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Abstract

Six time series related to atmospheric phenomena are used as inputs for experiments of
forecasting with singular spectrum analysis (SSA). Existing methods for SSA parameters
selection are compared throughout their forecasting accuracy. The comparison shows that
a widespread practice of selecting longer windows leads often to poorer predictions. It also
confirms that the choices of the window length and of the grouping are essential.
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I INTRODUCTION

Many naturally occurring dynamical systems are governed by a huge number of unknown
parameters and laws. Most of the time the understanding of such systems seems beyond
human reach. Yet, the ability to predict their future trajectory with an acceptable error
using past observations is often of paramount importance. Such past observations form a
time series and the main concern of this paper is the following

TIME SERIES FORECASTING PROBLEM
Input: real-valued time series x1,...,ry and a forecast horizon h € IN,,
Output: estimated future values Zy,1,...,Tnen.

Note that N is not fixed here and is a part of the input. As an example, one may think
of daily recording of the number of births in a country, starting from, say, 1980 until
today. The forecasting consists in predicting the number of births that will take place
tomorrow, or, more generally, each of next h days, if the forecast horizon expressed in
the number of days ahead is h. In order to assess the quality of a forecasting method,
one has to repeat the prediction every day over an extended period of time. One has
then to compare formerly predicted values with actually recorded ones. Needless to say,
the forecasting is one of the main challenges in science, agriculture, policy making or
business administration. Therefore, the development of forecasting methods and easy to
use tools is important. Besides recurrent neural networks [25] and observable operator
models [18], singular spectrum analysis (SSA) [23] provides one of the most promising
forecasting frameworks. Indeed, the experiments of [20] indicate that SSA outperforms
standard statistical methods in the field such as ARIMA (see e.g.[28]).
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This paper reports an experimental investigation of univariate time series prediction using
SSA related method, namely the vector forecasting (see e.g.[23]). SSA involves several
computational steps among which the vector forecasting may be seen as a final one. In
its most basic version, SSA has to be provided with an additional information that may
require an expert knowledge about the observed phenomenon. Is it possible to reduce such
an additional input so that SSA forecasting could be applied to phenomena of unknown
dynamics by a user with no knowledge in the underlying field nor in statistics?

A partially positive answer to the latter question comes from the availability of several
software packages for SSA, notably SSA-MTM toolkit [10] and the R library Rssa [21, 26].
Although for an end user, SSA-MTM toolkit may be more suitable due to its graphical
interface, the choice of Rssa for experiments reported here has been motivated by an
intrinsic flexibility of a library. Nevertheless, besides an input time series, both SSA-
MTM toolkit and Rssa must be provided with a window length and a list of components
to be grouped together for the forecasting.! Those two additional inputs greatly impact
the forecast quality and several authors discuss methods for inferring them automatically
from the input times series. The present paper reports an experimental study of forecast
quality obtained using such methods. The question is whether SSA forecasting can be
made fully automated and easy to use. Can those methods be included in decision-support
tools which automatically select suitable parameters for SSA and compute the required
forecast 7 Concerning the window length, the present paper brings a positive answer.
The result of authors’ investigation is that, among very few existing methods, the one of
[15] gives the best accuracy of forecasting, at least for meteorological time series used in
this paper. Unfortunately, concerning the grouping, the accuracy of the only known truly
automated method (available in Rssa package [21]) is not always satisfactory. Although
a suggestion for improvement is given at the end of Sect. VIII, one of the conclusions
of the paper is that truly automated grouping algorithms need yet to be developed and
implemented.

In order to recall the importance of the length of the window and the choice of components
to group, the next section reviews the essential SSA steps that lead to the vector forecast-
ing further explained in Sect. II1. Sect. IV and V review a few methods for selecting SSA
parameters. The data sets used in the reported experiments are introduced in Sect. VI
and the experiments are described in Sect. VII. Their outcome is discussed in Sect. VIII.
Throughout this paper, [n] stands for {1,...n}.

I SSA STEPS TOWARDS THE VECTOR FORECASTING

SSA has a history of parallel development on both sides of the iron curtain. As it has
been sketched in many papers and several books (e.g. in [23]), it is omitted in the present
article.

The first step of SSA is an embedding of a real-valued input time series X = (z1,...,zy),
N > 2, into a vector space spanned by a sequence of K lagged vectors X, ..., Xk € R”,
with X; == (2, %41, ..., Tiep-1)" where L € IN is the window length and K := N — L + 1.

'However, in Rssa, automated grouping is also available.



Those lagged vectors form a trajectory matriz X e R¥¥ X = [Xy,..., Xg],

T X2 xr3 - TR
T2 X3 Ty 0 TK+1
X = xs LTy Ty 0 TK+2
Xy Trp+1 Trp+2 -+ TN

which is a Hankel matrix, viz., the elements of each anti-diagonal are equal. The k-th
anti-diagonal consists of those element of the matrix that are indexed by Ay defined in
Eq. (1) below. Note that this embedding is a bijection between the set of sequences of
length N and the set of L x K Hankel matrices. Consequently, by the inverse embedding,
from any m x n Hankel matrix, one gets the corresponding sequence of length m +n — 1.

The parameter L is essential for the whole SSA and is usually chosen so that L < N /2. This
is assumed throughout the paper so as to keep L < K. As the forecasting problem becomes
trivial when the rank of X is strictly less than L, that special case is not considered here in
order to simplify the mathematical treatment. Indeed, when the input time series comes
from an intricate dynamical system, as those used in this paper, one cannot expect that
the rank of X is strictly less than L.

The above embedding X + X may be interpreted as a representation of X by a trajectory
of a hypothetical dynamical system that generated X. In the second step of SSA, the
singular value decomposition (SVD) [1] of the trajectory matrix is computed: X = UXVT
where U = [U,..., U] e R®" and V = [V4,...,Vk] e R®¥ are unitary matrices and,
SeRPE isa rectangular diagonal matrix with diagonal o1 > 09 > - >0 >0, viz., Y =
oy. Every eigentriple (U, oy, Vi), for k € [ L], where Uy, (resp. V}) is called left (resp. right)
singular vector for singular value oy, yields an elementary matriz Xy, := 0,U,V, of rank
1 so that X = Y%, X,.. Note that all non null elementary matrices in this decomposition
are pairwise orthogonal.

By averaging over anti-diagonals, from an elementary matrix Xy, one gets its Hankelization
(see also [27]) Xy € IR¥*". More precisely the k-th anti-diagonal of an L x K matrix has
its indexes in

Ay = {(,5)e[L]x[K]:i+j=k+1} for ke[N] (1)
and the Hankelization X, of X, is defined by

1
Z Lk,pq

Thirj VR
|Ai+j—1| pHg=i+j

where %y, ; (resp. xy,p,) stands for the element at row ¢ (resp. p) and column j (resp. q)
of Xy (resp. Xi). Now, Xj is a Hankel matrix and by an inverse embedding, one gets
an elementary component time series X, of X = ¥'¥_, X;.. Some of those components are
considered as noise whereas others as carrying valuable information about the underlying

dynamical system.

This leads to the step of grouping which aims at removing the noise by choosing a
strict subset I of [L] to get the “signal” X; := ¥, X, separated from the “noise”
X7 = Ykerr]or Xg- Similarly, one may write X as the sum of its relevant parts Xy := 1., X,
and its noisy part X7 := Y] Xk or their Hankelizations X = X+ XT‘ The reader
should note that [ is another additional input for SSA and that the choice of I greatly
impacts the quality of forecasting [20].



IIT VECTOR FORECASTING

The vector forecasting is not a part of SSA per se. Like two other forecasting methods
described in [23], the vector forecasting uses SSA for extracting a low rank approximation
of a subspace of a hypothetical dynamical system that generated X. The common idea of
the three forecasting methods presented in [23] is to find a homogeneous linear recurrent
equation (LRE)

L-1
T = Y awx,,,, forl<i<K (2)
k=1

Li+L-1

that is satisfied by “denoised” time series X; = (v, ,...,7,,). For X; to satisfy an LRE
means it is generated by a linear dynamical system. This lets X; a wide class of behaviours.
Although “linearity” may sound restrictive for a computer scientist, within the theory of
dynamical systems it refers to the underlying evolution functions not to the behaviour of
the system itself. Indeed, it is well known that linear dynamical systems behave like a
sum of products of polynomials, exponentials and sinusoids [22]. Finding coefficients

a = (aL_l,...,al)

of LRE (2) amounts to solving the following system of equations

aX;=(v,,, ., T,y) (3)

where X, denotes matrix X; without its last row. As L < N/2, this system is overde-
termined, and in general, has no exact solution, except when X; is actually governed
by a linear dynamical system of dimension at most L. However, as dynamical systems
considered in this paper are not linear, and this is also the case for all systems of intricate
dynamics, only approximate solutions of (3) can be obtained. This can be compared with
a linear regression where one fits a line to a set of points in an optimal way. In LRE-
based forecasting, such as vector forecasting used in this paper, one fits a linear recurrent
sequence to the set of observations. For that, the closest approximate solution of (3)
with respect to the Euclidean norm is sought. It is well known that such an approximate
solution is given by a ~ (v,,,..., 7, )X;, where “_ 17 stands for the pseudo-inverse of
Moore-Penrose of a rectangular matrix [2].
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Let Uy :=[U; : i € I] be the matrix formed with columns of U with indexes in I and let
U; be the subspace of IR” spanned by columns of U;. Remember that U is the matrix
of left singular vectors in the SVD of X. Let (uy;:i € I) be the last row of Uy and let
U, =[U, :1¢€I] stand for U; with its last row removed. Similarly, let U, be the subspace
of IR*™ spanned by columns of U,. Note that (ur;:i€I) can be expressed as a linear
combination of rows of U, because U, is of rank || < L. Let v?:= 3, u%z Observe that

v = cosf where 0 is the angle between U; and ey, = (0,...,0,1)7 € IR”. As ey ¢ Uy, one has
v # 1 and the following vector is well defined

R = 1 ZULJ'QZ’ .

_ 22
1Uz’e[

It may be shown that (z,,,..., 2, )X; = R™. Consequently R is the closest approximate

solution of (3). Now, matrix

I = UU;+(1-v?)RR"



defines the orthogonal projection of IR onto U ;- Let z be a vector z ¢ IR” without
its first coordinate. Using a linear operator F:IR* — #/; which extends the orthogonal
projection Iz of z with the next term of the recurrent sequence inferred from (2)

Iz

fro (RTi)
one defines a sequence of vectors

v {XM for i € [K],

‘ FY,; forie{K+1,...,N+h},

where [X71,..., X7 k] =X, and h € IN is a forecast horizon. This leads to matrix

Y = [Yi,...,YN]
obtained by extending X; on the right with vectors Yx,1, ..., Yy,p resulting from iterating

F on Xy, where Yg,; = F*Xg. In this context, operator F can be understood as a recur-
rence over vectors of U; obtained by an appropriate lifting of LRE (2). By Hankelization
of Y and its subsequent inverse embedding, one gets a time series Y = (y1, ..., YN+h+L-1)
where the portion (yny1,-..,Ynsn) is the forecast up to horizon h obtained by the vector
forecasting method.

IV CHOICE OF THE WINDOW LENGTH

From the presentation of SSA method including the vector forecasting, it follows that the
length of the window, L, is a crucial parameter. Indeed, L should be understood as the
chosen dimension for the model, built from SSA, of the observed dynamical system. It
determines the order of LRE (2) which is precisely L — 1. Foundational texts (e.g. [4, 6])
and books [7, 8, 23] give no general estimation methods of this parameter. The prevailing
opinion is that choosing L only slightly less than N/2 allows capturing all significant
frequencies of periodic components of the underlying dynamical system. Choosing L equal
to the longest oscillation period or a multiple of that period not exceeding N/2 is also
often suggested. Unfortunately, if the data comes from a poorly understood dynamical
system, such a period is unknown. Therefore, providing methods and, more importantly,
efficient algorithms for estimating L from the input time series is essential.

An appealing formal approach for estimating an adequate window length is developed in
[13] throughout an adaptation to SSA of the minimum description length principle (see
e.g. [11, 24]) better known as Kolmogorov complexity. The method consist in a cross-
optimisation of two functions, say f(L, M) and g(L, M) wrt. L and M. This yields an
estimation of L and also of the number M of the most significant components of X to
be considered as signal. Unfortunately, for each evaluation step of f(L, M) or g(L, M),
singular values of X have to be computed because X depends on L. As a practical rule,
the authors of [13] suggest to take (log N)¢ with ¢ € (1.5,2.5) as an upper bound for L.
Although (log N)¢ € o(N) and therefore (log N)¢ «< N/2, for N sufficiently large, with
¢ = 2.5 the method is still computationally demanding when X is a time series with daily
samples over, say, 50 years, because the maximum value of L then equals 301. Indeed, in
case of an exhaustive search over L € {2,...,301}, one has to perform 300 singular value
decompositions (SVD). Beyond formal demonstrations, in [17] and [16] the authors of [13]



provide an experimental evaluation of their method on real world data sets which confirms
that choosing L much smaller than N /2 significantly improves the quality of forecasting.

Several authors use the autocorrelation function

R(r) = 25 3 (avr =)o =) (4)

where p (resp. o) is the empirical mean (resp. empirical standard deviation) of X. In [12]
the smallest value of 7 where R crosses the confidence interval corresponding to (95% of)
the white Gaussian noise (with parameters p and o) is used as estimate of L. In [15] and
[19] the smallest value of 7 such that R(7)R(7 +1) <0 is used as estimate of L.

In the sequel, LI'®! stands for the length of the window chosen with the latter method
whereas Lj, and Ly; denote two extreme values for the maximum window length in
{(log N)¢:ce(1.5,2.5)} discussed formerly.

V CHOICE OF THE GROUPING

The choice of index set I of components that are used as signal in forecasting is as
essential as the choice of the window length. Indeed, as mentioned earlier, SSA should be
understood merely as a method for separating the true signal from the noise within the
raw signal obtained from observations. Besides theoretical results, the experiments carried
in [16] show that both the grouping and the window length selection have a tremendous
impact on forecast accuracy. This is not a surprise as both affect directly LRE (2).

On the contrary to the window length where the search space is linear in N (yet brute
force methods are limited by the computationally costly step of SVD), the search space
for grouping is in O(2%). Several authors only consider groupings such that I = [M] with
M € [L - 1] which lets reducing the search space into O(L). In other words, the signal
is selected as the first M elementary components of X, viz., I = [M] and X; = ¥ | X,.
This shall be called a prefix grouping in the sequel.

A common practice for the grouping (see e.g. [23]) is to rely on visual examination of
scatter plots and recurrence plots which involves subjective assessment of parameters.
Although, pattern recognition techniques can be used within this approach, those also
require some parameters.

The R package Rssa implements two methods for the grouping. The first method uses
frequency analysis via discrete Fourier transform. Again, as it requires additional param-
eters, it cannot be qualified as automated grouping. The second method runs a clustering
algorithm using a similarity matrix between time series’ elementary components. That
similarity matrix, (s;;) € IR, which is more precisely a w-correlation matriz, is defined
upon the following weighted inner product

N
(Y,Z)w = Z | Aslyizi,
=1

where Y and 7Z are time series of length N, and the corresponding weighted norm

X = V(X X)w



Remember that A;, defined in Sect. I Eq. (1) is the set of indexes of the i-th anti-diagonal
of an L x K matrix. The w-correlation matrix is defined as follows

5 - - (X’MXJ)W
! 13 w15 [w

Function grouping.auto.wcor from Rssa implements the latter clustering-based grouping.
Forecast mean error for Ambatolampy min temperature
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Figure 1: Forecast mean error for all prefix groupings from [89] down to [1]

It can be considered as a fully automated grouping method.

There is no a priori restriction on the form of index set I of “signal” resulting from
clustering by grouping.auto.wcor. On the contrary, the method of [13] based on minimum
description length yields M € [L — 1] to be used as prefix grouping [M]. Unfortunately,
the method is difficult to implement. No algorithm is clearly stated. Implementations, if
any, do not seem available in the public domain.

VI DATA SETS

Several methods discussed above have been evaluated as a part of the present work using
real word data summarised in Table 1. The data sets used here have been downloaded from
the ERA-Interim archive of the European Centre for Medium-range Weather Forecasts
(ECMWF). The ERA-Interim archives historical forecasts for horizons from 0 to 240



kind unit location coordinates begins on | ends on

maximum temperature 24h | °C Maevatanana 16°57’S 46°50’E | 1979-01-01 | 2017-12-31
minimum temperature 24h | °C Ambatolampy 19°23’S 47°25°E | 1979-01-01 | 2018-12-31
rainfall 24h mm Marovoay 16°6’S 46°38’E | 1979-01-01 | 2017-12-31
water vapor kg/m? | Ambovombe 25°10°S 46°05’E | 1979-01-01 | 2018-12-31
ozone kg/m? | Antananarivo 18°56’S 47°31’E | 1979-01-01 | 2018-12-31
mean pressure Pa Grande Comore | 11°55’S 43°25'E | 1979-01-01 | 2016-12-31

Table 1

hours. These forecasts consist of reanalysis data. The meaning of “reanalysis” for horizon
0 is that the data either come form observations or, if an observation is unavailable at
a given location, the corresponding value is interpolated using a meteorological model.
Whether a data set comes entirely from observations or has some interpolated parts (due
e.g. to a time outage of a recording station) does not matter for this study, in view of a
high accuracy of interpolation of those specialised models. On the contrary, the location
of each data set matters, as explained in the sequel. It should be noted that all data
sets used here are “forecasts” for horizon 0 which means that these are not predicted but
rather measured values or, exceptionally, interpolated ones.

(16, 35, 23, 31) Forecast mean relative error for Maevatanana max temperature
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Figure 2: Forecast mean relative error for Maevatanana maximum temperature

The data sets chosen for this paper concern atmospheric and oceanic phenomena at the
northern extremity of the Mozambique Channel (“Grande Comore”) and at several lo-
cations in Madagascar. This region of the Western Indian Ocean has a tropical climate



experiencing different micro-climates from part to part. In addition to the concern to com-
pare different climatic parameters, each location also has particularities. Maevatanana,
(resp. Ambatolampy, Ambovombe, Antananarivo), is the place reputed to be the hottest
(resp. the coldest, the driest, the most polluted) on the island. Marovoay is an area with
high agricultural potential. The study of rainfall is therefore as interesting as it is essen-
tial. The study of the atmospheric pressure in Grande Comore is mainly motivated by
forecasting the trajectories of cyclones.

(32, 33, 36, 37, 29, 30) Forecast mean relative error for Ambatolampy min temperature
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Figure 3: Forecast mean relative error for Ambatolampy minimum temperature

All recordings are daily and start from 1979-01-01. Both water vapor and ozone are
expressed in kg/m? representing their total amount in a column extending from the surface
of the Earth to the top of the atmosphere.

VII EXPERIMENTS

The aim of numerical experiments reported in this paper was to asses the quality of
SSA forecasting from user’s point of view for a short duration with horizon h e [30].
Here “short duration” is relative to the length of the time series. In fact, meteorologist
speak of medium-range when h € [10] and long-range when the horizon exceeds 7 days
although these limits are not strict. Specialised meteorological models have excellent
accuracy of forecasts up to 5 days. The choice for h € [30] is motivated by a potential
future comparative study of forecasting accuracies of specialised meteorological models
vs. general-purpose time series forecasting methods such as those from SSA.



For each data set, the forecast has been computed on every day of the last year of data,
except on December 31. For a given horizon h, this resulted in 365 — h forecasting days,
except 366 — h forecasting days for leap year 2016 (Grande Comore time series only). Let
Dy, (resp. Fy) denote the set of forecasting (resp. forecasted) days for horizon h. For
every forecasting day j € D), computing a forecast consisted in taking X¢; = (z1,...,2;)
as input time series for

1. estimating the window length (see Sect. V),

2. embedding and decomposition (see Sect. II),

3. grouping (see Sect. V),

4. vector forecasting (see Sect. I11),
where the two latter steps were repeated using various grouping choices in order to collect
corresponding forecasts. Thus, for a fixed method of the window length estimation, the
most computationally expensive part, namely SVD, was computed only once for each
forecasting day.

(41) Forecast mean relative error for Marovoay rainfall
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Figure 4: Forecast mean relative error for Marovoay rainfall

Assuming the methods for the window length and the grouping are fixed, by repeating
steps 1-4 for all forecasting days, one gets vectors (L, : j € Dy) and (/; : j € Dy) of window
lengths and groupings, and, for every horizon h, a vector of forecasted values

Vi =(ynj:J€Fn),

10



where yj; is the value for day j + h forecasted from X.; (as if it were done on day j).
The forecasting error vector for h, is therefore §;, = yj, — x5, where x; = (z; : j € F},) is
the vector of the corresponding actual values, viz., the corresponding terminal portion of
X. The mean (resp. mazximum) error for h is mean(|€,|) (resp. max(|€,|)) where “mean”
stands for the arithmetic mean. These absolute errors have their relative variants, each
one defined as the ratio of the corresponding absolute error divided by span of the data,
namely

mean() - max(g)
max(X) — min(X) max(X) - min(X) °

Although when it comes to forecasting, the mean squared error is mostly used, the

(40, 35, 47, 39) Forecast mean relative error for Ambovombe vapor
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Figure 5: Forecast mean relative error for Ambovombe vapor

authors believe that the arithmetic mean has a clear intuitive meaning for an average
user. By the way, the maximum error can also be important in many forecasting tasks.
It can for instance bring some insight about the ability to forecast extreme events. This
is particularly important for phenomena expressed by data sets used in this study.

For comparison with SSA vector forecasting, the following “naive” forecasting methods
have been used as benchmark at every forecasting day j € Dj:
o random forecast — the forecasted value is sampled from the distribution inferred
from X,
» constant forecast — the forecasted value equals z;,

11



« regression based forecast — uses polynomial regression (with polynomials of degree

4) from X; to extrapolate the value used as the forecast.

Only rough evaluation of forecast quality with varying window lengths (see Table 2) has

i Loy | L | i £ | x| i oy | i o

Maevatanana 29 30 52 52 281 283
Ambatolampy 30 30 90 91 283 285
Marovoay 29 30 78 80 281 283

Ambovombe 30 30 90 91 283 285
Antananarivo 30 30 95 97 283 285
Grande Comore 29 29 90 90 279 281

bee

On
the

grouping Ipig j =

of 2.2128 kg/m?

wit

Table 2: Window lengths computed using three methods

n conducted because of an important computational cost of the decomposition step.
an ad hoc basis, a part of this evaluation was done for window length Ly, ; taken as
largest multiple of a mean year duration 365.25 smaller than j/2, together with prefix
[ Myig ;] for Myig j = Lyig; — 1. Another part was done for Ly, ; together

(46) Forecast mean relative error for Antananarivo ozone
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Figure 6: Forecast mean relative error for Antananarivo ozone
h prefix grouping Iy; j = [ My ;] for My ; = Ly j — 1. Remember that Ly, ; = [(log 7)*7]
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and Ly ; = |(logj)??]| are extreme integer values of possible window sizes suggested in
[13].

A deeper evaluation relied essentially on the method of [15] with estimating the window

length for X.; written L£15]. In a more systematic way, for each data set, and every

forecasting day, Lg.m, Ly, ; and Ly;; have been computed but only L§15] and Ly, ; have

been used for forecasting with various groupings. More precisely, prefix groupings have
been performed for all M, e [ng]] (resp. M; € [Li,;]). Fig.1 displays a result of such
an exhaustive evaluation. By averaging over the last year of the time series, the best
a posteriori prefix grouping Inean = [Mmean] (1€SP. Imax = [Mmax]) with respect to the
mean (resp. maximum) forecast error has been selected for comparing with automated
groupings l,u0,; computed by grouping.auto.wcor. Also the closest neighbourhood of Ijyean
(resp. Imax) has been examined. This neighbourhood consists of all index sets that differ

(42, 43, 46) Forecast mean relative error for Gde Comore pressure
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Figure 7: Forecast mean relative error for Grande Comore atmospheric pressure

from Iean (resp. Imax) by one element only:

mean :_{ Mmean] N {k} : k € [ mean]} (5)
Minean] U {k} : & € [min LY [Minean] }

[
{I
(resp Vinax = {[Mmax {k} : k € [ Max }u
{[Minax] U {k} : k:e[mmL[l]] [Minax]})
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All numerical evaluations were programmed in Python and R. The programs are available
upon request from the corresponding author.

VIII RESULTS AND DISCUSSION

As a preamble to this chapter, it is worth mentioning that SSA and the correspond-
ing forecasting methods are not considered as learning algorithms. Nevertheless, some
analogies with machine learning or their lack are worth highlighting.

1. Undertraining happens exactly as in machine learning when the input time series is
too short to capture all essential behaviour of the observed dynamical system. In
other words, there is not enough of observations.

2. Overfitting results from the choice of index set I including too many inessential
components (obtained using SVD). This choice, called “grouping” is discussed in
Sect. V. Since those inessential components are considered as noise, a model (an
LRE in the case of SSA forecasting) capturing such noise is overfitted.

3. Underfitting is, as usual, the opposite of overfitting. It occurs when index set I does
not include enough of essential components. The reader should keep in mind that
I c[L]. Thus, when L is too small, the underfitting cannot be compensated by a
good choice of I.

4. The choice of window length L does not seem to have a straightforward machine
learning counterpart. It can be understood as the choice of the dimension of the
model. This is for instance similar to the choice of the number of states of a hidden
Markov model (see e.g. [5]) required by spectral learning algorithms [14] or by the
classical Baum-Welch algorithm [3, 9]. The choice of L can be also compared to
the choice of the degree of the polynomial in polynomial regression. Choosing this
degree too big leads typically to an overfitting. The potential overfitting when L is
too big can be however compensated to some extent by the choice of I.

While varying day j over D;, computed window lengths Ly, j, Ly ;. and Lgm] remained
stable (see Table 2). Interestingly, for every considered data set and each j € Dy, one has

Llo,j < L£-15] < Lhi,j .

This is surprising as L, ; and Ly, ; are the extreme integer values within the real interval

[(log )3, (log 7)*°] which depends only on length j of X ;. On the other hand, Lg.m]
depends not only on j but also on the autocorrelation function (see Eq. 4). Consequently,
on the contrary to L, ; and Ly, ;, Lg;s} depends on the values of X.;. The above inequality
is not a general rule and could be attributed to a specific nature of considered data sets,
all resulting from atmospheric and oceanic phenomena.

A rough evaluation of forecasting with parameters (Lyig j, [pig,;) and (Ly; j, [ni ;) confirms
the findings of [13, 16, 17] and [20] that using longer windows do not improve forecast
accuracy. Indeed, the forecasts obtained within the present experimentation with param-
eters (Luig j, Ibigj) Were not better than random ones. Even with (Ly; j, [1; ;) the accuracy
was only slightly better than using random forecast. The only convincing results come
with LL15] and Ly, ;. These are depicted in Appendix B. Their comparison lets conclude

that the results obtained with Lg-l‘r’] are better than with Lj, ;. Consequently the method
of [15] based on the autocorrelation function (see Eq. (4)) is favoured by the authors as
it is easy to implement and gives satisfactory results.
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A systematic evaluation of prefix grouping for window length L£_15] shows that the accuracy

of forecasting is very sensitive to it. One could think that including more components
would better capture the dynamics via an LRE but often the opposite is true. Fig. 1
shows how, in prefix grouping, decreasing the number of components affects the forecast.
The groupings considered in this example range from [88] down to [1]. One can observe
that the mean error does not show any regular pattern. The best accuracy is obtained
with I = [2] when comparing mean errors averaged over all horizons from 1 to 30.

In all time series studied here, the optimal prefix grouping is compared with with clustering-
based grouping computed by function grouping.auto.wcor. This is displayed on Fig. 2 to
7 which show the mean error per horizon. Similar plots for maximum error appear in
Appendix A and use the same colour codes. The errors are plotted in blue for optimum
prefix grouping, in purple for the automated grouping, in green for polynomial regression
based forecast, in yellow for constant forecast and in red for random forecast. All errors
are given relatively to the span max(X) — min(X) of the data set as precised on the left
edge of each plot. A surprising observation common to all data sets discussed here is that
grouping.auto.wcor always returned a prefix grouping. This is not a general rule. Indeed,
for other time series, grouping.auto.wcor may return a cluster of non prefix groupings.
Every plot on Fig.2 to 7 has on top the list of groupings, in parentheses, computed by
grouping.auto.wcor when varying j € D;. More precisely, an integer k appearing on the list,
means that for some j € Dy, grouping.auto.wcor returned index set [k] after taking X.; as
the input time series. It should be noted here that across Dy, very few different grouping
are obtained and that their variation is non-monotonic. As for all plotted forecast errors
for horizon h, the one resulting from automated grouping is obtained by averaging over
j € Dp. When the mean error is concerned (Fig.2 to 7) the forecasts using automated
groupings computed by grouping.auto.wcor clearly appear as sub-optimal. For Marovoay
rainfall (Fig. 4), that forecast is even close to random forecast and for Maevatanana max-
imum temperature (Fig.2) a polynomial regression predicts more accurately.

A systematic examination of prefix groupings for L, confirms the above observations
about automated grouping. It also lets comparing forecast accuracy for window lengths
LI and Ly, (see figures in Appendix B). As far as mean errors are used for comparison, the
automated (resp. optimal) grouping with L, underperforms the automated (resp. optimal)
grouping with LI in all examples studied, except for Marovoay rainfall. However, when
one uses maximum errors (right column) instead of mean errors (left column), no winner
can be clearly declared. Moreover, the plots of maximum errors for L) (see Appendix A)
seem to show that SSA is unsuitable for forecasting when maximum errors are the main
concern. Indeed, even with optimal prefix grouping, the maximum error is mostly beyond
30%. This is perhaps a general drawback of all general-purpose forecasting methods
for time series, as the maximum error criterion seems to be deliberately avoided in the
corresponding literature.

As all groupings discussed in this section are prefix ones, one may ask if, for a given window
size, the optimal prefix grouping remains optimal among all groupings. The authors do
not know the answer although they observed that the values of the errors in the closest
neighbourhoods Viyean 0 Vinax (see Eq. (5)) of each optimal prefix groupings (plotted in
blue on all figures except on Fig. 1) always exceed those of the latter. Therefore, each
optimum prefix grouping for data sets considered here form a local minimum. The authors
do not know whether this observation could be turned into a theorem nor if such local
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minima are also global ones. In any case, the latter observation leads to the conclusion
that a viable strategy for improving the automated grouping would be to start with the
value yield by grouping.auto.wcor and find a nearest local optimum for prefix grouping.

IX CONCLUSION

The experiments reported in this paper confirm that the choice of the window length and
of the grouping are essential for the accuracy of SSA forecasting. The window length
selection method of [15] together with an adequate grouping enables forecasting with
an accuracy significantly better than constant or random forecasting, provided that the
mean error is considered. However, the reader should keep in mind that each adequate
(optimal) grouping has been selected via an a posteriori evaluation. The only widely
available method for an automated a priori grouping, namely function grouping.auto.wcor
from Rssa package, appears as sub-optimal in the analysed examples. Consequently, this
is where the research on SSA should focus in order to make SSA forecasting ready to be
included in decision-support tools. This conclusion is completed with the result of the
comparison of the window length selection method of [15] — it outperforms other methods
evaluated in reported experiments.

When the maximum error matters, SSA forecasting seems rather unsuitable for short
horizon prediction, at least for atmospheric/oceanic phenomena illustrated by the time
series used in this study. The lack of literature with the maximum error criterion does
not let suggest an alternative.

When examining plots of forecasting errors using various methods, one could ask, what
could be learned from those about the dynamics of the underlying phenomena. Somewhat
intriguing is the fact that the relative position of the plots differs substantially form one
time series to another. How to explain that among “naive” forecasting methods the
constant one is the worst for Ambatolampy minimum temperature (see Fig3) but the
best one for Maevatanana maximum temperature (see Fig2)?
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APPENDICES

A MAXIMUM ERROR PLOTS FOR L[5
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B COMPARATIVE PLOTS FOR TWO WINDOW LENGTHS

The following plots compare the accuracy of vector forecasting for window lengths L9l
and Lj,. Every label of a legend gives the window size followed by either “auto” for
automated grouping using grouping.auto.wcor or the optimal prefix grouping [M]. For L,
(resp. LI%) the accuracy is plotted in blue (resp. green) for automated grouping and in
orange (resp. red) for optimal grouping. The reader may check Table 2 to avoid confusion
between L[% and L;,. Note that the accuracy obtained with Ly; do not appear on the
following plots as it is significantly worse than with L;, and L1
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Forecast mean relative error for Marovoay rainfall

Forecast maximum relative error for Marovoay rainfall
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