationally ex-
pensive neural networks and simple standard regression techniques. GLLiM provides, at
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low cost, a parametric estimation of the true posterior distributions. Using a learning set
of parameter and observation pairs, GLLiM learns a family of finite Gaussian mixtures
whose parameters depend analytically on the observation to be inverted. Such models
correspond to Gaussian mixture of experts whose moments can be easily computed and
used as summary statistics.

Our second contribution is to propose to compare directly the full surrogate pos-
terior distributions provided by GLLiM, without reducing them to their moments. This
requires the specification of a distance to compare such distributions. The recent Mixture-
Wasserstein distance, denoted throughout the text as MW2, designed for Gaussian mix-
tures (Delon and Desolneux, 2020) match perfectly this need. There exist other distances
between mixtures that are tractable such as the L2 distance, which is also considered in
this work.

A remarkable feature of our approach is that it can be equally applied to settings where
a sample of i.i.d. observations is available (e.g. Bernton et al. 2019) and to settings where
a single observation is available as a vector, a time series realization, or a data set that is
reduced to a vector of summary statistics (e.g. Fearnhead and Prangle 2012).

Regarding the approach’s theoretical properties, we provide two results. In the first
result, the true posterior is used to compare samples y and z. In the second result, a
surrogate posterior is learned and used to compare samples. Conditions are specified
under which the resulting ABC quasi-posterior converges to the true posterior. More
details can be found in Forbes et al. (2021).

2 Extended semi-automatic ABC

A learning set DN = {(θn,yn), n ∈ [N ]} is built from the joint distribution that results
from the prior π(θ) on θ and the likelihood fθ, where [N ] = {1, . . . , N}. The idea is to
capture the relationship between θ and y with a joint probability model with computa-
tionally inexpensive and straightforward conditional distributions and moments. For the
choice of the model to fit to DN , we propose to use the so-called GLLiM model (Deleforge
et al., 2015) for its ability to capture non-linear relationships in a tractable manner, based
on flexible mixtures of Gaussian distributions. GLLiM provides, for each observed y, a
full posterior probability distribution within a family of parametric Mixture of Expert
models {pG(θ | y; ϕ),ϕ ∈ Φ}. To model non-linear relationships, it uses a mixture of K
linear models. More specifically, the expression of pG(θ | y; ϕ) is analytical and available
for all y with ϕ being independent of y:

pG(θ | y;ϕ) =
K∑
k=1

ηk(y) N (θ;Aky + bk,Σk), (2.1)

where N ( · ;µ,Σ) denotes the Gaussian pdf with mean µ and covariance matrix Σ
and ηk(y) = πkN (y; ck,Γk)/

∑K
j=1 πjN (y; cj,Γj). This distribution involves parameters:
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ϕ = {πk, ck,Γk,Ak, bk,Σk}Kk=1. The parameter ϕ can be estimated using an Expectation-
Maximization (EM) algorithm (Deleforge et al., 2015). Fitting a GLLiM model to DN

therefore results in a set of parametric distributions {pG(θ | y;ϕ∗
K,N), y ∈ Y}, which can

be seen as a parametric mapping from y values to posterior pdfs on θ. The parameter
ϕ∗

K,N is the same for all conditional distributions and does not need to be re-estimated
for each new instance of y.

Instead of comparing simulated z’s to the observed y, or comparing their summary
statistics, we propose to compare pG(θ | z;ϕ∗

K,N)’s and pG(θ | y;ϕ∗
K,N), as given by (2.1).

We then derive two procedures, referred to as GLLiM-MW2-ABC and GLLiM-L2-ABC
in Algorithm 1, respectively.

Algorithm 1 GLLiM-ABC algorithms – Vector and functional variants

1: Inverse operator learning. Apply GLLiM on a training set DN = {(θn,yn), n ∈ [N ]}
to estimate, for any z ∈ Y, the K-Gaussian mixture pG(θ | z;ϕ∗

K,N ) in (2.1) as a first
approximation of the true posterior π(θ | z), where ϕ∗

K,N does not depend on z.

2: Distances computation. Consider another set EM = {(θm, zm),m ∈ [M ]}. For a given
observed y, do one of the following for m ∈ [M ]:

Vector summary statistics.

GLLiM-E-ABC: Compute statistics s1(zm)=EG[θ | zm;ϕ∗
K,N ].

GLLiM-EV-ABC: Compute both s1(zm) and s2(zm) = VarG[θ | zm;ϕ∗
K,N ].

In both cases, compute standard distances between summary statistics.

Functional summary statistics.

GLLiM-MW2-ABC: Compute MW2(pG(· | zm;ϕ∗
K,N ), pG(· | y;ϕ∗

K,N )).

GLLiM-L2-ABC: Compute L2(pG(· | zm;ϕ∗
K,N ), pG(· | y;ϕ∗

K,N )).

3: Sample selection. Select θm values that lead to distances under an ϵ threshold (rejection
ABC) or apply an ABC procedure that can handle distances, directly.

4: Sample use. For a given observed y, use the produced sample of θ values to compute a
closer approximation of π(θ | y).

3 Theoretical properties

One important question is the proximity of the resulting so-called ABC quasi-posterior
to the true posterior. We assume a fixed given observed y and the dependence on y
is omitted from the notation. Let us first recall the standard form of the ABC quasi-
posterior, omitting summary statistics from the notation:

πϵ(θ | y) =
∫
Y 1{D(y,z)≤ϵ} π(θ | z) π(z) dz∫

Y 1{D(y,z)≤ϵ} π(z) dz
. (3.1)
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If D is a distance and D(y, z) is continuous in z, the ABC posterior in (3.1) can be shown
to have the desirable property of converging to the true posterior when ϵ tends to 0. The
proof is based on the fact that when ϵ tends to 0, due to the property of the distance
D, the set {z ∈ Y : D(y, z) ≤ ϵ}, defining the indicator function in (3.1), tends to the
singleton {y} so that consequently z in the likelihood can be replaced by the observed y,
which then leads to an ABC quasi-posterior proportional to π(θ)fθ(y) and therefore to
the true posterior as desired. It is interesting to note that this proof is based on working
on the term under the integral only and is using the equality, at the limit, of z to y, which
is actually a stronger assumption than necessary for the result to hold.

We can then replace D(y, z) by D(π(· | y), π(· | z)), with D now denoting a distance
on densities, and obtain the same convergence result when ϵ tends to 0. More specifically,
we can show the following general result. Let us define our ABC quasi-posterior as,

qϵ (θ | y) =
∫
Y 1{D(π(·|y),π(·|z))≤ϵ}π (θ | z) π (z) dz∫

Y 1{D(π(·|y),π(·|z))≤ϵ}π (z) dz
. (3.2)

The following Theorem 3.1, proved in Forbes et al. (2021), shows that qϵ (· | y) converges to
π (· | y) in total variation, for fixed y. For ϵ > 0, Aϵ = {z ∈ Y : D (π (· | y) , π (· | z)) ≤ ϵ}.

Theorem 3.1. If π (θ | ·) is continuous for all θ ∈ Θ, and supθ∈Θ π (θ | y) < ∞; there
exists a γ > 0 such that supθ∈Θ supz∈Aγ

π (θ | z) < ∞; D (·, ·) : Π× Π → R+ is a metric
on the functional class Π = {π (· | y) : y ∈ Y}; and D (π (· | y) , π (· | z)) is continuous,
with respect to z. Then, qϵ (· | y) in (3.2) converges in total variation to π (· | y), for fixed
y, as ϵ → 0.

In most ABC settings, based on data discrepancy or summary statistics, the above
consideration and result are not useful because the true posterior is unknown by construc-
tion and cannot be used to compare samples. However this principle becomes useful in our
setting, which is based on surrogate posteriors. While the previous result can be seen as
an oracle of sorts, it is more interesting in practice to investigate whether a similar result
holds when using surrogate posteriors in the ABC likelihood. This is the goal of Theorem
2 in Forbes et al. (2021) which shows the convergence of the ABC quasi-posterior for a
restricted class of target distributions and surrogate posteriors learned as mixtures.

4 Illustration

Numerical experiments, available in Forbes et al. (2021), show the versatility of our ap-
proach, applicable on both i.i.d. samples and single observation settings. The example
below shows that it is particularly useful, when the posterior is multimodal. The object of
interest is an unknown parameter θ = (x, y) that can be interpreted as a source location
in a 2D scene. To create a multimodal posterior, we consider a likelihood detailed in
Forbes et al. (2021). The true posterior is shown in Figure 1 (d).
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(e) GLLiM mixture (f) Semi-automatic ABC (g) GLLiM-L2-ABC

Figure 1: GLLiM is learned with K = 38 and N = 105 while ABC is run usiing M = 106

simulations for (a,b,f,h) and M = 105 for (c,g). (a) GLLiM-E-ABC, (b) GLLiM-EV-
ABC, (c) GLLiM-MW2-ABC, (d) contours of the true posterior, (e) approximate GLLiM
posterior for the observed data, (f) semi-automatic ABC and (g) GLLiM-L2-ABC.
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