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Phase-field approximation of a vectorial, geometrically nonlinear cohesive fracture energy

We consider a family of vectorial models for cohesive fracture, which may incorporate SO(n)-invariance. The deformation belongs to the space of generalized functions of bounded variation and the energy contains an (elastic) volume energy, an openingdependent jump energy concentrated on the fractured surface, and a Cantor part representing diffuse damage. We show that this type of functional can be naturally obtained as Γ-limit of an appropriate phase-field model. The energy densities entering the limiting functional can be expressed, in a partially implicit way, in terms of those appearing in the phase-field approximation.

[ June 23, 2022] in the two-dimensional case.

We recall that in the scalar case several different choices for f ε are possible without changing the overall effect of the approximation (cf. [CFI16, Section 4]).
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Introduction

In variational models of nonlinear elasticity a hyper-elastic body with reference configuration Ω ⊂ R n (n = 2, 3) undergoes a deformation u : Ω → R m , whose stored energy reads as Ω Ψ(∇u)dx.

(1.1)

External loads can be included, adding linear perturbations to this energy, and Dirichlet boundary conditions, restricting the set of admissible deformations u.

The energy density Ψ : R m×n → [0, +∞), acting on the deformation gradient ∇u, is typically assumed to be minimized by matrices in the set of proper rotations SO(n) (with m = n) and to have p-growth at infinity, p > 1. Correspondingly, the natural space for the deformation u is a (subset of) the Sobolev space W 1,p (Ω; R m ). There is an extensive literature on the theory of existence of minimizers of this type of functionals, and in particular the key property of weak lower semicontinuity of (1.1) is closely related to the quasiconvexity of the energy density Ψ.

Fracture phenomena, both brittle and cohesive, require a richer modeling framework. Physically, cohesive fracture is often understood as a gradual separation phenomenon: load-displacement curves usually exhibit an initial increase of the load up to a critical value, and a subsequent decrease to zero, which is the value indicating the complete separation [START_REF] Bourdin | The variational approach to fracture[END_REF][START_REF] Dugdale | Yielding of steel sheets containing slits[END_REF][START_REF] Barenblatt | The mathematical theory of equilibrium cracks in brittle fracture[END_REF][START_REF] Fokoua | Optimal scaling laws for ductile fracture derived from strain-gradient microplasticity[END_REF]. See [START_REF] Del Piero | A one-dimensional model for localized and distributed failure[END_REF][START_REF] Del Piero | Macro-and micro-cracking in one-dimensional elasticity[END_REF] for discussions on different load-displacement behaviours. Evolutionary models (prescribing the crack path) have been studied in [DMZ07, BFM08, Cag08, CT11, LS14, Alm17, ACFS17, NS17, TZ17, NV18, CLO18], see also references therein. See [START_REF] Maso | Gradient bounds for minimizers of free discontinuity problems related to cohesive zone models in fracture mechanics[END_REF][START_REF] Caffarelli | Optimal regularity and structure of the free boundary for minimizers in cohesive zone models[END_REF] for further results on the topic.

Variational models of fracture are typically formulated using the space (G)BV of (generalised) functions of bounded variation [START_REF] Francfort | Revisiting brittle fracture as an energy minimization problem[END_REF][START_REF] Bourdin | The variational approach to fracture[END_REF] and energy functionals of the form

Ω W (∇u)dx + Ω l(dD c u) + Ju g([u], ν u )dH n-1 .
(1.2)

The deformation u ∈ (G)BV (Ω; R m ) may exhibit discontinuities along a (n-1)dimensional set J u . We denote by [u] and ν u the opening of the crack and the normal vector to the crack set J u , respectively, while D c u represents the Cantor derivative of u (see [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs[END_REF] for the definition and the relevant properties of functions of bounded variation). Working within deformation theory, the functional (1.2) contains both energetic and dissipative terms, which are physically distinct but need not be separated for this variational modeling. The densities W , l, and g entering (1.2) need to satisfy suitable growth conditions. Lower semicontinuity of the functional imposes several restrictions, as for example that l is positively one-homogeneous and quasiconvex, W quasiconvex, and g subadditive. Furthermore, l needs to match, after appropriate scaling, both the behavior of W at infinity and the behavior of g near zero. These properties will be discussed in more detail below (see, for example, Proposition 3.11).

The qualitative properties of W , l and g are selected according to the specific model of interest. For instance, the brittle regime is modelled by a constant surface density g and a superlinear bulk energy density W . These choices in turn imply that l(ξ) = ∞ for ξ = 0, so that D c u necessarily vanishes. The functional setting of the problem is then provided by the space of (generalised) special functions with bounded variation (G)SBV (Ω). In contrast, in cohesive models g is usually assumed to be approximately linear for small amplitudes and bounded.

The direct numerical simulation of functionals of the type (1.2) is highly problematic, due to the difficulty of finding good discretizations for (G)BV functions and of differentiating the functional with respect to the coefficients entering the finite-dimensional approximation. Therefore a number of regularizations have been proposed, of which one of the most successful is given by phase-field functionals. These are energies depending on a pair of variables (u, v), having a Sobolev regularity, where u represents a regularization of a discontinuous displacement, while v ∈ [0, 1] can be interpreted as a damage parameter, indicating the amount of damage at each point of the body (where v = 1 corresponds to the undamaged material and v = 0 to the completely damaged material). The basic structure of a phase-field model is

F ε (u, v) := Ω f 2 ε (v)Ψ(∇u) + (1 -v) 2 4ε + ε|∇v| 2 dx, (1.3) 
where ε > 0 is a small parameter, f ε is a damage coefficient acting on the damage variable v, increasing from 0 to 1, and Ψ is an elastic energy density, as in (1.1). The first term in (1.3) represents the stored elastic energy, the other two terms represent the stored energy and dissipation due to the damage. Finding a variational approximation of the fracture model (1.2) by phasefield models means to construct f ε and Ψ such that the functionals (1.3) converge, in the sense of Γ-convergence, to (1.2) as ε → 0. This is not an easy task in general. The brittle case (g constant) in an antiplane shear, linear, framework (m = 1, Ψ quadratic) was the first outcome of this type [START_REF] Ambrosio | Approximation of functional depending on jumps by elliptic functional via Γ-convergence[END_REF][START_REF] Ambrosio | On the approximation of free discontinuity problems[END_REF]. It has been extended in several directions for different aims, giving rise to a very vast literature of both theoretical results [Sha96, AFM01, Cha04, Cha05, HMCX14, ALRC13, DMI13, Iur13, FI14, Iur14, BEZ15, CFZ21] and numerical simulations [BC94a, BSK06, Bou07, BFM08, BOS10, BOS13, BB21] (for other regularizations, see also [AFP00, BDMG99, Bra98, Fus03, BG06] and references therein). In particular, the extension of the results in [START_REF] Ambrosio | On the approximation of free discontinuity problems[END_REF] to the vector-valued (nonlinear) brittle case has been provided in [START_REF] Focardi | On the variational approximation of free-discontinuity problems in the vectorial case[END_REF]. The variational approximation of cohesive models is considerably more involved. The antiplane shear, linear, case was obtained through a double Γ-limit of energies with 1-growth in [START_REF] Alicandro | Free-discontinuity problems via functionals involving the L 1 -norm of the gradient and their approximations[END_REF], then generalized to the vector-valued case in [START_REF] Alicandro | Variational approximation of freediscontinuity energies with linear growth[END_REF]. A drawback of these results is the 1-growth with respect to ∇u, which makes the approximants mechanically less meaningful and numerically less helpful.
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To overcome these problems, in [START_REF] Conti | Phase field approximation of cohesive fracture models[END_REF] we proposed a different approximation of (1.2) in the antiplane shear case, with quadratic models of the form (1.3), based on a damage coefficient f ε of the type

f ε (s) := 1 ∧ ε 1 /2 s 1 -s s ∈ [0, 1], > 0 , (1.4) 
and obtained Γ-convergence to a model of the type (1.2) in the scalar (m = 1) case. We remark that f ε is equal to 1 when v ∼ 1 (elastic response) and to 0 when v ∼ 0 (brittle fracture response). Moreover, the first addend in the energy in (1.3) competes against the second term if v is less than but close to 1, and with all the terms of (1.3) otherwise (pre-fracture response). This phase-field approximation of this scalar cohesive fracture was investigated numerically in [START_REF] Freddi | Numerical insight of a variational smeared approach to cohesive fracture[END_REF]. A 1D cohesive quasistatic evolution (not prescribing the crack path) is presented in [START_REF] Bonacini | Cohesive fracture in 1D: quasi-static evolution and derivation from static phase-field models[END_REF] and related to the phase-field models of [START_REF] Conti | Phase field approximation of cohesive fracture models[END_REF]. A different approximation of (1.2), still in the scalar-valued framework, is obtained in [START_REF] Maso | Fracture models for elasto-plastic materials as limits of gradient damage models coupled with plasticity: the antiplane case[END_REF] using elasto-plastic models.

In this paper we study the approximation of vector-valued cohesive models of the type (1.2) via phase-field models of the type (1.3) with the damage coefficient (1.4), as proposed in [START_REF] Conti | Phase field approximation of cohesive fracture models[END_REF]. In particular, this permits to extend the results of [START_REF] Conti | Phase field approximation of cohesive fracture models[END_REF] to a geometrically nonlinear framework, we refer to (2.2)-(2.5) for the specific hypotheses on Ψ. The main result is given in Theorem 2.1, the precise assumptions are discussed in Section 2.1.

In order to illustrate our result, let us consider the simplest model for the energy density Ψ in finite kinematics and m = n, Ψ 2 (ξ) := dist 2 (ξ, SO(n)) = min R∈SO(n) |ξ -R| 2 .

(1.5)

With this choice, our main result Theorem 2.1 states that the phase-field energies (1.3) Γ-converge in the L 1 -topology as ε → 0 to the energy (1.2), with

W (ξ) := (dist 2 (•, SO(n)) ∧ dist(•, SO(n))) qc (ξ) , (1.6) 
and l(ξ) := |ξ|, g(z, ν) := g scal (|z|) ,

for every ξ ∈ R m×n , z ∈ R m , ν ∈ S n-1
, where g scal is the surface energy density appearing in the scalar model (cf. formula (4.4) for the definition of g scal , item (iii) in Proposition 3.12 with W = h qc and l = h qc,∞ to justify the second equality, and Corollary 3.5 for the third equality). As remarked above, g coincides with l asymptotically for infinitesimal amplitudes. Even in this simple case, the expression for W is somewhat implicit, as it involves a quasiconvex envelope, which in most cases can only be approximately computed numerically. We remark that even Ψ 2 itself as defined in (1.5) is not quasiconvex, we refer to [ Š01, Example 4.2] for an explicit formula for its quasiconvex envelope Ψ qc A negative power-law divergence at 1 however leads to a corresponding powerlaw behaviour of g close to 0 (cf. [CFI16, Theorem 7.4]). We expect these findings to have a natural generalization to the current vectorial setting, this requires additional technical ingredients that will be the object of future work [START_REF] Conti | Superlinear cohesive fracture models as limits of phase field functionals[END_REF].

Let us now briefly discuss some aspects of the proof of Theorem 2.1. One of the main difficulties is to identify the correct limit densities W , g, and l, given the density Ψ and the damage coefficient f ε of the phase-field (1.3). We do not expect that the cohesive energies that arise in the limit of our approximation exhaust all possible energies of the form (1.2), with densities W , g, and l satisfying the growth conditions and matching properties specified above. Indeed, we prove that, even in the simplest case Ψ(ξ) := |ξ| 2 , W is not convex (see Lemma 2.5 below). Thus, at least in this case, the limit energy is not given by the relaxation of a functional defined on SBV (Ω) (cf. [BC94b, Remark 2.2]). Convex functions may be obtained as densities of the bulk term of the energy under more specific choices of the damage variable (see for example [START_REF] Babadjian | Concentration versus oscillation effects in brittle damage[END_REF], where the damage variable is a characteristic function).

The effective surface energy density g of the Γ-limit of the family (F ε ) is defined in an abstract fashion by an asymptotic minimization formula as the Γ-limit of a simpler family of functionals computed on functions jumping on a hyperplane (cf. (2.12)). Alternative characterizations of g useful along the proofs are provided both in Propositions 3.1 and 3.2, in which we show that the test sequences in the very definition of g can be assumed to be periodic in (n-1) mutually orthogonal directions and with L 2 integrability, and in Proposition 3.3, where g is represented in terms of an asymptotic homogenization formula. Finally, the energy density l of the Cantor part turns out to coincide with the recession function W ∞ of W . Furthermore, an explicit characterization of l in terms of Ψ is given in Proposition 3.10.

The proof of the lower bound in BV is based on the blow-up technique. Roughly, to get the local estimate for the diffuse part given (u ε , v ε ) → (u, v) in L 1 , we analyze the asymptotic behaviour of the phase-field energies F ε restricted on the δ-superlevel sets of v ε , δ ∈ (0, 1), and then let δ ↑ 1. More precisely, in Lemma 4.4 we bound from below F ε (u ε , v ε ) in (1.3) pointwise with a functional defined on (G)SBV , that is independent of v ε and that is computed on a truncation of u ε with the characteristic function of a suitable superlevel set of v ε (depending on δ). This is actually true up to an error related to the measure of the corresponding sublevel set of v ε , and up to prefactors depending on δ which are converging to 1 as δ ↑ 1 for the volume term and vanishing for the surface term. The lower semicontinuity in L 1 of the diffuse part of such a functional then implies the lower bound. In addition, a slight variation of this argument shows directly that (GBV (Ω)) m is the domain of the Γ-limit.

Instead, to prove the local estimate for the surface part we show that under a surface scaling assumption we may replace v ε by its truncation at the threshold γ ε , being γ ε the smallest z ∈ [0, 1] satisfying f ε (z) = 1. The mentioned asymptotic minimization formula defining g then provides a natural lower bound. The liminf inequality in GBV is finally obtained by a further truncation argument.

5 Phase-field-vectorial-submitted.tex [June 23, 2022] The upper bound in BV is proven through an integral representation argument. In particular, a direct computation provides a rough linear estimate from above, in fact optimal for the diffuse part. This allows to apply the representation result for linear functionals given in [START_REF] Bouchitté | A global method for relaxation[END_REF]. The sharp estimate for the surface density is obtained using the aforementioned characterization of g involving periodic boundary conditions. The full upper bound in GBV follows by a truncation argument.

The paper is structured as follows. In Section 2.1 we present the model, introducing the main definitions and stating the Γ-convergence result in Theorem 2.1. In Section 2.2 we focus on a simplified model and we prove that in this case the limiting volume energy density W , obtained by quasiconvexification as in (1.6), is not convex (Lemma 2.5). In Section 3 several properties of the surface and Cantor densities are discussed. In particular, Propositions 3.1 and 3.2 deal with the change of boundary conditions within the minimum problem defining g. Proposition 3.3 provides an equivalent expression of g. Section 4 is devoted to the proof of the lower bound: Proposition 4.1 proves the surface estimate in BV . The lower bound in BV for the diffuse part is addressed in Proposition 4.2. Finally, in Theorem 4.9 the lower bound is extended to the full space GBV via a continuity argument (cf. Proposition 4.8). The proof of the upper bound is the object of Section 5, which concludes the proof of Theorem 2.1. Finally, Section 6 addresses the problems of compactness and convergence of minimizers. 

Model

General definitions

:= ij ξ 2 ij = Tr ξ T ξ for ξ ∈ R m×n . For all ε > 0 we consider the functional F ε : L 1 (Ω; R m+1 ) × A(Ω) → [0, ∞] given by F ε (u, v; A) := A f 2 ε (v)Ψ(∇u) + (1 -v) 2 4ε + ε|∇v| 2 dx (2.1) if (u, v) ∈ W 1,2 (Ω; R m ) × W 1,2 (Ω; [0, 1]
) and ∞ otherwise, where for every s ∈ [0, 1) we set

f (s) := s 1 -s , f ε (s) := 1 ∧ ε 1 /2 f (s), f ε (1) := 1 ; (2.2)
and > 0 is a parameter representing the critical yield stress. We write briefly F ε (u, v) := F ε (u, v; Ω), and analogously for all the functionals that shall be introduced in what follows.

We assume that Ψ : R m×n → [0, ∞) is continuous and such that

1 c |ξ| 2 -c ∨ 0 ≤ Ψ(ξ) ≤ c(|ξ| 2 + 1) for all ξ ∈ R m×n . (2.3) 6 Phase-field-vectorial-submitted.tex [June 23, 2022]
We assume the ensuing limit to exist

Ψ ∞ (ξ) := lim t→∞ Ψ(tξ) t 2 , (2.4)
and that it is uniform on the set of ξ with |ξ| = 1. This means that for every δ > 0 there is t δ > 0 such that |Ψ(tξ)/t 2 -Ψ ∞ (ξ)| ≤ δ for all t ≥ t δ and all ξ with |ξ| = 1, which is the same as

|Ψ(ξ) -Ψ ∞ (ξ)| ≤ δ|ξ| 2 for all |ξ| ≥ t δ . (2.5) By scaling, Ψ ∞ (tξ) = t 2 Ψ ∞ (ξ) and in particular Ψ ∞ (0) = 0. Uniform conver- gence also implies Ψ ∞ ∈ C 0 (R m×n ). We define h : R m×n → [0, ∞) by h(ξ) := Ψ(ξ) ∧ Ψ 1 /2 (ξ) (2.6)
and denote by h qc its quasiconvex envelope,

h qc (ξ) := inf (0,1) n h(ξ + ∇ϕ)dx : ϕ ∈ C ∞ c ((0, 1) n ; R m ) . (2.7) From (2.3) we infer that for every ξ ∈ R m×n 1 c |ξ| -c ∨ 0 ≤ h qc (ξ) ≤ h(ξ) ≤ c(|ξ| + 1). (2.8)
Let h qc,∞ be its recession function,

h qc,∞ (ξ) := lim sup t→∞ h qc (tξ) t .
(2.9)

We remark that the definitions of h qc,∞ and Ψ ∞ differ, to reflect the different growth of the two functions, quadratic for Ψ and linear for h. Recall that h qc,∞ is itself a quasiconvex function [FM93, Rem. 2.2 (ii)]. Therefore, it is locally Lipschitz continuous (cf. for instance [Dac08, Theorem 5.3 (ii)]). Moreover, in Proposition 3.10 below we shall prove that

h qc,∞ (ξ) = (Ψ 1 /2 ) qc,∞ (ξ) , (2.10)
where the latter quantity is defined as in (2.7)-(2.9). We remark that, at variance with the convex case, one cannot in general replace the lim sup in (2.9) by a limit [START_REF] Müller | On quasiconvex functions which are homogeneous of degree 1[END_REF]Theorem 2]. For all open subsets

A ⊆ R n , u ∈ W 1,2 (A; R m ) and v ∈ W 1,2 (A; [0, 1]) it is convenient to introduce the functional F ∞ ε (u, v; A) := A εf 2 (v)Ψ ∞ (∇u) + (1 -v) 2 4ε + ε|∇v| 2 dx. (2.11)
The first term is interpreted to be zero whenever ∇u = 0, even if v = 1. For any ν ∈ S n-1 we fix a cube Q ν with side length 1, centered in the origin, and with 7 Phase-field-vectorial-submitted.tex [June 23, 2022] one side parallel to ν. We write Q ν r := rQ ν . We define g : R m × S n-1 → [0, ∞) by

g(z, ν) := inf{lim inf j→∞ F ∞ εj (u j , v j , Q ν ) : u j -zχ {x•ν>0} L 1 (Q ν ) → 0, ε j → 0}.
(2.12) Here u j ∈ W 1,2 (Q ν ; R m ) and v j ∈ W 1,2 (Q ν ; [0, 1]); obviously one can restrict to sequences v j → 1 in L 1 (Q ν ). We refer to Section 3 for the discussion of several properties of g.

We will prove the following result.

Theorem 2.1. Let F ε be the functional defined in (2.1). Then for all (u, v) ∈ L 1 (Ω; R m+1 ) it holds

Γ(L 1 )-lim ε→0 F ε (u, v) = F 0 (u, v) ,
where

F 0 (u, v) := Ω h qc (∇u)dx + Ω h qc,∞ (dD c u) + Ju g([u], ν u )dH n-1 , (2.13) if u ∈ (GBV ∩ L 1 (Ω)) m and v = 1 L n -a.e., and 
F 0 (u, v) := ∞ otherwise.
Remark 2.2. One can imagine several natural generalizations of Theorem 2.1. For example, one could allow Ψ to take negative values, replacing (2.3) by

1 c |ξ| 2 -c ≤ Ψ(ξ) ≤ c(|ξ| 2 + 1).
Whereas in purely elastic models like (1.1) one can add a constant to the energy density without any change in the analysis, the presence of the prefactor f 2 ε (v) renders this modification nontrivial, and influences several steps in the proof. Indeed, the construction in Step 1 of the proof of Theorem 5.2 shows that the definition of h in (2.6) needs to be replaced by

h(ξ) := Ψ(ξ) ∧ Ψ 1 /2 + (ξ) .
Alternatively, one could replace the quadratic growth of Ψ in (2.3) by p-growth, p > 1. The requirement that the effective energy scales linearly for large strains leads to corresponding adaptations in the other parts of the functional.

For simplicity we only address here the growth condition in (2.3).

Notation.

For A open we denote by M + (A) the set of positive Radon measures on the set A, and by M + b (A) the subset of bounded measures. For A ∈ A(Ω),

Γ(L 1 )-lim inf F ε (u, v; A) := inf lim inf ε→0 F ε (u ε , v ε ; A) : (u ε , v ε ) → (u, v) in L 1 (Ω; R m+1 )
and correspondingly for the Γ-lim sup. We drop the dependence on the reference set A if A = Ω. We refer to Section 4.1 for the definition of the vector measure

D c u if u ∈ (GBV (Ω)) m .
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Simplified model

In this Section we consider the simplified case Ψ simp (ξ) := |ξ|2 , the corresponding unrelaxed energy density h simp : R m×n → [0, ∞),

h simp (ξ) := |ξ| 2 ∧ |ξ|,
(2.14) its quasiconvex envelope h qc simp as in (2.7), and its recession function h qc,∞ simp as in (2.9). These functions only depend on the space dimension and the single parameter > 0, which could be eliminated by scaling.

In this case it is possible to obtain simple closed-form expressions for several of the quantities defined above. However, an explicit characterization of the quasiconvex envelope in (2.7) remains difficult. Indeed, we show in Lemma 2.5(iii) below that even in this simplified setting the result is not convex. Since it has linear growth, lower bounds with polyconvexity cannot be used, and an explicit determination of h qc simp seems difficult. We believe this to be a strong indication that in most cases of interest the function h qc can only be approximated numerically, and not computed explicitly. Lemma 2.5 and this observation are not used in the proof of Theorem 2.1.

Lemma 2.3. For n, m ≥ 1 let h simp : R m×n → [0, ∞) be defined as in (2.14). Then:

(i) its convex envelope is

h conv simp (ξ) = |ξ| 2 , if |ξ| ≤ 2 , |ξ| - 2 4 , if |ξ| > 2 ;
(2.15)

(ii) |ξ| - 2 4 ≤ h qc simp (ξ) ≤ |ξ| for all ξ ∈ R m×n ; (iii) h qc,∞
simp (ξ) = |ξ| and the lim sup in (2.9) is a limit. Proof. (i): To prove (2.15) we consider h scal : [0, ∞) → [0, ∞) defined by

h scal (t) := t 2 ∧ t (2.16)
and compute its convex envelope

h conv scal (t) = t 2 , if 0 ≤ t ≤ 2 , t - 2 4 , if t > 2 .
(2.17) 

Let η ∈ R m×n with |η| = 1. Then h simp (tη) = h scal (t)
:= {Γ ∈ R m×n×n : Γ ijk = Γ ikj } (2.18)
and consider for ξ ∈ R m×n the linear map T : R m×n×n sym → R m×n×n of the form

(T Γ) ijk := Γ ijk -ξ ij a,b ξ ab Γ abk . (2.19)
If rank ξ ≥ 2, then T is injective. In particular, it has an inverse S :

T (R m×n×n sym ) → R m×n×n sym .
Proof. It suffices to show that there is no Γ ∈ R m×n×n sym with T Γ = 0 and Γ = 0. We assume it exists and define v ∈ R n componentwise by

v k := a,b ξ ab Γ abk .
(2.20)

Then T Γ = 0 is equivalent to Γ ijk -ξ ij v k = 0, hence Γ ijk = ξ ij v k ,
for all i, j, and k. Moreover, Γ = 0 in turn implies that v = 0. From Γ ∈ R m×n×n sym we obtain

ξ ij v k = ξ ik v j .
As rank ξ ≥ 2 there is a vector w ∈ R n with v • w = 0 and ξw = 0. We take the scalar product of the previous equation with w and obtain

k ξ ij v k w k = k ξ ik v j w k
which gives 0 = v j (ξw) i for all i and j. As v = 0 and ξw = 0, this is a contradiction.

Lemma 2.5.

Let ξ ∈ R m×n . (i) If |ξ| ≤ 2 , then h simp (ξ) = h qc simp (ξ) = h conv simp (ξ). (ii) If rank ξ ≤ 1, then h qc simp (ξ) = h conv simp (ξ).
(iii) If rank ξ ≥ 2 and |ξ| > 2 , then h conv simp (ξ) < h qc simp (ξ). Proof. We work for = 1 (the general case can be reduced to this one by a rescaling), to shorten notation we write h for h simp .

(i): It is clear that

h conv ≤ h qc ≤ h. If |ξ| ≤ 1 2 then h conv (ξ) = h(ξ) (cf.
(2.15)), and the assertion then follows.
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ξ = t -|ξ| t -1 2 ξ 2|ξ| + |ξ| -1 2 t -1 2 tξ |ξ|
and by rank-one convexity of h qc we obtain

h qc (ξ) ≤ t -|ξ| t -1 2 h ξ 2|ξ| + |ξ| -1 2 t -1 2 h t ξ |ξ| ≤ t -|ξ| t -1 2 1 4 + |ξ| -1 2 t -1 2 t.
Taking t → ∞ shows that h qc (ξ) ≤ |ξ| -1 4 = h conv (ξ). Recalling h conv ≤ h qc concludes the proof.

(iii): We assume that rank ξ ≥ 2 and |ξ| > 1 2 , and show that h conv (ξ) < h qc (ξ). From the explicit formulas given in Lemma 2.3(i) we know that h conv (ξ) < h(ξ), from general theory h conv ≤ h qc .

Assume by contradiction that h conv (ξ) = h qc (ξ). Then there is a sequence ϕ j ∈ C ∞ ((0, 1) n ; R m ) such that ϕ j (x) = ξx on ∂(0, 1) n and

h conv (ξ) = lim j→∞ (0,1) n h(∇ϕ j )dx.
(2.21)

We consider the affine function L : R m×n → R,

L(η) := η • ξ |ξ| - 1 4 .
One easily checks that h conv (tξ) = L(tξ) = t|ξ| -1 4 for t ≥ 1 2|ξ| (cf. (2.15)), and since |ξ| > 1 2 this in particular holds for t = 1. Linearity and the boundary values of ϕ j imply (0,1) n L(∇ϕ j )dx = L (0,1) n ∇ϕ j dx = L(ξ).

Subtracting from (2.21), and letting g := h -L, leads to lim j→∞ (0,1) n g(∇ϕ j )dx = 0.

(2.22)

We next show that g(η) controls the distance of the matrix η from the set Rξ.

To do this, for η ∈ R m×n we define the orthogonal projections

η := η • ξ |ξ| ∈ R and η ⊥ := η - ξ |ξ| η ∈ R m×n , so that |η| 2 = |η | 2 + |η ⊥ | 2 and L(η) = η -1 4 .
We first consider the case |η| ≥ 1, so that h(η) = |η|. Assume for a moment that both η and η ⊥ do not vanish. Letting γ

:= |η ⊥ |/|η |, g(η) = |η| -L(η) ≥ |η | 1 + γ 2 -|η | = 1 + γ 2 -1 γ |η ⊥ |.
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[June 23, 2022] Let now ε ∈ (0, 1]. If γ ≤ ε, then |η ⊥ | ≤ ε|η |. Otherwise, by monotonicity of t → ( √ 1 + t 2 -1)/t we have g(η) ≥ ( √ 1 + ε 2 -1)|η ⊥ |/ε. Therefore |η ⊥ | ≤ ε|η | + ε √ 1 + ε 2 -1 g(η) (2.23)
for all η ∈ R m×n with |η| ≥ 1 (the two cases η = 0 and η ⊥ = 0 follow by continuity). If instead |η| ≤ 1,

g(η) = |η| 2 -L(η) = |η | 2 + |η ⊥ | 2 -η + 1 4 ≥ |η ⊥ | 2 .
Therefore for any ε ∈ (0, 1] we have for all η ∈ R m×n with |η| ≤ 1

|η ⊥ | ≤ ε + 1 ε |η ⊥ | 2 ≤ ε + 1 ε g(η) .
(2.24)

Combining (2.23) and (2.24) we see that for any ε ∈ (0, 1] there is

C ε > 0 such that for all η ∈ R m×n |η ⊥ | ≤ ε(|η | + 1) + C ε g(η) .
In particular, for any j we have

|∇ϕ ⊥ j | ≤ ε(|∇ϕ j | + 1) + C ε g(∇ϕ j ).
We integrate over (0, 1) n , take the limit j → ∞ and recall that g(∇ϕ j ) → 0 in L 1 by (2.22). We obtain lim sup

j→∞ (0,1) n |∇ϕ ⊥ j |dx ≤ ε lim sup j→∞ (0,1) n (|∇ϕ j | + 1)dx
for any ε ∈ (0, 1]. By (2.21) and Lemma 2.3(ii) the sequence ∇ϕ j is bounded in L 1 , and since ε was arbitrary we conclude that lim sup

j→∞ (0,1) n |∇ϕ ⊥ j |dx = 0. (2.25)
We next prove that (2.25) implies that ∇ϕ j converges to the constant ξ strongly in weak-L 1 . To do this we show that standard singular integral estimates imply rigidity. To simplify notation, we write u j (x) := ϕ j (x) -ξx and R j := ∇ϕ ⊥ j = ∇u ⊥ j , both extended by zero to the rest of R n , in the next steps. We observe that

R j = ∇u j -ξ ξ • ∇u j |ξ| 2 = ∇u j -ξ( ξ • ∇u j )
where ξ := ξ |ξ| . Taking a derivative, and writing components, we obtain

(∇R j ) cdk = (∇ 2 u j ) cdk -ξcd a,b ξab (∇ 2 u j ) abk = (T (∇ 2 u j )) cdk ,
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with T obtained from ξ as in Lemma 2.4. Let S be the inverse operator. Then

∇ 2 u j = S(∇R j ),
so that in particular ∆u j is given by a linear combination of the components of ∇R j , with coefficients which depend only on ξ. As u j (x) = 0 outside (0, 1) n , we obtain, denoting by N the fundamental solution of Laplace's equation in R n (which solves -∆N = δ 0 ),

-∂ r u j = ∂ r (N * ∆u j ) =∂ r (N * Tr S(∇R j )) = Tr S(Λ r (R j )),
for every r = 1, . . . , n, where we have set 

(Λ r (R j )) cdk := ∂ r ∂ k N * (R j ) cd (recall that R j = 0 outside of (0, 1) n ),
R → Λ r (R) is of weak type (1, 1), so that ∇u j w-L 1 ((0,1) n ) ≤ c R j L 1 ((0,1) n ) ,
with c depending only on ξ. Recalling the definition of u j and R j as well as (2.25),

lim j→∞ ∇ϕ j -ξ w-L 1 ((0,1) n ) ≤ c lim j→∞ ∇ϕ ⊥ j L 1 ((0,1) n ) = 0.
To conclude the proof we choose z ∈ (h conv (ξ), h(ξ)) (here we use again that |ξ| > 1 2 ). By continuity of h, there is δ > 0 such that h(η) ≥ z for all η ∈ R m×n with |η -ξ| < δ. By definition of the weak-L 1 norm,

lim sup j→∞ L n ({x ∈ (0, 1) n : |∇ϕ j -ξ| ≥ δ}) ≤ lim sup j→∞ ∇ϕ j -ξ w-L 1 δ = 0 .
Therefore, recalling that h ≥ 0 pointwise, lim inf

j→∞ (0,1) n h(∇ϕ j )dx ≥ lim inf j→∞ zL n ({x ∈ (0, 1) n : |∇ϕ j -ξ|<δ}) =z > h conv (ξ).
This contradicts (2.21) and concludes the proof.
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3 Energy densities of the surface and Cantor part

In this section we discuss several properties of the energy densities g and h qc,∞ . We warn the reader that while the results dealing with g contained in subsections 3.1 and 3.2 will be crucial in the proof of ¸Theorem 2.1, those in subsection 3.3 will not be employed in that proof. Actually, Proposition 3.9 and Corollary 3.11 take advantage of Theorem 2.1 itself (in particular of the lower semicontinuity of Γ-limits).

Equivalent characterizations of g(z, ν)

We show below that we may reduce the test sequences in the definition of g(z, ν) in (2.12) to those converging in L 2 and satisfying periodic boundary conditions in (n-1) directions orthogonal to ν and mutually orthogonal to each other. This is the content of the next two propositions, which will be crucial in the proof of the upper bound for the surface part (Theorem 5.2

Step 2). The proof draws inspiration from that of [BF94, Lemma 4.2]. We fix a mollifier

ϕ 1 ∈ C ∞ c (B 1 ), with B1 ϕ 1 dx = 1, and set ϕ ε (x) := ε -n ϕ 1 (x/ε) in B ε . Proposition 3.1. Assume an optimal sequence in (2.12) converges in L 2 (Q ν ; R m+1 ). Then there are ε j → 0, (u * j , v * j ) → (zχ {x•ν>0} , 1) in L 2 (Q ν ; R m+1 ), with v * j ∈ [0, 1] L n -a.e. in Ω, such that lim j→∞ F ∞ εj (u * j , v * j ; Q ν ) ≤ g(z, ν)
and

u * j = (zχ {x•ν>0} ) * ϕ εj , v * j = χ {|x•ν|≥2εj } * ϕ εj on ∂Q ν . (3.1) Proof. Step 1. Construction of u * j and v * j . Pick ε j → 0, v j and u j → zχ {x•ν>0} in L 2 (Q ν ; R m ) such that g(z, ν) = lim j→∞ F ∞ εj (u j , v j ; Q ν ).
To simplify the notation we write

U j := (zχ {x•ν>0} ) * ϕ εj , V j := χ {|x•ν|≥2εj } * ϕ εj . (3.2) Obviously U j -zχ {x•ν>0} L 2 (Q ν ) → 0, so that u j -U j L 2 (Q ν ) → 0. Moreover, by construction U j = zχ {x•ν>0} if |x • ν| ≥ ε j , V j = 0 if |x • ν| ≤ ε j , and V j = 1 if |x • ν| ≥ 3ε j .
Therefore, by Ψ ∞ (0) = 0 and f (0) = 0, we have

F ∞ εj (U j , V j ; Q ν ) = F ∞ εj (0, V j ; Q ν ) ≤ c + ε j {x∈Q ν :εj <|x•ν|<3εj } |∇V j | 2 dx ≤ c , as ∇V j L ∞ (R m ) ≤ c εj ,
where c is a constant independent of j ∈ N.
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Next, we choose a sequence η j → 0 such that

ε j + u j -U j 2/3 L 2 (Q ν ) η j → 0 (3.3)
and set K j := η j /ε j , we can assume K j ≥ 4. We let Rj

k := Q ν 1-kεj \Q ν 1-(k+1)εj
, where we write for brevity Q ν r := rQ ν for the scaled cube. We select

k j ∈ {K j + 1, . . . , 2K j } such that, writing R j := Rj kj , u j -U j 2 L 2 (Rj ) ≤ c K j u j -U j 2 L 2 (Q ν ) (3.4) and F ∞ εj (u j , v j ; R j ) + F ∞ εj (U j , V j ; R j ) ≤ c K j . (3.5) We fix θ j ∈ C 1 c (Q ν 1-kj εj ) with θ j = 1 on Q ν 1-(kj +1
)εj and |∇θ j | ≤ 3/ε j , and define u * j := θ j u j + (1 -θ j )U j . The construction of v * j is more complex. In the interior part, it should match v j . In the exterior, V j . In the interpolation region, it should be not larger than v j and V j , but also not larger than 1 -η j . Therefore we first define vj (x) := min{1, 1 -

η j + 1 ε j dist(x, R j )}, (3.6) 
which coincides with 1-η j in the interpolation region R j , and with 1 at distance larger than η j ε j from it, then

Vj (x) := min{1, V j (x) + 1 ε j dist(x, Q ν \ Q ν 1-(kj +1)εj )} (3.7) which coincides with V j outside Q ν 1-(kj +1
)εj , and with 1 inside Q ν 1-(kj +3)εj as well as for |x • ν| ≥ 3ε j (cf. the definition of V j ), and finally

ṽj := min{1, v j + 2 k j ε j dist(x, Q ν 1-kj εj )} . (3.8)
We then combine these three ingredients to obtain v * j := min{ṽ j , Vj , vj }.

On ∂Q ν the first and the last term are equal to 1, hence v * j = Vj = V j .

Step 2. Estimate of the elastic energy. By the definition of u * j ,

|∇u * j | ≤ |∇u j | + |∇U j | + 3 ε j |u j -U j | 15 Phase-field-vectorial-submitted.tex [June 23, 2022] therefore in R j Ψ ∞ (∇u * j ) ≤ cΨ ∞ (∇u j ) + cΨ ∞ (∇U j ) + c ε 2 j |u j -U j | 2 .
We recall that v * j ≤ min{v j , V j , 1 -η j } in R j and that [0, 1) t → t/(1 -t) is increasing. Since by construction v * j = V j = 0 on {∇U j = 0}∩R j the term Ψ ∞ (∇U j ) can be ignored. Therefore

ε j (v * j ) 2 (1 -v * j ) 2 Ψ ∞ (∇u * j ) ≤ c ε j v 2 j (1 -v j ) 2 Ψ ∞ (∇u j ) + c ε j η 2 j |u j -U j | 2 ε 2 j .
Integrating over R j and using (3.5) in the first term, (3.4) in the second one,

Rj ε j (v * j ) 2 (1 -v * j ) 2 Ψ ∞ (∇u * j )dx ≤ c K j + c u j -U j 2 L 2 (Q ν ) K j ε j η 2 j .
Using first that the definition of K j implies lim j→∞ K j ε j /η j = 1 and then (3.3), lim sup

j→∞ u j -U j 2 L 2 (Q ν ) K j ε j η 2 j = lim sup j→∞ u j -U j 2 L 2 (Q ν ) η 3 j = 0. Therefore lim sup j→∞ Rj ε j (v * j ) 2 (1 -v * j ) 2 Ψ ∞ (∇u * j )dx = 0.
Using again that the supports of ∇U j and V j are disjoint, we have

Q ν \Q ν 1-k j ε j ε j V 2 j (1 -V j ) 2 Ψ ∞ (∇U j )dx = 0. Therefore lim sup j→∞ Q ν ε j (v * j ) 2 (1 -v * j ) 2 Ψ ∞ (∇u * j )dx ≤ lim sup j→∞ Q ν ε j v 2 j (1 -v j ) 2 Ψ ∞ (∇u j )dx. (3.9)
Step 3. Estimate of the energy of the phase field. By the definition of v * j ,

F ∞ εj (0, v * j ; Q ν ) ≤ F ∞ εj (0, ṽj ; Q ν ) + F ∞ εj (0, Vj ; Q ν ) + F ∞ εj (0, vj ; Q ν ). (3.10) From (3.6) we have |1 -vj | ≤ η j with |{v j = 1}| ≤ cε j and |∇v j | ≤ 1/ε j with |{∇v j = 0}| ≤ cε j η j , so that F ∞ εj (0, vj ; Q ν ) = Q ν (1 -vj ) 2 4ε j + ε j |∇v j | 2 dx ≤ cη j .
From the definition of V j and Vj , we see that

|{ Vj = 1}| ≤ cη j ε j and ε j |∇ Vj | ≤ c, so that F ∞ εj (0, Vj ; Q ν ) ≤ cη j .
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[June 23, 2022] Similarly, ṽj = v j in Q ν 1-kj εj , |ṽ j -1| ≤ |v j -1|, and |∇ṽ j | ≤ |∇v j | + 2/(k j ε j ) in Q ν \ Q ν 1-kj εj lead to F ∞ εj (0, ṽj ; Q ν ) ≤ F ∞ εj (0, v j ; Q ν ) + 4ε j L n (Q ν \ Q ν 1-kj εj ) k 2 j ε 2 j + 4 k j ε 1/2 j F ∞ εj (0, v j ; Q ν ) 1/2 L n (Q ν \ Q ν 1-kj εj ) 1/2 ≤ F ∞ εj (0, v j ; Q ν ) + c k 1/2 j . Recalling k j ≥ K j + 1 → ∞ and η j → 0, (3.10) leads to lim sup j→∞ F ∞ εj (0, v * j ; Q ν ) ≤ lim sup j→∞ F ∞ εj (0, v j ; Q ν ).
Combining this with (3.9) concludes the proof.

We are now ready to perform the claimed reduction on the test sequences in the definition of g(•, ν) in (2.12). To this aim we fix a sequence (a k ) k ⊂ (0, ∞) such that a k < a k+1 , a k ↑ ∞, and such that there are functions

T k ∈ C 1 c (R m ; R m ) satisfying T k (z) := z, if |z| ≤ a k , 0, if |z| ≥ a k+1 (3.11)
and ∇T k L ∞ (R m ) ≤ 1. Following De Giorgi's averaging/slicing procedure on the codomain, the family T k will be used in several instances along the paper to obtain from a sequence converging in L 1 to a limit belonging to L ∞ , a sequence with the same L 1 limit which is in addition equi-bounded in L ∞ . Moreover, this substitution can be done up to paying an error in energy which can be made arbitrarily small.

Proposition 3.2. For any (z, ν) ∈ R m ×S n-1 and any ε * j ↓ 0 there is

(u * j , v * j ) → (zχ {x•ν>0} , 1) in L 2 (Q ν ; R m+1 ), with v * j ∈ [0, 1] L n -a.e. in Ω, such that lim j→∞ F ∞ ε * j (u * j , v * j ; Q ν )=g(z, ν) (3.12) and u * j = (zχ {x•ν>0} ) * ϕ ε * j , v * j = χ {|x•ν|≥2ε * j } * ϕ ε * j on ∂Q ν .
Proof.

Step 1. Reduction to an optimal sequence in (2.12) converging in

L 2 (Q ν ; R m+1 ). Let ε j → 0, (u j , v j ) → (zχ {x•ν>0} , 1) in L 1 (Q ν ; R m+1 ) be such that g(z, ν) = lim j→∞ F ∞ εj (u j , v j ; Q ν ). Recall that v j ∈ [0, 1] L n -a.e. in Ω, therefore v j → 1 in L 2 (Q ν ). We claim that for all j, M ∈ N there is k M,j ∈ {M + 1, . . . , 2M } such that F ∞ εj (T k M,j (u j ), v j ; Q ν ) ≤ 1 + c M F ∞ εj (u j , v j ; Q ν ) , (3.13) 17 Phase-field-vectorial-submitted.tex [June 23, 2022]
where c > 0 is a constant independent of M and j.

If a M > 1 + |z| = 1 + zχ {x•ν>0} L ∞ (Q ν ) then T k M ,j (u j ) → zχ {x•ν>0} in L 2 (Q ν ; R m ), and (3.13) yields lim sup j→∞ F ∞ εj (T k M ,j (u j ), v j ; Q ν ) ≤ 1 + c M g(z, ν) ,
in turn implying by the arbitrariness of

M ∈ N g(z, ν) = inf{lim inf j→∞ F ∞ εj (u j , v j ; Q ν ) : u j -zχ {x•ν>0} L 2 (Q ν ) → 0, ε j → 0}.
We are left with establishing (3.13). To this aim consider T k (u j ) and note that

F ∞ εj (T k (u j ), v j ; Q ν ) = F ∞ εj (u j , v j ; {|u j | ≤ a k }) + F ∞ εj (T k (u j ), v j ; {a k < |u j | < a k+1 }) + F ∞ εj (0, v j ; {|u j | ≥ a k+1 }) . (3.14)
We estimate the second term in (3.14). The growth conditions on Ψ (cf. (2.3)) and

∇T k L ∞ (R m ) ≤ 1 yield for a constant c > 0 F ∞ εj (T k (u j ), v j ; {a k < |u j | < a k+1 }) ≤ c {a k <|uj |<a k+1 } ε j f 2 (v j )Ψ ∞ (∇u j )dx + F ∞ εj (0, v j ; {a k < |u j | < a k+1 }) .
(3.15)

Collecting (3.14) and (3.15) and using

F ∞ εj (u j , v j ; A)+F ∞ εj (0, v j ; B) ≤ F ∞ εj (u j , v j ; A∪ B) for A and B disjoint we conclude that F ∞ εj (T k (u j ), v j ; Q ν ) ≤ F ∞ εj (u j , v j ; Q ν ) + c {a k <|uj |<a k+1 } ε j f 2 (v j )Ψ ∞ (∇u j )dx .
Let now M ∈ N, by averaging there exists k M,j ∈ {M + 1, . . . , 2M } such that

F ∞ εj (T k M,j (u j ), v j ; Q ν ) ≤ 1 M 2M k=M +1 F ∞ εj (T k (u j ), v j ; Q ν ) ≤ 1 + c M F ∞ εj (u j , v j ; Q ν ) ,
i.e. (3.13).

Step 2. Conclusion. In view of Step 1 there is an optimal sequence for g(z, ν) in (2.12) converging in

L 2 (Q ν ; R m+1 ). Let (ε k , u k , v k ) be the se- quence from Proposition 3.1.
Since lim k→∞ lim j→0 ε * j /ε k = 0, we can select a nondecreasing sequence k(j) → ∞ such that λ j := ε * j /ε k(j) → 0. We let Qν := (Id -ν ⊗ ν)Q ν ⊂ ν ⊥ ⊂ R n and select x 1 , . . . , x Ij ∈ Qν , with I j := 1/λ j n-1 , such that x i + Qν λj are pairwise disjoint subsets of Qν . We set

u * j (x) := u k(j) ( x-xi λj ), if x -x i ∈ Q ν λj for some i, U * j (x), otherwise in Q ν 18 Phase-field-vectorial-submitted.tex [June 23, 2022] and v * j (x) := v k(j) ( x-xi λj ), if x -x i ∈ Q ν λj for some i, V * j (x), otherwise in Q ν ,
where U * j and V * j are defined as in (3.2) using ε * j . One easily verifies that U * j (x) = U k(j) ( x-y λj ) for all y ∈ ν ⊥ , and the same for V . By the boundary conditions (3.1), these functions are continuous and therefore in W 1,2 (Q ν ; R m+1 ). We further estimate

F ∞ ε * j (u * j , v * j ; Q ν ) ≤ I j λ n-1 j F ∞ ε k(j) (u k(j) , v k(j) ; Q ν ) + cH n-1 ( Qν \ ∪ i (x i + Qν λj )).
Taking j → ∞, and recalling that lim

sup j F ∞ ε k(j) (u k(j) , v k(j) ; Q ν ) ≤ g(z, ν), concludes the proof.
In what follows we provide an equivalent characterization for the surface energy g in the spirit of [CFI16, Proposition 4.3].

Proposition 3.3. For any (z, ν) ∈ R m × S n-1 one has g(z, ν) = lim T →∞ inf (u,v)∈U T z,ν 1 T n-1 F ∞ 1 (u, v; Q ν T ) , (3.16) 
where

U T z,ν := (u, v) ∈ W 1,2 (Q ν T ; R m+1 ) : 0 ≤ v ≤ 1, v = χ {|x•ν|≥2} * ϕ 1 and u = (zχ {x•ν>0} ) * ϕ 1 on ∂Q ν T .
Proof. For every (z, ν) ∈ R m × S n-1 and T > 0 set

g T (z, ν) := inf (u,v)∈U T z,ν 1 T n-1 F ∞ 1 (u, v; Q ν T ) .
We first prove that lim sup

T →∞ g T (z, ν) ≤ g(z, ν) .
(3.17) Indeed, if T j ↑ ∞ is a sequence achieving the superior limit on the left-hand side above, thanks to Proposition 3.2 we may consider (u

j , v j ) ∈ W 1,2 (Q ν ; R m+1 ) with 0 ≤ v j ≤ 1, (u j , v j ) → (zχ {x•ν>0} , 1) in L 2 (Q ν ; R m+1 ), u j = (zχ {x•ν>0} ) * ϕ 1 T j , v j = χ {|x•ν|≥ 2 T j } * ϕ 1 T j on ∂Q ν , (3.18) and lim j→∞ F ∞ 1 T j (u j , v j ; Q ν ) = g(z, ν). (3.19)
Then, define (ũ j (y), ṽj (y)) := u j ( y Tj ), v j ( y Tj ) for y ∈ Q ν Tj , and note that by a change of variable it is true that

1 T n-1 j F ∞ 1 (ũ j , ṽj ; Q ν Tj ) = F ∞ 1 T j (u j , v j ; Q ν ) ,
19 Phase-field-vectorial-submitted.tex [June 23, 2022] and that (ũ j , ṽj ) ∈ U Tj z,ν in view of (3.18). Then, by (3.19), the choice of T j and the definition of g T (z, ν) we conclude straightforwardly (3.17).

In order to prove the converse inequality lim inf

T →∞ g T (z, ν) ≥ g(z, ν) , (3.20) 
we assume for the sake of notational simplicity ν = e n . We then fix ρ > 0 and take T > 6, depending on ρ, and (u

T , v T ) ∈ U T z,en such that 1 T n-1 F ∞ 1 (u T , v T ; Q en T ) ≤ lim inf T →∞ g T (z, e n ) + ρ . (3.21)
Let ε j → 0 and set

u j (y) :=    u T y ε j -d , if y ∈ ε j (Q en T + d) ⊂⊂ Q en , (zχ {x•en>0} * ϕ 1 )( y εj ), otherwise in Q en , v j (y) :=    v T y ε j -d , if y ∈ ε j (Q en T + d) ⊂⊂ Q en , (χ {|x•en|>2} * ϕ 1 )( y εj ), otherwise in Q en , with d ∈ Z n-1 × {0}. Then, (u j , v j ) → (zχ {x•en>0} , 1) in L 1 (Q en ; R m+1 ), and letting I εj := {d ∈ Z n-1 × {0} : ε j (Q en T + d) ⊂⊂ Q en }, a change of variable yields (cf. also the discussion after (3.2)) g(z, e n ) ≤ lim sup j→∞ F ∞ εj (u j , v j ; Q en ) ≤ lim sup j→∞ d∈Iε j F ∞ εj (u j , v j ; ε j (Q en T + d)) + c ε j L n Q en ∩{ε j ≤|x n | ≤ 3ε j } \ d∈Iε j ε j (Q en T + d) = lim sup j→∞ ε n-1 j #I εj F ∞ 1 (u T , v T ; Q en T ) ≤ 1 T n-1 F ∞ 1 (u T , v T ; Q en T ) ≤ lim inf T →∞ g T (z, e n ) + ρ ,
by the choice of (u T , v T ) and T (cf. (3.21)). As ρ → 0 we get (3.20). Estimates (3.17) and (3.20) yield the existence of the limit of g T (z, ν) as T ↑ ∞ and equality (3.16), as well.

With this representation of g at hand we can obtain a version of Proposition 3.2 which also accounts for a regularization term of the form η ε Ψ(∇u)dx.

Proposition 3.4. For any ε j ↓ 0 and η j ↓ 0 with η j /ε j → 0, and any

(z, ν) ∈ R m × S n-1 there is (u j , v j ) → (zχ {x•ν>0} , 1) in L 2 (Q ν ; R m+1 ), with v j ∈ [0, 1] L n -a.e. in Q ν , such that lim j→∞ F ∞ εj (u j , v j ; Q ν ) = g(z, ν) 20 Phase-field-vectorial-submitted.tex [June 23, 2022] lim j→∞ η j Q ν |∇u j | 2 dx = 0 , and 
u j = (zχ {x•ν>0} ) * ϕ εj , v j = χ {|x•ν|≥2εj } * ϕ εj on ∂Q ν .
Proof. We use the same construction as above (without loss of generality, explicitly written only for ν = e n ), and compute similarly

∇u j 2 L 2 (Q en ) ≤ d∈Iε j ∇u j 2 L 2 (εj (Q en T +d)) + c ε 2 j L n (Q en ∩ {|x n | ≤ ε j }) = ε n-1 j #I εj ∇u T 2 L 2 (Q T ) + c ε j ≤ C T ε j .
To conclude the proof it suffices to choose T j → ∞ so slow that η j C Tj /ε j → 0. 

Corollary 3.5. If Ψ ∞ (ξ) = |ξ| 2 , then g(z, ν) = g scal (|z|) for all (z, ν) ∈ R m × S n-1 ,
g scal (s) = lim T ↑∞ inf (α,β)∈U T s F ∞ 1 (α, β; (-T /2, T /2)),
with

F ∞ 1 (α, β; (-T /2, T /2)) := T 2 -T 2 (f 2 (β)|α | 2 + (1 -β) 2 4 + |β | 2 )dx and 
U T s := {α, β ∈ W 1,2 ((-T /2, T /2)) : 0 ≤ β ≤ 1, β(± T /2) = 1 α(-T /2) = 0 , α( T /2) = s}. Let (z, ν) ∈ R m × S n-1 , z = 0. We first prove that g(z, ν) ≥ g scal (|z|). (3.22) If T > 0 and (u, v) ∈ U T z,ν (see Proposition 3.3 for the definition of U T z,ν ), then for H n-1 -a.e. y ∈ Qν T := (Id -ν ⊗ ν)Q ν T ⊂ ν ⊥ the slices u ν y (t) := z |z| • u(y + tν), v ν y (t) := v(y + tν)
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1 T n-1 F ∞ 1 (u, v; Q ν T ) ≥ 1 T n-1 Qν T F ∞ 1 (u ν y , v ν y ; (-T /2, T /2)) dH n-1 (y) ≥ inf (α,β)∈U T |z| F ∞ 1 (α, β; (-T /2, T /2)).
Taking the infimum over (u, v) ∈ U T z,ν and passing to the limit T → ∞ we get (3.22).

Let us show now that g(z, ν) ≤ g scal (|z|).

(3.23)

Let T > 0 and (α, β) ∈ U T |z| . Fixed ε j → 0, we will construct a competitor (u j , v j ) for the problem (2.12) defining g. We set

u j (x) :=    α T ε j x • ν z |z| , if |x • ν| ≤ εj 2 , x ∈ Q ν , zχ {x•ν>0} , otherwise in Q ν , v j (x) :=    β T ε j x • ν , if |x • ν| ≤ εj 2 , x ∈ Q ν , 1, otherwise in Q ν .
Hence by a change of variables we have u j -zχ {x•ν>0} L 1 (Q ν ) → 0 and

F ∞ ε j/T (u j , v j ; Q ν ) = F ∞ 1 (α, β; (-T /2, T /2)) .
Therefore, we conclude that

g(z, ν) ≤ F ∞ 1 (α, β; (-T /2, T /2)) .
As (α, β) ∈ U T |z| varies, we obtain (3.23).

Remark 3.6. The same argument shows that if

Ψ satisfies Ψ ∞ (ξ) ≥ Ψ ∞ (ξν⊗ν) for every ξ ∈ R m×n and ν ∈ S n-1 , then for all (z, ν) ∈ R m × S n-1 g(z, ν) = lim T ↑∞ inf U T z T /2 -T /2 f 2 (β(t))Ψ ∞ α (t) ⊗ ν + (1 -β(t)) 2 4 + |β (t)| 2 dt
where

U T z := {(α, β) ∈ W 1,2 ((-T /2, T /2); R m+1 ) : 0 ≤ β ≤ 1, β(± T /2) = 1 α(-T /2) = 0, α( T /2) = z}.
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Structural properties of g(z, ν)

We next deduce the coercivity properties of g.

Lemma 3.7. There is c > 0 such that, for all z, ν ∈ R m × S n-1 ,

1 c (|z| ∧ 1) ≤ g(z, ν) ≤ c(|z| ∧ 1).
We provide here a direct proof of the lemma. Alternatively, these bounds may be derived estimating F ε by its 1D counterpart (as in (4.2) below) and recalling the bounds holding for g scal , see [CFI16, Prop. 4.1].

Proof. We start with the lower bound. Let z ∈ R m , ν ∈ S n-1 , and fix sequences

ε j → 0, v j and u j → zχ {x•ν>0} in L 1 (Q ν ; R m ) such that F ∞ εj (u j , v j ; Q ν ) → g(z, ν). For every j and y j ∈ ν ⊥ ∩ Q ν we define v * j ∈ W 1,2 ((-1 2 , 1 2 ); [0, 1]) and u * j ∈ W 1,2 ((-1 2 , 1 2 ); R m ) by v * j (t) := v j (y j + tν) and u * j (t) := u j (y j + tν). The set of y j ∈ ν ⊥ ∩ Q ν such that u * j -zχ {t≥0} L 1 ((-1 2 , 1 2 )) ≤ 3 u j -zχ {x•ν≥0} L 1 (Q ν )
has measure at least 2 3 and, using (2.3) to estimate

1 c |(u * j ) | 2 (t) ≤ Ψ ∞ (∇u j )(y j + tν), the set of y j ∈ ν ⊥ ∩ Q ν such that (-1 2 , 1 2 ) ε j 2 (v * j ) 2 (1 -v * j ) 2 |(u * j ) | 2 c + (1 -v * j ) 2 4ε j + ε j |(v * j ) | 2 dt ≤ 3F ∞ εj (u j , v j ; Q ν )
also has measure at least 2 3 . Therefore we can fix y j such that both inequalities hold. If g(z, ν) < ∞, then necessarily v * j → 1 in L 2 ((-1 2 , 1 2 )), and it has a continuous representative. We can therefore assume that sup v * j ≥ 3 4 for large j.

If inf v * j ≤ 1 2 then 1 2 (1 -v) 2 3/4 1/2 ≤ (-1 2 , 1 2 ) |(1 -v * j )(v * j ) |dt ≤ (-1 2 , 1 2 ) (1 -v * j ) 2 4ε j + ε j |(v * j ) | 2 dt ≤ 3F ∞ εj (u j , v j ; Q ν ).
Otherwise, v * j ≥ 1 2 pointwise and

(-1 2 , 1 2 ) ε j 2 (v * j ) 2 (1 -v * j ) 2 |(u * j ) | 2 c + (1 -v * j ) 2 4ε j dt ≥ 1 2c 1/2 (-1 2 , 1 2 ) |(u * j ) |dt. Since u * j -zχ t≥0 L 1 ((-1 2 , 1 2 
)) → 0, there are t j , t j such that u * j (t j ) → 0, u * j (t j ) → z, and therefore lim inf j→∞ (-

1 2 , 1 2 ) |(u * j ) |dt ≥ lim inf j→∞ |u * j (t j )-u * j (t j )| = |z|. We conclude that lim inf j→∞ F ∞ εj (u j , v j ; Q ν ) ≥ c(1 ∧ |z|).
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We turn to the upper bound. We define u j (x) := u * j (x • ν), v j (x) := v * j (x • ν), where, denoting by AI the affine interpolation between the boundary data in the relevant segments,

u * j (t) :=      0, if t ≤ -ε j , z, if t ≥ ε j , AI, if -ε j < t < ε j , v * j (t) :=      (1 -( |z|) 1/2 ) + , if |t| ≤ ε j , 1, if |t| ≥ 2ε j , AI, if |t| ∈ (ε j , 2ε j ).
If |z| < 1, then the upper bound in (2.3) leads to

F ∞ εj (u j , v j ; Q ν ) ≤ 2ε j ε j 2 c(|z|/2ε j ) 2 |z| + 4ε j |z| 4ε j + 2ε j ε j |z| ε 2 j = ( 1 2 c + 1 + 2) |z|.
If instead |z| ≥ 1 the first term vanishes, and

F ∞ εj (u j , v j ; Q ν ) ≤ 0 + 4ε j 1 4ε j + 2ε j ε j 1 ε 2 j = 3.
We prove next the subadditivity and continuity of g.

Lemma 3.8. (i) For any ν ∈ S n-1 and z 1 , z 2 ∈ R m one has

g(z 1 + z 2 , ν) ≤ g(z 1 , ν) + g(z 2 , ν).
(ii) g ∈ C 0 (R m × S n-1 ).

Proof. (i): Fix z 1 , z 2 ∈ R m , ν ∈ S n-1 . Let (u i j , v i j ) be the sequences from Proposition 3.2 corresponding to ε j := 1/j and the pair (ν, z i ), for i = 1, 2. We implicitly extend both periodically in the directions of ν ⊥ ∩ Q ν , and constant in the direction ν. In particular, for {x • ν ≥ 1 2 } we have u i j = z i and v i j = 1; for {x • ν ≤ -1 2 } we have u i j = 0 and v i j = 1 for i ∈ {1, 2} and all j. We use a rescaling similar to the one of Proposition 3.2. We fix a sequence M j ∈ N, M j → ∞, and define (u

j , v j ) ∈ W 1,2 (R n ; R m × [0, 1]) by u j (x) := u 1 j (M j x + 1 2 ν), if x • ν < 0, z 1 + u 2 j (M j x -1 2 ν), if x • ν ≥ 0,
and, correspondingly,

v j (x) := v 1 j (M j x + 1 2 ν), if x • ν < 0, v 2 j (M j x -1 2 ν), if x • ν ≥ 0.
By the periodicity of (u i j , v i j ) in the directions of ν ⊥ ∩ Q ν , these maps belong to

W 1,2 (Q ν ; R m ). Furthermore, u j = 0 and v j = 1 if x • ν ≤ -1 Mj , u j = z 1 + z 2
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u j -(z 1 + z 2 )χ {x•ν≥0} L 1 (Q ν ) = u j -(z 1 + z 2 )χ {x•ν≥0} L 1 (Q ν ∩{|x•ν|≤ 1 M j }) = 1 M n j u 1 j L 1 (Mj Q ν ∩{|x•ν|≤ 1 2 }) + 1 M n j u 2 j -z 2 L 1 (Mj Q ν ∩{|x•ν|≤ 1 2 }) = 1 M j u 1 j L 1 (Q ν ) + 1 M j u 2 j -z 2 L 1 (Q ν ) ≤ 1 M j u 1 j -z 1 χ {x•ν≥0} L 1 (Q ν ) + |z 1 | 2M j + 1 M j u 2 j -z 2 χ {x•ν≥0} L 1 (Q ν ) + |z 2 | 2M j , so that u j → (z 1 + z 2 )χ {x•ν≥0} in L 1 (Q ν ; R m ).
Arguing similarly, we infer

F ∞ εj /Mj (u j , v j ; Q ν ) = F ∞ εj (u 1 j , v 1 j ; Q ν ) + F ∞ εj (u 2 j , v 2 j ; Q ν ).
The conclusion follows taking the limit j → ∞.

(ii): By (i) and Lemma 3.7 we have g(z, ν) ≤ g(z , ν) + c |z -z |, which implies that for any ν ∈ S n-1 the function g(•, ν) is c -Lipschitz continuous. Therefore it suffices to prove continuity in ν at any fixed z.

Since Ψ ∞ is continuous and positive on the compact set S nm-1 ⊆ R m×n , there is a monotone modulus of continuity ω

: [0, ∞) → [0, ∞), with ω ρ → 0 as ρ → 0, such that Ψ ∞ (ξ) ≤ (1 + ω |ξ-ξ | )Ψ ∞ (ξ ) for |ξ| = |ξ | = 1. This implies that Ψ ∞ (η) ≤ (1 + ω |R-Id| )Ψ ∞ (ηR) for any η ∈ R m×n , R ∈ O(n) (3.24)
(it suffices to insert η/|η| and ηR/|η| in the above expression). Fix ν ∈ S n-1 , a sequence ε j → 0, and let (u j , v j ) be as in Proposition 3.2, extended periodically in the directions of ν ⊥ ∩ Q ν and constant along ν, as in the proof of (i). Let ν ∈ S n-1 , ν = ν, and choose R ∈ O(n) such that ν = Rν and |R -Id| ≤ c|ν -ν| (for example, R can be the identity on vectors orthogonal to both ν and ν, and map (ν, ν⊥ ) to (ν, ν ⊥ ) in this two-dimensional subspace). We fix a sequence M j → ∞ (for example, M j := j) and define ũj (x) := u j (M j Rx) , ṽj (x) := v j (M j Rx) .

From u j → zχ {x•ν≥0} in L 1 loc (R n ; R m ) we obtain ũj → zχ {x•ν≥0} . Further, ∇ũ j (x) = M j ∇u j (M j Rx)R, which implies, recalling (3.24), Ψ ∞ (∇ũ j )(x) = M 2 j Ψ ∞ (∇u j R)(M j Rx) ≤ M 2 j (1 + ω |R-Id| )Ψ ∞ (∇u j )(M j Rx).
Inserting in the definition of F ∞ εj (ũ j , ṽj ; Q ν ) and using a change of variables leads to

F ∞ ε j/M j (ũ j , ṽj ; Q ν ) ≤ (1 + ω |R-Id| )M 1-n j F ∞ εj (u j , v j ; M j RQ ν ).
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We observe that, although Rν = ν, we cannot in general expect RQ ν = Q ν . However, as (u j , v j ) are periodic in the directions orthogonal to ν, the (n -1)dimensional square ν ⊥ ∩ M j RQ ν can be covered by at most M n-1 j + cM n-2 j disjoint translated copies of the (n-1)-dimensional unit square ν ⊥ ∩Q ν . Therefore

g(z, ν) ≤ lim sup j→∞ F ∞ ε j/M j (ũ j , ṽj ; Q ν ) ≤(1 + ω |R-Id| ) lim sup j→∞ (1 + c M j )F ∞ εj (u j , v j ; Q ν ) =(1 + ω |R-Id| )g(z, ν) ≤ (1 + ω c|ν-ν| )g(z, ν).

Density of the Cantor part

We study now the behaviour of the surface energy density g at small jump amplitudes. The next result is probably well known to experts. Despite this, we give a self-contained proof since we have not found a precise reference in the literature. Similar constructions are performed in [AFP00, Proposition 5.1] for isotropic functionals defined on vector-valued measures. The L 1 lower semicontinuity of F 0 is assumed to hold in Proposition 3.9 below, as already mentioned at the beginning of Section 3. Such a property follows, for instance, from the validity of Theorem 2.1. We stress again that Proposition 3.9 is not used in the proof of Theorem 2.1, rather it provides a further piece of information on g showing its linear behavior at small amplitudes.

Proposition 3.9. Assume that the functional F 0 defined in (2.13) is L 1 (Ω; R m ) lower semicontinuous. Then, for all ν ∈ S n-1 we have

lim z→0 g(z, ν) h qc,∞ (z ⊗ ν) = 1 .
Proof. With fixed ν ∈ S n-1 , let x 0 ∈ Ω and ρ > 0 be such that Q ν ρ (x 0 ) ⊂ Ω. Upon translating and scaling, it is not restrictive to assume x 0 = 0 and ρ = 1. For every z ∈ R m consider the sequence

w j (x) := ϕ(jx • ν)z , x ∈ Q ν , (3.25) 
where ϕ(t) := (t ∧ 1) ∨ 0 for every t ∈ R. Clearly,

w j → u z (x) := zχ {x•ν≥0} in L 1 (Q ν ; R m
), and thus by the L 1 (Q ν ; R m ) lower semicontinuity of F 0 we conclude that On the other hand, given z ∈ R m and any couple of sequences z j → z and t j → 0 + , denote by M j the integer part of t -1 j and define for every k ∈ N, k ≥ 3,

g(z, ν) = F 0 (u z , 1; Q ν ) ≤ lim inf j→∞ F 0 (w j , 1; Q ν ) = lim inf j→∞ Q ν h qc (∇w j )dx = lim inf j→∞ {x∈Q ν : 0≤x•ν≤ 1 /j} h qc (jz ⊗ ν)dx = lim inf j→∞ h qc (jz ⊗ ν) j ≤ h qc,∞ (z ⊗ ν) . ( 3 
u j,k (x) := Mj -1 i=0 it j z j χ [ i kM j , i+1 kM j ) (x • ν) + zχ [ 1 k , 1 2 ] (x • ν) .
We show that u j,k converges, as j → ∞, to w k as defined in (3.25) for every k ≥ 3. Indeed, for s :

= x • ν ∈ [ i kMj , i+1 kMj ) ⊆ [0, 1 k ) we have |it j z j -zks| ≤ |z -z j | + |z j | |it j -ks| ≤ |z -z j | + |z j | i M j |M j t j -1| + 1 M j ≤ |z -z j | + |z j | |M j t j -1| + 1 M j → 0 uniformly in i, hence w k -u j,k L ∞ (Q ν ;R m ) → 0 as j → ∞. Further, Du j,k = D j u j,k = (t j z j ⊗ ν)H n-1 ∪ Mj -1 i=1 {x ∈ Q ν : x • ν = i kMj } +((z -(M j -1)t j z j ) ⊗ ν)H n-1 {x ∈ Q ν : x • ν = 1 k } .
Therefore, by the L 1 (Q ν ; R m ) lower semicontinuity of F 0 we conclude that

1 k h qc (kz ⊗ ν) = F 0 (w k , 1; Q ν ) ≤ lim inf j→∞ F 0 (u j,k , 1; Q ν ) = lim inf j→∞ Ju j,k g([u j,k ](x), ν) dH n-1 (x)
= lim inf j→∞ (M j -1)g(t j z j , ν) = lim inf j→∞ g(t j z j , ν) t j .

As this holds for every sequence, this implies

h qc,∞ (z ⊗ ν) ≤ lim inf (t,z )→(0,z) g(tz , ν) t .
(3.27) Indeed, the superior limit in the definition of h qc,∞ is actually a limit on rank-1 directions being h qc,∞ convex on those directions. Let now z j → 0 be a sequence for which

lim inf z→0 g(z, ν) h qc,∞ (z ⊗ ν) = lim j→∞ g( z j , ν) h qc,∞ ( z j ⊗ ν) .
Upon setting z j := zj | zj | , up to subsequences we may assume that z j → z ∞ ∈ S n-1 . In addition, t j := | z j | → 0. Therefore, being h qc,∞ one-homogeneous we have that

g( z j , ν) h qc,∞ ( z j ⊗ ν) = g(t j z j , ν) t j 1 h qc,∞ (z j ⊗ ν)
.
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By the latter equality, by (3.27) and by the continuity of h qc,∞ we infer

lim inf z→0 g(z, ν) h qc,∞ (z ⊗ ν) ≥ 1 . (3.28)
The conclusion follows at once from (3.26) and (3.28).

We now identify h qc,∞ explicitly as stated in (2.10).

Proposition 3.10. For all ξ ∈ R m×n

h qc,∞ (ξ) = (Ψ 1 /2 ) qc,∞ (ξ) . (3.29)
Proof. With fixed ξ ∈ R m×n , the very definition of h in (2.6) and the growth condition (2.3) easily imply

h qc,∞ (ξ) = lim sup t→∞ h qc (tξ) t ≤ lim sup t→∞ (Ψ 1 /2 ) qc (tξ) t = (Ψ 1 /2 ) qc,∞ (ξ) . Let ε > 0, then for every t > 0 consider ϕ t ∈ C ∞ c (Q 1 ; R m ) such that h qc (tξ) ≥ Q1 h(tξ + ∇ϕ t (x))dx -ε . (3.30)
Note that

E t :={x ∈ Q 1 : h(tξ + ∇ϕ t (x)) = Ψ(tξ + ∇ϕ t (x))} ={x ∈ Q 1 : Ψ 1 /2 (tξ + ∇ϕ t (x)) ≤ } , so that Et Ψ 1 /2 (tξ + ∇ϕ t (x))dx ≤ 2 .
Therefore, being h ≥ 0 (cf. again (2.3)) from (3.30) we infer that

h qc (tξ) ≥ Q1 Ψ 1 /2 (tξ + ∇ϕ t (x))dx -2 -ε ≥ (Ψ 1 /2 ) qc (tξ) -2 -ε , from which we conclude that h qc,∞ (ξ) ≥ lim sup t→∞ (Ψ 1 /2 ) qc (tξ) t = (Ψ 1 /2 ) qc,∞ (ξ) .
From Propositions 3.9 and 3.10 we deduce straightforwardly the ensuing statement.

Corollary 3.11. For all ν ∈ S n-1 we have

lim z→0 g(z, ν) (Ψ 1 /2 ) qc,∞ (z ⊗ ν) = 1 .
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Domain of the limits

In order to characterize the compactness properties and the space in which the limit is finite it is useful to consider the scalar simplification of functional,

F scal ε : W 1,2 (A; R × [0, 1]) → [0, ∞], F scal ε (u, v; A) := A f 2 ε (v)|∇u| 2 + (1 -v) 2 4ε + ε|∇v| 2 dx. (4.1)
From (2.3), one immediately obtains that for any (u, v)

∈ W 1,2 (A; R m × [0, 1]) 1 c max i=1,...,m F scal ε (u i , v; A)-cL n (A) ≤ F ε (u, v; A) ≤ c m i=1 F scal ε (u i , v; A)+cL n (A) (4.2) with the same constant c ≥ 1 as in (2.3). In particular, [CFI16, Prop. 6.1] implies that if (u ε , v ε ) → (u, v) in L 1 (Ω; R m+1 ) with lim inf ε→0 F ε (u ε , v ε ) < ∞ then u ∈ (GBV (Ω)) m and v = 1 L n -a.e
. Ω (for a different proof see Remark 4.7). In addition, for every i ∈ {1, . . . , m}

Ω h conv scal (|∇u i |)dx + Ju i g scal (|[u i ](x)|)dH n-1 + |D c u i |(Ω) < ∞ . (4.3)
Here h conv scal : [0, ∞) → [0, ∞) is the convex function explicitly defined by

h conv scal (t) := ( t ∧ t 2 ) conv = t 2 , if t ∈ [0, 2 ], t - 2 4
, otherwise, (cf. (2.16)-(2.17)). We remark that it coincides with the simplified model h simp for m = 1 (cf. Lemma 2.3). Further, g scal : [0, ∞) → [0, 1] is the function implicitly defined by

g scal (t) := inf Ut 1 0 |1 -β| f 2 (β)|α | 2 + |β |ds (4.4)
where

U t := {α, β ∈ W 1,2 ((0, 1)) : α(0) = 0, α(1) = t, 0 ≤ β ≤ 1, β(0) = β(1) = 1}.
In particular, g scal satisfies (i) g scal is subadditive: Precisely, [AF02, Lemma 2.10] implies that for every u ∈ (GBV (Ω)) m for which |D c u| is a finite measure on Ω, one can construct a vector measure on Ω with total variation coinciding exactly with |D c u|(B) for every Borel subset B of Ω. For this reason such a vector measure, is denoted by D c u. Let us briefly recall the construction of D c u. To this aim, the family of truncations T k defined in (3.11) is employed. Indeed, for every u ∈ (GBV (Ω)) m such that |D c u| is a finite measure on Ω, it is possible to show that the following limit exists for every Borel subset B of Ω

g scal (t 1 + t 2 ) ≤ g scal (t 1 ) + g scal (t 2 ) for every t 1 , t 2 ∈ [0, ∞), (ii) 0 ≤ g scal (t) ≤ 1 ∧ t, (iii)
λ(B) := lim k→∞ D c (T k (u))(B) . (4.5)
In addition, λ is actually independent from the chosen family of truncations.

The set function λ turns out to be a vector Radon measure on Ω, and moreover equality |λ|(B) = |D c u|(B) is true for every B as above.

Finally, for functions u ∈ (GBV (Ω)) m satisfying estimate (4.3) it is also true that

H n-1 ({x ∈ J u : u + (x) = ∞ or u -(x) = ∞}) = 0 (4.6) (cf.
[AF02, Proposition 2.12, Remark 2.13]), here one works with the one-point compactification of R m . We remark that we deal with (GBV (Ω)) m and not with the strictly larger space GBV (Ω; R m ), which is not even a vector space, see [AFP00, Remark 4.27].

Surface energy in BV

We prove below the lower bound in BV for the surface term. We recall that the definition of the surface energy density g has been given in (2.12).

Proposition 4.1. Let u ∈ BV (Ω; R m ), and

(u ε , v ε ) → (u, 1) in L 1 (Ω; R m+1 ). Then for all A ∈ A(Ω) Ju∩A g([u], ν u )dH n-1 ≤ lim inf ε→0 F ε (u ε , v ε ; A) (4.7)
where g has been defined in (2.12).

Proof.

Let (u ε , v ε ) → (u, 1) in L 1 (Ω; R m+1 ) be such that lim inf ε→0 F ε (u ε , v ε ; A) < ∞.
Up to subsequences and with a small abuse of notation, we can assume that the previous lower limit is in fact a limit. Let us define the measures µ ε ∈ M + b (A)

µ ε := f 2 ε (v ε )Ψ(∇u ε ) + (1 -v ε ) 2 4ε + ε|∇v ε | 2 L n A.
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Extracting a further subsequence, we can assume that

µ ε µ weakly * in M(A) = (C 0 c (A)) (4.8) as ε → 0, for some µ ∈ M + b (A), so that lim inf ε→0 F ε (u ε , v ε ; A) ≥ µ(A).
Equation (4.7) will follow once we have proved that

dµ dH n-1 J u (x 0 ) ≥ g([u](x 0 ), ν u (x 0 )), H n-1 -a.e. x 0 ∈ J u ∩ A .
(4.9)

We will prove the last inequality for points

x 0 ∈ J u ∩ A such that dµ dH n-1 J u (x 0 ) = lim ρ→0 µ(Q ν ρ (x 0 )) H n-1 (J u ∩ Q ν ρ (x 0 )) exists finite, lim ρ→0 H n-1 (J u ∩ Q ν ρ (x 0 )) ρ n-1 = 1,
where ν := ν u (x 0 ) and Q ν ρ (x 0 ):= x 0 + ρQ ν is the cube centred in x 0 , with side length ρ, and one face orthogonal to ν. We remark that such conditions define a set of full measure in J u ∩ A.

For x 0 ∈ J u ∩ A as above, we get

dµ dH n-1 J u (x 0 ) = lim ρ→0 µ(Q ν ρ (x 0 )) ρ n-1 = lim ρ∈I ρ→0 lim ε→0 µ ε (Q ν ρ (x 0 )) ρ n-1
where we used (4.8) and

I := ρ ∈ (0, 2 √ n dist(x 0 , ∂A)) : µ(∂Q ν ρ (x 0 )) = 0 .
We introduce

γ ε := inf{z ∈ [0, 1] : f (z) ≥ ε -1 /2 }= 1 1 + ε 1/2 , ṽε := min{v ε , γ ε } and compute F ε (u ε , ṽε ; Q ν ρ (x 0 )) = F ε (u ε , v ε ; Q ν ρ (x 0 ) \ {v ε > γ ε }) + Q ν ρ (x0)∩{vε>γε} Ψ(∇u ε )dx + (1 -γ ε ) 2 4ε L n (Q ν ρ (x 0 ) ∩ {v ε > γ ε }) ≤ F ε (u ε , v ε ; Q ν ρ (x 0 )) + 2 4 ρ n ,
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-γ ε = γ ε ε 1/2 ≤ ε 1/2 . Therefore dµ dH n-1 J u (x 0 ) ≥ lim sup ρ∈I ρ→0 lim sup ε→0 F ε (u ε , ṽε ; Q ν ρ (x 0 )) ρ n-1 . (4.10)
By (2.5), for every δ ∈ (0, 1) one has Ψ(ξ)

≥ (1 -δ)Ψ ∞ (ξ) for ξ sufficiently large. As Ψ ∞ is continuous, there is C(δ) > 0 such that Ψ(ξ) + C(δ) ≥ (1 -δ)Ψ ∞ (ξ)
for all ξ.

We choose δ ρ → 0 such that ρC(δ ρ ) → 0. As εf 2 (ṽ ε ) ≤ 1, we have

εf 2 (ṽ ε )Ψ(∇u ε ) ≥ (1 -δ ρ )εf 2 (ṽ ε )Ψ ∞ (∇u ε ) -C(δ ρ ) with ρ 1-n L n (Q ν ρ )C(δ ρ ) = ρC(δ ρ ) → 0 as ρ → 0. We conclude by (4.10) that dµ dH n-1 J u (x 0 ) ≥ lim sup ρ∈I ρ→0 lim sup ε→0 F ∞ ε (u ε , ṽε ; Q ν ρ (x 0 )) ρ n-1 , (4.11)
where F ∞ ε has been defined in (2.11). Setting y := (x -x 0 )/ρ ∈ Q ν , and changing variable in the previous expression we get

dµ dH n-1 J u (x 0 ) ≥ lim sup ρ∈I ρ→0 lim sup ε→0 F ∞ ε (u ρ ε , ṽρ ε ; Q ν ),
where w ρ (y) := w(ρy + x 0 ) for y ∈ Q ν . Recalling that u ε → u in L 1 (Ω; R m ), by diagonalization we can find subsequences

{ρ k } k and {ε(ρ k )} k such that u ρ k ε(ρ k ) → [u](x 0 )χ {y•ν>0} + u -(x 0 ) in L 1 (Q ν ; R m ) and dµ dH n-1 J u (x 0 ) ≥ lim k→∞ F ∞ ε(ρ k ) (u ρ k ε(ρ k ) , ṽρ k ε(ρ k ) ; Q ν ).
Being F ∞ ε invariant for translations of the first argument, we find

dµ dH n-1 J u (x 0 ) ≥ lim inf k→∞ F ∞ ε(ρ k ) (u ρ k ε(ρ k ) , ṽρ k ε(ρ k ) ; Q ν ) ≥ g([u](x 0 ), ν u (x 0 )),
that is (4.9), and this concludes the proof.

Diffuse part in

BV Proposition 4.2. Let u ∈ BV (Ω; R m ), (u ε , v ε ) → (u, 1) in L 1 (Ω; R m+1 ), A ∈ A(Ω). Then A h qc (∇u)dx + A h qc,∞ (dD c u) ≤ lim inf ε→0 F ε (u ε , v ε ; A) (4.12)
where h qc and h qc,∞ have been defined in (2.6)-(2.9).
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We remark that this statement can be proven using the lower-semicontinuity result by Fonseca and Leoni [FL01, Th. 1.8], following an argument similar to that used in [AF02, Subsection 4.1]. Instead, our proof is based on the following result from [ADM92, Theorem 4.1], see also [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs[END_REF]Theorem 5.47].

Theorem 4.3 (Ambrosio-Dal Maso). Let φ : R m×n → [0, ∞) be quasiconvex and such that 0 ≤ φ(ξ) ≤ c(1 + |ξ|) for all ξ ∈ R m×n , and define F :

L 1 (Ω; R m ) → R by F (u) :=    Ω φ(∇u)dx, if u ∈ W 1,1 (Ω; R m ), ∞, otherwise in L 1 (Ω; R m ).
Then for any u ∈ BV (Ω; R m ) we have

sc -(L 1 )-F (u) = Ω φ(∇u)dx + Ω φ ∞ (dD s u),
where φ ∞ (ξ) := lim sup t→∞ φ(tξ)/t. In particular the latter functional is lower semicontinuous with respect to the strong L 1 (Ω; R m ) convergence.

We start with a truncation result.

Lemma 4.4. There are two functions α, β : (0, 1) → (0, 1), with lim δ↑1 α δ = 1 and lim δ↑1 β δ = 0, such that for any ε > 0, (u

ε , v ε ) ∈ W 1,2 (Ω; R m × [0, 1]), δ ∈ (0, 1) and A ∈ A(Ω) there is ũδ ε ∈ GSBV (A; R m ) such that H δ (ũ δ ε ; A) ≤ F ε (u ε , v ε ; A) + h(0)L n (A ∩ {v ε ≤ δ}),
where H δ is defined for A ∈ A(Ω) and w ∈ L 1 (A; R m ) by

H δ (w; A) :=    α δ A h qc (∇w)dx + β δ H n-1 (A ∩ J w ), if w ∈ GSBV (A; R m ), ∞, otherwise. (4.13) If one has (u ε , v ε ) → (u, 1) in L 1 (Ω; R m+1 ) as ε → 0, then ũδ ε → u in L 1 (A; R m ) as ε → 0, for any fixed δ ∈ (0, 1).
We stress that, for the sake of notational simplicity, we will omit here and below the explicit dependence of ũδ ε on the set A.
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where h has been introduced in (2.6) and Φ :

[0, 1] → [0, 1 2 ] is defined by Φ(t) := t 0 (1 -s)ds = t - 1 2 t 2 . (4.15) 
We observe that Φ is strictly increasing, Φ(1) = 1 2 and in particular Φ is bijective. By the coarea formula,

A |∇(Φ(v))|dx = 1/2 0 H n-1 (A ∩ ∂ * {Φ(v) > t})dt.
Therefore there is t ∈ (Φ(δ 2 ), Φ(δ)) such that

(Φ(δ) -Φ(δ 2 ))H n-1 (A ∩ ∂ * {Φ(v) > t}) ≤ A |∇(Φ(v))|dx.
We define ũ := uχ {Φ(v)> t}∩A ∈ GSBV (A; R m ) (dropping the dependence on both ε and δ from ũ) and obtain from (4.14),

F ε (u, v; A) ≥δΦ -1 ( t) A h(∇ũ)dx + 1 -δ 2 (Φ(δ) -Φ(δ 2 ))H n-1 (A ∩ J ũ) -h(0)L n ({Φ(v)≤ t}∩A).
We recall that t ≥ Φ(δ 2 ) and that Φ is increasing, define

α δ := δ 3 , β δ := √ 1 -δ 2 (Φ(δ) -Φ(δ 2
)), and conclude

F ε (u, v; A) ≥ α δ A h(∇ũ)dx + β δ H n-1 (A ∩ J ũ)-h(0)L n ({v ≤ δ}∩A).
We also remark that ũ-u

L 1 (A) ≤ u L 1 ({v≤Φ -1 ( t)}) , hence, if the sequence u ε is equiintegrable and v ε → 1 in L 1 (A), we obtain that u ε -ũε → 0 in L 1 (A; R m ).
35 Phase-field-vectorial-submitted.tex Lemma 4.5. Let u ∈ BV (Ω; R m ) and let η : Ω → S m-1 , ξ : Ω → S n-1 be Borel maps such that D c u = η ⊗ ξ|D c u|. Then, for |D c u|-a.e. x ∈ Ω and for all given µ ∈ M + (Ω), there exists a sequence ρ i → 0, as i → ∞, such that

µ(∂Q ξ(x) ρi (x)) = 0,
for all i ≥ 1, (4.16)

t ρi := |Du|(Q ξ(x) ρi (x)) ρ n i → ∞, t ρi ρ i → 0, (4.17) u(x + ρ i y) -u Q ξ(x) ρ i (x) t ρi ρ i → η(x)χ(y • ξ(x)) strictly-BV (Q ξ(x) ; R m ), (4.18)
as i → ∞, for some nondecreasing function χ : (-

1 /2, 1 /2) → R with |Dχ|((-1 /2, 1 /2)) = 1, (4.19) 
where u Q ξ(x) ρ i (x) denotes the average of u over Q

Proof. For simplicity we will denote

Q 1 := Q ξ(x) , Q ρ (x) := x + ρQ 1 , and 
u ρ x (y) := u(x + ρy) -u Q ξ(x) ρ (x) t ρ ρ , for y ∈ Q 1 .
By general properties of BV functions (4.17) holds for the entire family ρ → 0 and by Radon-Nikodym differentiation

lim ρ→0 D c u ρ x (Q 1 ) |D c u ρ x |(Q 1 ) = η(x) ⊗ ξ(x), (4.20) 
|D c u|-a.e. x ∈ Ω. Up to a further |D c u|-negligible set, [AFP00, Theorem 3.95] and [Lar98, Lemma 5.1] provide a sequence ρ i → 0 such that

|Du ρi x | γ weakly*-M(Q 1 ), (4.21) 
u ρi x (y) → u x (y) := η(x)χ(y • ξ(x)) weakly*-BV (Q 1 ; R m ), (4.22) 
as i → ∞, for some γ ∈ M + (Q 1 ) with γ(Q 1 ) = 1 and some nondecreasing function χ : (-

1 /2, 1 /2) → R with |Dχ|((-1 /2, 1 /2)) ≤ 1.
Let us check that the sequence ρ i → 0 can be chosen such that (4.16) holds. Indeed, fixed i ∈ N \ {0}, we have µ(∂Q sρi (x 0 )) = 0 for L 1 -a.e. s ∈ (0, 1 /ρi). Moreover, the maps

s ∈ (0, 1 /ρi) → u sρi x ∈ L 1 (Q 1 , R m ), s ∈ (0, 1 /ρi) → |Du sρi x | ∈ M + (Q 1 )
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We next check (4.19). By (4.21) and (4.22) we have that |Du x | ≤ γ. Hence, for t ∈ (0, 1) such that γ(∂Q t ) = 0, recalling that

|Du ρi x |(Q 1 ) = γ(Q 1 ) = 1, we obtain |Du ρi x |(Q t ) → γ(Q t ), |Du ρi x |(Q 1 \ Q t ) → γ(Q 1 \ Q t ), Du ρi x (Q t ) → Du x (Q t ).
We infer that lim sup

i→∞ |Du ρi x (Q 1 ) -Du x (Q 1 )| ≤ 2γ(Q 1 \ Q t ),
and letting t → 1 -gives Du ρi x (Q 1 ) → Du x (Q 1 ) as i → ∞. In conclusion Du x (Q 1 ) = lim i→∞ Du ρi x (Q 1 ) = lim i→∞ Du ρi x (Q 1 ) |Du ρi x |(Q 1 ) = η(x) ⊗ ξ(x),
and then Dχ(-1 /2, 1 /2) = 1. This gives (4.19) by monotonicity of χ. Finally,

|Du x |(Q 1 ) = 1 provides the strict-BV (Q 1 ; R m ) convergence in (4.18).
Proof of Proposition 4.2.

Step 0: Preparation. We assume (u ε , v ε ) → (u, 1) in L 1 (Ω; R m+1 ) for some u ∈ BV (Ω; R m ). Let A ⊆ A(Ω), δ ∈ (0, 1) and let ũδ ε be as in Lemma 4.4. We define the measure

µ δ ε := α δ h qc (∇ũ δ ε )L n A + β δ H n-1 (A ∩ J ũδ ε ), so that µ δ ε (A) = H δ (ũ δ ε ; A) ≤ F ε (u ε , v ε ; A)+h(0)L n (A ∩ {v ε ≤ δ}).
Passing to a subsequence we can assume that lim ε→0 F ε (u ε , v ε ; A) exists finite and that µ δ ε µ δ weakly * in the sense of measures on A as ε → 0, for some

µ δ ∈ M + b (A). If we can show that dµ δ dL n (x 0 ) ≥ α δ h qc (∇u(x 0 )) for L n -a.e. x 0 ∈ A (4.23) and dµ δ d|Du| (x 0 ) ≥ α δ h qc,∞ dDu d|Du| (x 0 ) for |D c u|-a.e. x 0 ∈ A (4.24)
for all δ ∈ (0, 1), then the conclusion follows.

Step 1: Absolutely continuous part. We prove (4.23). We can assume that the left-hand side is finite. First we observe that for L n -a.e. x 0 ∈ A one has

dµ δ dL n (x 0 ) = lim ρ→0 µ δ (Q ρ (x 0 )) ρ n = lim ρ→0 ρ∈I lim ε→0 µ δ ε (Q ρ (x 0 )) ρ n
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where

Q ρ (x 0 ) := x 0 +(-1 2 ρ, 1 2 ρ) n and I := {ρ ∈ (0, 2 √ n dist(x 0 , ∂A)) : µ δ (∂Q ρ (x 0 )) = 0}. We define u ρ : Q 1 → R m by u ρ (y) := u(x 0 + ρy) -u(x 0 ) ρ .
By the properties of BV , for L n -a.e. x 0 ∈ A, after possibly extracting a further subsequence, u ρ (y) → ∇u(x 0 )y in L 1 (Q 1 ; R m ) as ρ → 0. We further define

u ρ ε (y) := ũδ ε (x 0 + ρy) -u(x 0 ) ρ so that u ρ ε → u ρ in L 1 (Q 1 ; R m
) as ε → 0 for any fixed ρ > 0 (and δ ∈ (0, 1)). We take a diagonal subsequence so that w i (y

) := u ρi εi (y) → ∇u(x 0 )y in L 1 (Q 1 ; R m ) and dµ δ dL n (x 0 ) = lim i→∞ Q1 α δ h qc (∇w i )dx + β δ ρ i H n-1 (J wi ∩ Q 1 ) . (4.25)
We fix M ∈ N and for every i, by averaging we choose

k i ∈ {M + 1, . . . , 2M } such that {a k i <|wi|<a k i +1 } h qc (∇w i )dx ≤ 1 M Q1 h qc (∇w i )dx , (4.26) 
which implies that ŵi := T ki (w i ), with T ki defined in (3.11), obeys

Q1 h qc (∇ ŵi )dx ≤ (1 + C M ) Q1 h qc (∇w i )dx+CL n ({|w i | ≥ a ki }). (4.27)
Indeed, in view of (2.8) and

∇T ki L ∞ (R m ) ≤ 1 we have Q1 h qc (∇ ŵi )dx ≤ {|wi|≤a k i } h qc (∇w i )dx + {a k i <|wi|<a k i +1 } h qc (∇ ŵi )dx + h(0)L n ({|w i | ≥ a ki+1 }) ≤ Q1 h qc (∇w i )dx + C {a k i <|wi|<a k i +1 } h qc (∇w i ) + CL n ({|w i | ≥ a ki }) .
The inequality in (4.27) then follows from (4.26). Moreover, note that if

a M > ∇u(x 0 )y L ∞ (Q1) + 1 then w i → ∇u(x 0 )y implies ŵi → ∇u(x 0 )y in L 1 (Q 1 ; R m ).
We recall that

T ki ∈ C 1 implies H n-1 (J ŵi ∩ Q 1 ) ≤ H n-1 (J wi ∩ Q 1 ). From (4.25) and ρ i → 0 we deduce H n-1 (J wi ∩ Q 1 ) → 0 and, with | ŵi | ≤ a M +1 pointwise, |D s ŵi |(Q 1 ) = J ŵi ∩Q1 |[ ŵi ]|dH n-1 ≤ 2a M +1 H n-1 (J wi ∩ Q 1 ) → 0 38 Phase-field-vectorial-submitted.tex [June 23, 2022] and therefore Q1 h qc,∞ (dD s ŵi ) ≤ c|D s ŵi |(Q 1 ) → 0.
With (4.25) and (4.27), using that w i → ∇u(x 0 )y in measure, we get

α δ lim i→∞ Q1 h qc (∇ ŵi )dx + Q1 h qc,∞ (dD s ŵi ) ≤ (1 + C M ) dµ δ dL n (x 0 ).
By the lower semicontinuity of the functional in the left-hand side (Theorem 4.3) and ŵi → ∇u

(x 0 )y in L 1 (Q 1 ; R m ) we deduce α δ h qc (∇u(x 0 )) ≤ (1 + C M ) dµ δ dL n (x 0 )
for L n -a.e. x 0 , every M , and every δ. This proves (4.23).

Step 2: Cantor part. We prove (4.24). By Alberti's rank-one theorem we can assume without loss of generality that x0) with one face orthogonal to ξ(x 0 ), write Q ρ (x 0 ) := x 0 + ρQ 1 , and select a sequence ρ i → 0 as in Lemma 4.5, applied for the given u ∈ BV (Ω, R m ) and µ := µ δ . As above, for |D c u|-a.e. x 0 one has

dDu d|Du| (x 0 ) = η(x 0 ) ⊗ ξ(x 0 ) (4.28) with η(x 0 ) ∈ S m-1 , ξ(x 0 ) ∈ S n-1 for |D c u|-a.e. x 0 ∈ A. We fix a unit cube Q 1 := Q ξ(
dµ δ d|Du| (x 0 ) = lim ρ→0 µ δ (Q ρ (x 0 )) |Du|(Q ρ (x 0 )) = lim i→∞ lim ε→0 µ δ ε (Q ρi (x 0 )) |Du|(Q ρi (x 0 ))
.

We define

u ρ ε (y) := ũδ ε (x 0 + ρy) -u Qρ(x0) t ρ ρ , so that, defining u x0 (y) := η(x 0 )χ x0 (y • ξ(x 0 )), lim ρ→0 lim ε→0 u ρ ε = u x0 in L 1 (Q 1 ; R m ) (for every δ ∈ (0, 1)) and dµ δ d|Du| (x 0 ) = lim i→∞ lim ε→0 α δ ρ n i t ρi Qρ i (x0) h qc (∇ũ δ ε )dx + β δ ρ n i t ρi H n-1 (J ũδ ε ∩ Q ρi (x 0 )) = lim i→∞ lim ε→0 α δ t ρi Q1 h qc (t ρi ∇u ρi ε )dy + β δ ρ i t ρi H n-1 (J u ρ i ε ∩ Q 1 ) .
Taking a diagonal subsequence we see that there is ε i → 0 such that

w i := u ρi εi → u x0 in L 1 (Q 1 ; R m )
with |Du x0 |(Q 1 ) = 1, and setting t i := t ρi → ∞,

dµ δ d|Du| (x 0 ) = lim i→∞ α δ t i Q1 h qc (t i ∇w i )dy + β δ ρ i t i H n-1 (J wi ∩ Q 1 ) .
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Q1∩{a k i <|wi|<a k i +1 } h qc (t i ∇w i )dx ≤ 1 M Q1 h qc (t i ∇w i )dx, which implies that ŵi := T ki (w i ) ∈ SBV ∩ L ∞ (Q 1 ; R m ) obeys,

arguing as in

Step 1 above and by taking into account that t i → ∞,

lim sup i→∞ Q1 α δ t i h qc (t i ∇ ŵi )dy + β δ ρ i t i H n-1 (J ŵi ∩ Q 1 ) ≤ (1 + C M ) lim i→∞ Q1 α δ t i h qc (t i ∇w i )dy + β δ ρ i t i H n-1 (J wi ∩ Q 1 ) + C t i L n ({|w i | > a ki }) = (1 + C M ) dµ δ d|Du| (x 0 ). (4.29)
Further, since χ is bounded, for M sufficiently large we have r i := ŵiu x0 L 1 (Q1) → 0. For every i we select q i ∈ (1 -r

1/2 i , 1) such that ∂Qq i | ŵ- i -u + x0 |dH n-1 ≤ 1 r 1/2 i ŵi -u x0 L 1 (Q1) = r 1/2 i → 0,
where ŵi and u + x0 denote the inner and outer trace, respectively, and define

w * i := ŵi , in Q qi , u x0 , in Q 1 \ Q qi .
Then, the choice of q i , (4.29), and 

ρ i t i → 0 yield Q1 h qc,∞ (dD s w * i ) ≤ cr 1/2 i + c M H n-1 (J ŵi ∩ Q 1 ) + Q1\Qq i h qc,
1 t i h qc (t i ∇w * i ) dy + Q1 h qc,∞ (dD s w * i ) ≥ 1 t i h qc (t i Du x0 (Q 1 )) .
Therefore, being Du x0 (Q 1 ) = η(x 0 ) ⊗ ξ(x 0 )Dχ((-1 /2, 1 /2)) a rank-one matrix, the latter estimate together with (4.30) and (4.31) yield that Recalling (4.29), we infer that

h qc,∞ (Du x0 (Q 1 )) = lim i→∞ 1 t i h qc (t i Du x0 (Q 1 )) ≤ lim inf i→∞ Q1 1 t i h qc (t i ∇w * i )dy + Q1 h qc,∞ (dD s w * i ) ≤ lim inf
α δ h qc,∞ (Du x0 (Q 1 )) ≤ (1 + C M ) dµ δ d|Du| (x 0 ),
for every M sufficiently large. Therefore, by letting M → ∞ we conclude that

α δ h qc,∞ (Du x0 (Q 1 )) ≤ dµ δ d|Du| (x 0 ). As Du x0 (Q 1 ) = η(x 0 ) ⊗ ξ(x 0 )Dχ((-1 /2, 1 /2)) = η(x 0 ) ⊗ ξ(x 0
), this and (4.28) conclude the proof of (4.24).

The lower bound in BV follows at once from the lower bounds for the surface and the diffuse parts.

Theorem 4.6. Let u ∈ BV (Ω; R m ). Then, for all A ∈ A(Ω)

F 0 (u, 1; A) ≤ Γ(L 1 )-lim inf ε→0 F ε (u, 1; A), (4.32) 
where F ε and F 0 have been defined in (2.1) and (2.13).

Proof. For simplicity, we will prove the statement for A = Ω. We argue by localization. Assume that (u ε , v ε ) → (u, 1) in L 1 (Ω; R m+1 ), with u ∈ BV (Ω; R m ), and that lim inf δ ∈ (0, 1), keeping the notation introduced in Lemma 4.4, using the growth conditions on h (see (2.8)) we get

ε→0 F ε (u ε , v ε ) < ∞. Set µ(A) := lim inf ε→0 F ε (u ε , v ε ; A), for all A ∈ A(Ω), λ := L n Ω + H n-1 J u + |D c u| ψ 1 := g([u], ν u ), ψ 2 := h qc (∇u) + h qc,∞ ( dD c u d|D c u| ),
, v ε ) → (u, v) in L 1 (Ω; R m+1 ) with sup ε F ε (u ε , v ε ) < ∞. Necessarily v = 1 L n -
Ω |∇ũ δ ε |dx + H n-1 (J ũδ ε ) ≤ c(F ε (u ε , v ε ) + 1) ,
for some positive constant c depending on δ and on L n (Ω). In particular, for each component

(ũ δ ε ) i of ũδ ε , i ∈ {1, . . . , n}, we have (ũ δ ε ) i ∈ GSBV (Ω)
and

Ω |∇(ũ δ ε ) i |dx + H n-1 (J (ũ δ ε )i ) ≤ c(F ε (u ε , v ε ) + 1) .
Then, if k > 0 and τ k (s) := (s ∨ k) ∧ (-k), from the estimate above we infer that |D(τ k ((ũ δ ε ) i ))|(Ω) ≤ C k , with C k > 0 depending on k and on the sequence, but not on ε. Therefore, there is a subsequence that converges weakly in BV (Ω). This implies, recalling that ũδ ε → u in L 1 (Ω; R m ) as ε → 0 for all δ ∈ (0, 1), that τ k (u i ) ∈ BV (Ω) for all k. In conclusion, we deduce that u i ∈ GBV (Ω), for all i ∈ {1, . . . , n}, and thus u ∈ (GBV (Ω)) m .

Lower bound in GBV

In this section we extend the validity of the lower bound Theorem 4.6 to every u ∈ (GBV (Ω)) m . We first prove that the functional F 0 is continuous under truncations.

Proposition 4.8. Let F 0 and T k be defined as in (2.13) and (3.11), respectively. Then, for all u ∈ (GBV (Ω)) m with F 0 (u, 1) < ∞ we have lim k→∞ F 0 (T k (u), 1) = F 0 (u, 1) .

Proof. We prove the convergence of the volume, Cantor and surface terms separately. It is useful to recall for the rest of the proof that ∇T k L ∞ (R m ) ≤ 1.

For the volume part, we observe that (2.8) implies |∇u| ∈ L 1 (Ω). We have ∇(T k (u)) = ∇u for L n -a.e. x ∈ Ω k := {|u| ≤ a k }, therefore in view of (2.8) we get

Ω h qc ∇(T k (u)) dx - Ω h qc (∇u)dx ≤ c Ω\Ω k (1 + |∇u|)dx , so that, as a k → ∞ as k ↑ ∞, we conclude lim k→∞ Ω h qc ∇(T k (u)) dx = Ω h qc (∇u)dx .
For the surface term we recall that J T k (u) ⊆ J u for every k ∈ N with ν T k (u) = ν u for H n-1 -a.e. x ∈ J T k (u) . Then, thanks to (4.6) we infer that (T k (u)

) ± → u ± , χ J T k (u) → χ Ju and |[T k (u)]| ≤ |[u]| H n-1 -a.
e. in J u , and then we conclude

lim k→∞ J T k (u) g([T k (u)], ν T k (u) )dH n-1 = lim k→∞ Ju g([T k (u)], ν u )χ J T k (u) dH n-1 = Ju g([u], ν u )dH n-1
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For what the Cantor part of the energy is concerned, by (2.8) we have that 0 ≤ h qc,∞ (ξ) ≤ c|ξ|. Further, the definitions of T k and of D c u outlined in (4.5) yield in particular

D c (T k (u)) Ω k = D c u Ω k |D c (T k (u))| |D c u|, d|D c (T k (u))| d|D c u| ≤ 1 . Thus, Ω h qc,∞ (dD c (T k (u))) - Ω k h qc,∞ (dD c u) ≤ c Ω\Ω k d|D c u| = c|D c u|(Ω \ Ω k ),
and therefore

lim k→∞ Ω h qc,∞ (dD c (T k (u))) = Ω h qc,∞ (dD c u),
which concludes the proof.

We are ready to prove the lower bound for generalized functions of bounded variations.

Theorem 4.9. Let u ∈ (GBV (Ω)) m . Then F 0 (u, 1) ≤ Γ(L 1 )-lim inf ε→0 F ε (u, 1), (4.33)

where F ε and F 0 have been defined in (2.1) and (2.13).

Proof. Let u ∈ (GBV (Ω)) m and let (u ε , v ε ) ∈ W 1,2 (Ω; R m+1 ) be such that (u ε , v ε ) → (u, 1) in L 1 (Ω; R m+1 ), with v ε ∈ [0, 1] L n -a.e. in Ω. Without loss of generality we can suppose that lim inf ε→0 F ε (u ε , v ε ) < ∞, that the latter is actually a limit (up to a subsequence not relabeled), and that (u ε , v ε ) → (u, 1) L n -a.e. in Ω. In particular, from Section 4.1 we infer that u ∈ (GBV (Ω)) m , with |∇u| ∈ L 1 (Ω) and satisfying (4.6) and (4.3), so that F 0 (u, 1) < ∞.

Recalling the definition of the truncation T k in (3.11), we have that

T k (u ε ) → T k (u) in L 1 (Ω; R m ) for any k and that T k (u) ∈ BV (Ω; R m ), being F 0 (u, 1) < ∞.
Hence, we can apply Theorem 4.6 to say that

F 0 (T k M (u), 1) ≤ lim inf ε→0 F ε (T k M (u ε ), v ε ).
(4.34)

We claim that for all M ∈ N there is k M ∈ {M + 1, . . . , 2M } independent of ε such that after extracting a further subsequence for some c > 0 independent of ε and of M . Given this for granted, we get by (4.34), (4.35) and by the convergence u ε → u in measure lim sup

F ε (T k M (u ε ), v ε ) ≤ 1 + c M F ε (u ε , v ε )+cL n ({|u ε | > a M }), ( 
M →∞ F 0 (T k M (u), 1) ≤ lim inf ε→0 F ε (u ε , v ε ).
Finally, using the continuity under truncations for F 0 established in Proposition 4.8, we obtain

F 0 (u, 1) ≤ lim inf ε→0 F ε (u ε , v ε )
and hence (4.33). It remains to prove (4.35). To this aim we argue as in Proposition 3.2 using De Giorgi's averaging-slicing method on the range. First, for all k ∈ N we split the energy contributions

F ε (T k (u ε ), v ε ) = F ε (u ε , v ε ; {|u ε | ≤ a k }) +F ε (T k (u ε ), v ε ; {a k < |u ε | < a k+1 }) + F ε (0, v ε ; {|u ε | ≥ a k+1 }) . (4.36)
By (2.3) and the definition of T k , the last but one term in the previous expression can be estimated as

F ε (T k (u ε ), v ε ; {a k < |u ε | < a k+1 }) ≤ c {a k <|uε|<a k+1 } f 2 ε (v ε )Ψ(∇u ε )dx +cL n ({a k < |u ε | < a k+1 }) + F ε (0,v ε ; {a k < |u ε | < a k+1 }) , (4.37) 
for some c > 0. Summing (4.36) and (4.37) and averaging, we conclude that there exists k M,ε ∈ {M + 1, . . . , 2M } such that

F ε (T k M,ε (u ε ), v ε )≤ 1 M 2M k=M +1 F ε (T k (u ε ), v ε ) ≤ 1 + c M F ε (u ε , v ε )+cL n ({|u ε | > a M }) ,
for some c > 0. As ε → 0, there exists a subsequence of {k M,ε } that is independent of ε. This yields (4.35) and concludes the proof.
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(0, 1] → [0, 1] such that lim ε→0 η ε ε = 0 (5.1)
and define

F η ε (u, v; A) := F ε (u, v; A) + η ε A Ψ(∇u)dx, (5.2) 
where F ε has been defined in (2.1).

One key ingredient in the proof of the upper bound is that the Γ-limit of F η ε satisfies the hypotheses of [BFM98, Theorem 3.12], so that it can be represented as an integral functional. Its diffuse and surface densities will be identified by a direct computation.

In order to prove that Γ-lim ε→0 F η ε (u, 1; •) is a Borel measure, we first check the weak subadditivity of the Γ-upper limit of F η ε .

Lemma

5.1. Let u ∈ L 1 (Ω; R m ), let A , A, B ∈ A(Ω) with A ⊂⊂ A, then Γ(L 1 )-lim sup ε→0 F η ε (u, 1; A ∪ B) ≤ Γ(L 1 )-lim sup ε→0 F η ε (u, 1; A) + Γ(L 1 )-lim sup ε→0 F η ε (u, 1; B), (5.3)
where F η ε has been defined in (5.2).

Proof. To simplify the notation let us set F := Γ(L 1 )-lim sup ε→0 F η ε . It is not restrictive to assume that the right-hand side of (5.3) is finite, so that u

∈ (GBV ∩ L 1 (A ∪ B)) m . Let (u A ε , v A ε ), (u B ε , v B ε ) ∈ W 1,2 (Ω; R m+1 ) be such that (u J ε , v J ε ) → (u, 1) in L 1 (Ω; R m ) × L 1 (Ω) , (5.4) 
and lim sup ε→0

F η ε (u J ε , v J ε ; J) = F (u, 1; J), (5.5) 
for J ∈ {A, B}.

Step 1. Estimate (5.3) is valid if u ∈ BV ∩L 2 (A∪B; R m ) and (5.5) holds for two sequences converging to u in L 2 (Ω; R m ). For δ := dist(A , ∂A) > 0 and some M ∈ N, we set for all i ∈ {1, . . . , M } and A 0 := A , so that A

A i := x ∈ Ω : dist(x, A ) < δ M i , 45 
i-1 ⊂⊂ A i ⊂ A. Let ϕ i ∈ C 1 c (Ω) be a cut-off function between A i-1 and A i , i.e., ϕ i | Ai-1 = 1, ϕ i | A c i = 0, and ∇ϕ i L ∞ (Ω) ≤ 2M δ . Then, we define u i ε := ϕ i u A ε + (1 -ϕ i )u B ε , (5.6) 
and

v i ε :=      ϕ i-1 v A ε + (1 -ϕ i-1 )(v A ε ∧ v B ε ), on A i-1 , v A ε ∧ v B ε , on A i \ A i-1 , ϕ i+1 (v A ε ∧ v B ε ) + (1 -ϕ i+1 ) v B ε , on Ω \ A i .
(5.7)

For i ∈ {2, . . . , M -1}, (u i ε , v i ε ) ∈ W 1,2 (Ω; R m+1
). Arguing exactly as in [CFI16, Lemma 6.2], for all ε > 0 we can find an index i ε ∈ {2, . . . , M -1} such that

F η ε (u iε ε , v iε ε ; A ∪ B) ≤ F η ε (u A ε , v A ε ; A) + F η ε (u B ε , v B ε ; B) + c M F η ε (u A ε , v A ε ; B ∩ (A \ A )) + F η ε (u B ε , v B ε ; B ∩ (A \ A ))+L n (B ∩ (A \ A )) + c M δ 2 B∩(A\A ) |u A ε -u B ε | 2 dx + c M ε δ 2 B∩(A\A ) |v A ε -v B ε | 2 dx.
Passing first to the limit as ε → 0 and then as M → ∞ we obtain (5.3) having assumed that u

J ε → u in L 2 (Ω; R m ), J ∈ {A, B}. Step 2. Estimate (5.3) is valid if u ∈ (GBV ∩ L 1 (A ∪ B)) m .
We use De Giorgi's slicing/averaging techniques on the co-domain by employing the truncation functions introduced in (3.11). The argument is analogous to that developed in Step 1 of Proposition 3.2.

Note that if u ∈ (GBV (A ∪ B)) m then T k (u) ∈ BV ∩ L ∞ (A ∪ B; R m ). In addition, for all k ∈ N and J ∈ {A, B} it is easy to check that T

k (u J ε ) ∈ W 1,2 (Ω; R m ), that T k (u J ε ) → T k (u) as ε → 0 in L 2 (Ω; R m
), and that

F η ε (T k (u J ε ), v J ε ; J) = F η ε (u J ε , v J ε ; {|u J ε | ≤ a k }) + F η ε (T k (u J ε ), v J ε ; {a k < |u J ε | < a k+1 }) + F η ε (0, v J ε ; {|u J ε | ≥ a k+1 }) .
(5.8)

We estimate the last but one term. The growth conditions on Ψ (cf. (2.3)) and

∇T k L ∞ (R m ) ≤ 1 yield for a constant c > 0 F η ε (T k (u J ε ), v J ε ; {a k < |u J ε | < a k+1 }) ≤ c {a k <|u J ε |<a k+1 } (η ε + f 2 ε (v J ε ))Ψ(∇u J ε )dx + cL n ({a k < |u J ε | < a k+1 }) + F ε (0,v J ε ; {a k < |u J ε | < a k+1 }) .
(5.9) Collecting (5.8) and (5.9) we conclude that

F η ε (T k (u J ε ), v J ε ; J) ≤ F η ε (u J ε , v J ε ; J) + c {a k <|u J ε |<a k+1 } (η ε + f 2 ε (v J ε ))Ψ(∇u J ε )dx+cL n ({|u J ε | > a k }) .
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h ∞ λ (ξ) := lim sup t→∞ h λ (tξ) t ,
for ξ ∈ R m×n . Let us estimate separately the three densities above. First, observe that by (5.19) we have

h λ (ξ) ≤ 1 δ n F λ (ξx, 1; δQ) ≤ h qc (ξ)+λ|ξ|, (5.23) so that h ∞ λ (ξ) ≤ h qc,∞ (ξ)+λ|ξ|, (5.24) 
for all ξ ∈ R m×n . We next show that

g λ (z, ν) ≤ g(z, ν) + λ|z|, (5.25) 
for z ∈ R m , ν ∈ S n-1 . From (5.22) we have

g λ (z, ν) ≤ lim sup δ↓0 1 δ n-1 F λ (w z , 1; δ Q ν ) = lim sup δ↓0 1 δ n-1 F(w z , 1; δ Q ν ) + λ|z|.
(5.26)

In turn, by definition of F for every sequence (ũ k , ṽk )

→ (w z , 1) in L 1 (δ Q ν ; R m+1 ) we have F(w z , 1; δ Q ν ) ≤ lim sup k→∞ F η ε k (ũ k , ṽk ; δ Q ν ).
(5.27)

The proof of (5.25) therefore reduces to the construction of a suitable sequence (ũ k , ṽk ), which depends implicitly on δ ∈ (0, 1), z and ν. By Proposition 3.4 applied with the sequences ε *

k := ε k /δ and η * k := η ε k , there are (u * k , v * k ) → (w z , 1) in L 2 (Q ν ; R m+1 ), such that lim k→∞ F ∞ ε * k (u * k , v * k ; Q ν ) = g(z, ν) (5.28) and lim k→∞ η * k ∇u * k 2 L 2 (Q ν ) = 0. (5.29) We define (ũ k , ṽk ) ∈ L 2 (δ Q ν ; R m+1 ) by ũk (y) := u * k y δ , ṽk (y) 
:= v * k y δ .
Obviously (ũ k , ṽk ) → (w z , 1) in L 2 (δ Q ν ; R m+1 ). A change of variable and a straightforward computation using

ε k = δε * k yield F ∞ ε k (ũ k , ṽk ; δ Q ν ) = δ n-1 F ∞ ε * k (u * k , v * k ; Q ν ), ∇ũ k 2 L 2 (δ Q ν ) = δ n-2 ∇u * k 2 L 2 (Q ν ) .
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Ψ(ξ) ≤ (1 + ρ)Ψ ∞ (ξ),
for |ξ| large, and then

Ψ(ξ) ≤ (1 + ρ)Ψ ∞ (ξ) + C(ρ),
for some C(ρ) > 0 and all ξ ∈ R m×n . Then, with (5.30)

F ε k (ũ k , ṽk ; δ Q ν ) ≤ (1 + ρ)F ∞ ε k (ũ k , ṽk ; δ Q ν ) + C(ρ)L n (δ Q ν ) = (1 + ρ)δ n-1 F ∞ ε * k (u * k , v * k ; Q ν ) + C(ρ)δ n .
Similarly, from the growth conditions in (2.3) and (5.30),

η ε k δ Q ν ψ(∇ũ k )dx ≤ cη ε k ( ∇ũ k 2 L 2 (δ Q ν ) +δ n ) = cη ε k δ n-2 ∇u * k 2 L 2 (Q ν ) +cη ε k δ n .
Summing these two estimates,

F η ε k (ũ k , ṽk ; δ Q ν ) ≤ (1+ρ)δ n-1 F ∞ ε * k (u * k , v * k ; Q ν )+C(ρ)δ n +cη ε k δ n-2 ∇u * k 2 L 2 (Q ν ) +cη ε k δ n ,
and taking the limit k → ∞, by (5.27), (5.28) and (5.29),

F(w z , 1; δ Q ν ) ≤ lim sup k→∞ F η ε k (ũ k , ṽk ; δ Q ν ) ≤ (1 + ρ)δ n-1 g(z, ν) + C(ρ)δ n .
(5.31) We divide by δ n-1 and take the limit δ → 0. Comparing with (5.26), g λ (z, ν) ≤ (1 + ρ)g(z, ν) + λ|z|,

(5.32) and since ρ was arbitrary (5.25) follows.

In conclusion, as λ → 0, estimates (5.23), (5.24) and (5.25) imply that for all u ∈ BV (Ω; R m ) F(u, 1) ≤ F 0 (u, 1).

This, together with the lower bound Theorem 4.6 allows to identify uniquely the Γ-limit of the subsequence F η ε k . Finally, Urysohn's property ([Dal93, Proposition 8.3]) extends the result to the whole family F η ε .

Step 4. Representation of the Γ(L 1 )-limit on (GBV (Ω)) m × {1}. To extend the validity of (5.13) to u ∈ (GBV (Ω)) m we argue by truncation. Indeed, if k ∈ N and T k is the truncation operator defined in (3.11), then by Steps 1-3 we infer that F (T k (u), 1) ≤ F 0 (T k (u), 1) .

The conclusion then follows by the L 1 -lower semicontinuity of F and by Proposition 4.8.

We are ready to prove Theorem 2.1.

Proof of Theorem 2.1. The lower bound has been proven in Theorem 4.9. The upper bound follows by Theorem 5.2 with η ε = 0.

52 Phase-field-vectorial-submitted.tex Next theorem establishes the compactness of sequences equibounded in energy and in L 1 .

Theorem 6.1. Let F ε be defined in (2.1).

If (u ε , v ε ) ∈ W 1,2 (Ω; R m+1 ) is such that sup ε F ε (u ε , v ε ) + u ε L 1 (Ω) < ∞,
then there exists a subsequence (u j , v j ) of (u ε , v ε ) and a function u ∈ (GBV ∩ L 1 (Ω)) m such that u j → u L n -a.e. and v j → 1 in L 1 (Ω).

Proof. This follows arguing componentwise, that is, estimating F ε with its one-dimensional counterpart evaluated in a component, and applying the onedimensional compactness result obtained in [CFI16, Theorem 3.3] as done in subsection 4.1 (see also the argument in Remark 4.7).

Convergence of minimizers and of minimum values follow now in a standard way by Theorems 2.1 and 6.1. Let η ε > 0 be as in (5.1), i.e. such that ηε /ε → 0 as ε → 0, consider the corresponding family F η ε defined in (5.2) and let w ∈ L q (Ω; R m ), with q > 1. Let now G ε , G 0 : L q (Ω; R m ) × L 1 (Ω) → [0, ∞] be defined as

G ε (u, v) :=    F η ε (u, v) + Ω |u -w| q dx , if (u, v) ∈ W 1,2 (Ω; R m × [0, 1]),
∞, otherwise and G 0 (u, v) := F 0 (u, v) + Ω |u -w| q dx , where F ε and F 0 have been defined in (2.1) and (2.13), respectively.

The assumption on the asymptotic ratio ηε /ε → 0 as ε → 0 is needed to avoid that the term η ε Ψ(∇u) competes with the term (1 -v) 2 /ε, overall influencing the limit behaviour. Indeed, if η ε ∼ ε, we expect to gain a control on |[u]|, so loosing the limit cohesive effect (compare with [START_REF] Focardi | Asymptotic analysis of Ambrosio-Tortorelli energies in linearized elasticity[END_REF]).

Instead, the addition of the term η ε Ψ(∇w) is instrumental to guarantee the existence of a minimizer for G ε , provided that Ψ is quasiconvex. In general, the coercivity of G ε only ensures existence of minimizing sequences (u j ε ) j converging weakly in W 1,2 (Ω; R m ) to some ūε minimizing the relaxation of G ε . Since existence at fixed ε does not interact with the Γ-convergence, we state our result for asymptotically minimizing sequences. Corollary 6.2. Let (u ε , v ε ) ∈ W 1,2 (Ω; R m+1 ) be such that

lim sup ε→0 G ε (u ε , v ε ) -m ε = 0,
where m ε := inf (u,v)∈W 1,2 (Ω;R m+1 ) G ε (u, v). Then v ε → 1 in L 1 (Ω) and a subsequence of u ε converges in L q (Ω; R m ) to a solution of min u∈(GBV (Ω)) m G 0 (u, 1).
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Proof. The proof of the corollary will be divided in three steps.

Step 1. Γ-limit of F η ε in L q × L 1 . We check that passing from the L 1 × L 1 to the L q × L 1 topology, the expression of the Γ-limit of F η ε remains the same Γ(L q × L 1 )-lim ε→0 F η ε (u, v) = F 0 (u, v).

The lower bound is an immediate consequence of that in L 1 × L 1 (Theorem 4.9, being the L q convergence stronger than the L 1 convergence).

As for the upper bound, we argue by truncation. First take a subsequence of F η ε (not relabelled for convenience) and fix u ∈ BV ∩ L ∞ (Ω; R m ) with F 0 (u, 1) < ∞. Then Theorem 5.2 yields the existence of a sequence (u ε , v ε ) ∈ W 1,2 (Ω; R m+1 ), such that (u ε , v ε ) → (u, 1) in L 1 (Ω; R m+1 ) and lim sup ε→0 F η ε (u ε , v ε ) ≤ F 0 (u, 1).

Fix M ∈ N large enough such that a M > u ∞ (see (3.11) for the definition of a M ) and, for every ε > 0, choose k ε,M ∈ {M + 1, . . . , 2M } such that

{a k ε,M <|uε|<a k ε,M +1 } (η ε + f 2 ε (v ε ))Ψ(∇u ε )dx ≤ 1 M Ω (η ε + f 2 ε (v ε ))Ψ(∇u ε )dx.
This implies

F η ε (T k ε,M (u ε ), v ε ) ≤ (1 + C M )F η ε (u ε , v ε )+CL n ({a M +1 < |u ε |}) ,
with T k ε,M (u ε ) uniformly bounded in L ∞ , T k ε,M being defined in (3.11). This argument has been used several times throughout the paper, see for example Theorem 4.9. Passing to a further subsequence in ε, we can take k ε,M = k M independent of ε. Since (T k M (u ε )) ε is uniformly bounded in L ∞ and M is large, we get T k M (u ε ) → T k M (u) = u in L q (Ω; R m ) and in particular L n ({a M +1 < |u ε |}) → 0 as ε → 0, hence lim sup ε→0

F η ε (T k M (u ε ), v ε ) ≤ 1 + C M F 0 (u, 1) .
Diagonalizing with respect to M and recalling the lower estimate, we conclude that every subsequence of {F η ε } ε has a subsequence that Γ(L q × L 1 )-converges to F 0 in L ∞ (Ω; R m ) × L 1 (Ω). Finally Urysohn's lemma gives the convergence of the entire sequence in the same space.

Let us consider now the general case u ∈ (GBV ∩ L q (Ω)) m . Then T k (u) ∈ (BV ∩ L ∞ (Ω)) m , with T k again defined by (3.11), and Γ(L q × L 1 )-lim sup Step 2. Γ-limit of G ε in L 1 × L 1 . We check now that

Γ(L 1 × L 1 )-lim ε→0 G ε (u, v) = G 0 (u, v).
The lower bound simply follows by Theorem 4.9 using η ε ≥ 0 and the lower semicontinuity of Ω |w -u| q dx with respect to the convergence in L 1 . In particular, if Γ(L 1 × L 1 )-lim inf ε→0 G ε (u, v) < ∞, then u ∈ (GBV (Ω) ∩ L q ) m and v = 1 L n -a.e. on Ω.

As for the upper bound, from Step 1 we know that for all u ∈ (GBV (Ω) ∩ L q ) m there exists a recovery sequence for F η ε in L q × L 1 . This is in particular a recovery sequence for G ε in L 1 × L 1 , which gives the conclusion.

Step 3. Convergence of minimizers. Let now (u ε , v ε ) ∈ W 1,2 ∩L q (Ω; R m+1 ) be a minimizing sequence for G ε . Being sup ε>0 (F ε (u ε , v ε ) + u ε L q (Ω) ) < ∞, Theorem 6.1 gives the existence of a function u ∈ (GBV (Ω) ∩ L q ) m and of a subsequence, not relabelled, such that u ε → u L n -a.e. on Ω and v ε → 1 in L 1 (Ω; R m ). In addition, by Hölder inequality

{|uε-u|>1} |u ε -u|dx ≤ u ε -u L q (Ω) L n ({|u ε -u| > 1}) 1-1 /q ≤ c L n {|u ε -u| > 1} 1-1 /q ,
and the right-hand side tends to 0 since u ε → u in measure on Ω. Also, (u εu)χ {|uε-u|≤1} → 0 in L 1 (Ω; R m ) by dominated convergence, hence we conclude that u ε → u in L 1 (Ω; R m ). By Step 2 and a general property of Γ-convergence [Dal93, Corollary 7.20], we conclude that (u, 1) is a minimizer of G 0 and that G ε (u ε , v ε ) → G 0 (u, 1). Finally, we check that in fact u ε → u in L q (Ω; R m ). From the previous steps we have

G ε (u ε , v ε ) → G 0 (u, 1), Ω |u -w| q dx ≤ lim inf ε→0 Ω |u ε -w| q dx, F 0 (u, 1) ≤ lim inf ε→0 F η ε (u ε , v ε ), so that Ω |u ε -w| q dx → Ω |u -w| q dx.
Together with the pointwise convergence, this implies u ε → u in L q (Ω; R m ) by generalized dominated convergence.
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  and (Tr Γ) l := n i=1 Γ lii , for every l = 1, . . . , m and Γ ∈ R m×n×n . By [Ste70, Theorem 4(b), page 42] we see that the operator

  where g scal is defined as the right-hand side of equation (3.16) with n = m = 1. For an equivalent definition of g scal see equation (4.4) below and [CFI16, Proposition 4.3]. Proof. By [CFI16, Proposition 4.3] or by Proposition 3.3, the following characterization holds for g scal :

(

  cf. formula (1.6) in [CFI16, Theorem 1.1] for the definition of g scal , and [CFI16, Section 4] for further properties).In formula (4.3) the total variation of the Cantor part of the scalar function u i ∈ GBV (Ω), |D c u i |(Ω), is defined as the least upper bound of the family of measures |D c (u i ∧ k) ∨ (-k) |(Ω), for k > 0 (cf. [AFP00, Definition 4.33, Theorem 4.34]). A similar construction can be performed for every u ∈ (GBV (Ω)) m .

[

  June 23, 2022] The next lemma is a minor reformulation of [Lar98, Lemma 5.1]. The latter improves the statement of [AFP00, Theorem 3.95] on the convergence of the blow-ups of a BV -function in a Cantor point. A more general version of this result can be found in [Rin18, Lemma 10.6].
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  ε→0

F

  η ε (T k (u), 1) ≤ F 0 (T k (u), 1), by the first part of the proof. As k → ∞ we have T k (u) → u in L q (Ω; R m ) and we conclude by the lower semicontinuity of the Γ-limsup and the continuity of F 0 (see Proposition 4.8).54 Phase-field-vectorial-submitted.tex[June 23, 2022] 

  In the entire paper Ω ⊂ R n is a bounded, open set with Lipschitz boundary, A(Ω) denotes the family of open subsets of Ω and | • | denotes the Euclidean norm, |ξ| 2

  ∞ (dD s u x0 ) → 0.

							(4.30)
	In addition, we get from (2.8) and t i → ∞				
	lim i→∞ Q1\Qq i	1 t i	h qc (t i ∇u x0 ) dy ≤ lim i→∞	c	Q1\Qq i	d|Du x0 | = 0 .	(4.31)
	Further, w * i ∈ BV (Q 1 ; R m ) and supp(w * i -u x0 ) ⊂⊂ Q 1 . By [AFP00, Lemma 5.50]
	and Theorem 4.3						
	Q1						

  and notice that µ is a monotone set function which is superadditive on disjoint open sets, λ is a positive Borel measure and ψ i are positive Borel functions satisfying

	µ(A) ≥	ψ i dλ,	for i = 1, 2 and A ∈ A(Ω)
	A		
	thanks to Propositions 4.1 and 4.2. By [Bra98, Proposition 1.16] we conclude
		µ(Ω) ≥	(ψ 1 ∨ ψ 2 )dλ,
			Ω
	which gives the thesis.		
	Remark 4.7. From the argument in Lemma 4.4 one can also deduce directly
	that u ∈ (GBV (Ω)) m . Indeed, consider (u ε

  a.e. on Ω. Moreover, with fixed
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4 ≤ h conv simp (ξ) ≤ h qc simp (ξ) ≤ h simp (ξ) ≤ |ξ| for any ξ ∈ R m×n .(iii): This follows immediately from the definition and (ii).9 Phase-field-vectorial-submitted.tex[June 23, 2022] 
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We conclude this section by proving that, under our hypotheses, the superior limit in the definition of Ψ 1 /2 is in fact a limit and that the operations of quasiconvexification and of recession for Ψ 1 /2 commute.

Proposition 3.12. We have that

t , for all ξ ∈ R m×n ;

(ii) (Ψ 1 /2 ) qc,∞ = (Ψ 1 /2 ) ∞,qc .

(iii) In the special case Ψ 2 (ξ) := dist 2 (ξ, SO(n)) one obtains h qc,∞ (ξ) = |ξ| for all ξ ∈ R m×n .

Proof. The second equality in (i) follows immediately from (2.4). Then, the first is a consequence of the very definition of recession function. Alternatively, by (2.5) we infer that, for all δ > 0, there is C δ > 0 satisfying

This, together with the definition of recession function, implies (i).

(ii) Since (Ψ

Let us check the converse inequality. Let ξ ∈ R m×n . By definition of quasiconvexification and (3.31) we have

for all ϕ ∈ C ∞ c ((0, 1) n ; R m ). Hence, taking the infimum over ϕ gives

Since (Ψ 1 /2 ) ∞ and therefore (Ψ 1 /2 ) ∞,qc are positively one-homogeneous, we obtain

which yields the thesis.

(iii) From the definition of Ψ 2 one easily obtains (Ψ

2 ) ∞,qc , the assertion follows then from (ii) and Proposition 3.10 . 29 Phase-field-vectorial-submitted.tex [June 23, 2022] Let now M ∈ N, by summing up the latter inequality for both A and B and by averaging, there exists k ε,M ∈ {M + 1, . . . , 2M } such that

(5.10)

Up to a subsequence, we may take the index k ε,M = k M , i.e. to be independent of ε. Therefore, passing to the limit as ε → 0, the convergence u J ε → u in measure for J ∈ {A, B}, (5.4), (5.5), (5.10) and Step 1 yield

, by the lower semicontinuity of F for the L 1 (Ω; R m ) convergence we conclude (5.3).

We are now ready to prove the upper bound inequality.

Theorem 5.2. Let F η ε and F 0 be defined in (5.2) and (2.13), respectively. For every

(5.13)

Proof. Given a subsequence (F η ε k ) of (F η ε ), there exists a further subsequence, not relabeled, which Γ-converges to some functional F, that is,

where F and F denote here the Γ(L 1 )-lower and upper limits of F η ε k and where the subscript -denotes the inner regular envelope of the relevant functional ([Dal93, Definition 16.2 and Theorem 16.9]).

We remark that F(u, v; •) is the restriction of a Borel measure to open sets by [START_REF] Maso | An introduction to Γ-convergence[END_REF]Theorem 14.23]. Indeed, F(u, v; •) is increasing and inner regular by definition; additivity follows from (5.14), once one checks that (F ) -is superadditive and (F ) -is subadditive. The former condition is a direct consequence of the additivity of F ε (u, v; •) and [Dal93, Proposition 16.12]. The latter follows from Lemma 5.1 along the lines of [Dal93, Proposition 18.4], using Lemma 5.1 instead of [START_REF] Maso | An introduction to Γ-convergence[END_REF](18.6)].

We divide the proof of (5.13) into several steps. First note that it is sufficient to prove it for v = 1 L n -a.e. on Ω.

47 Phase-field-vectorial-submitted.tex [June 23, 2022] Step 1. Estimate on the diffuse part for u ∈ BV (Ω; R m ). We first prove a global rough estimate for F which actually turns out to be sharp for the diffuse part if u ∈ BV (Ω; R m ). To this aim we set H :

), and ∞ otherwise, where h has been defined in (2.6). We next prove the bound

Given this estimate for granted, on setting

), and ∞ otherwise, the lower semicontinuity of F with respect to the L 1 (Ω; R m ) topology and the relaxation result with respect to the sequential weak topology in W 1,1 (Ω; R m ) in [AF84, Statement III.7] (or [Dac08, Theorem 9.1]) imply then that

In turn, from the estimate above, Theorem 4.3 finally yields

for every u ∈ BV (Ω; R m ). Therefore, the bound

follows for every u ∈ BV (Ω; R m ) and A ∈ A(Ω).

To prove (5.16), assume first that u is an affine function, say u(x) = ξx + b, with ξ ∈ R m×n , b ∈ R m . Then, the pair

Therefore, we conclude (5.16) for every affine function u in view of the last two estimates.
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and Ω i ∈ A(Ω) disjoint and with Lipschitz boundary, and such that L n (Ω \ ∪ N i=1 Ω i ) = 0. Then, set

where for each i ∈ {1, . . . , N }

and {ϕ i } 1≤i≤N is a partition of unity subordinated to the covering

where c depends on , Ψ, and ξ 1 , . . . , ξ N . Therefore we conclude (5.16) when u is piecewise affine, namely as δ → 0 in the latter inequality we have

we consider an extension of u itself (still denoted by u for convenience) to W 1,1 0 (Ω ; R m ), for some open and bounded Ω ⊃⊃ Ω (recall that Ω is assumed to be Lipschitz regular). Then, we use a classical density result [ET99, Proposition 2.1 in Chapter X] to find u k ∈ W 1,1 0 (Ω ; R m ) piecewise affine such that u k → u in W 1,1 (Ω ; R m ). The continuity of H for the W 1,1 (Ω; R m ) convergence, and the lower semicontinuity of F for the L 1 (Ω; R m+1 ) convergence finally imply (5.16).

Step 2. Inner regularity of F (u, 1; •) and existence of the Γ(L 1 )- Hence, (5.20) holds true and in turn by (5.14) we have

so that the Γ-limit of F η ε k (u, 1; •) exists and coincides with F(u, 1; •) for all u ∈ BV (Ω; R m ).

Step 3. Integral representation of the Γ(L 1 )-limit on BV (Ω; R m ) × {1}. We now would like to represent F as an integral functional through [BFM98, Theorem 3.12] and to estimate its diffuse and surface densities. In order to satisfy the coercivity hypothesis [BFM98, Eq. (2.3')], we introduce an auxiliary functional F λ (u, 1) := F(u, 1) + λ|Du|(Ω) for all u ∈ BV (Ω; R m ), where λ ∈ (0, 1] is a small parameter. Indeed, (4.2), (4.3), (2.16) and (5.19) yield

for all u ∈ BV (Ω; R m ) and for some c > 0. Note that F λ also satisfies the continuity hypothesis [BFM98, Eq. (2.4)], since The integral representation result [BFM98, Theorem 3.12] then applies to F λ + cL n and gives, for u ∈ BV (Ω; R m ) and A ∈ A(Ω), taking also into account the aforementioned translation invariance,