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Making best use of model evaluations
to compute sensitivity indices

Andrea Saltelli

Applied Statistics, Institute for the Protection and the Safety of the Citizen (IPSC), The European Commission, 
Joint Research Centre, TP 361, 21020 Ispra (VA), Italy

Abstract

This paper deals with computations of sensitivity indices in sensitivity analysis. Given a mathematical or computational
model y = f (x1, x2, . . . , xk), where the input factors xi ’s are uncorrelated with one another, one can see y as the realization of
a stochastic process obtained by sampling each of the xi from its marginal distribution. The sensitivity indices are related to the
decomposition of the variance of y into terms either due to each xi taken singularly (first order indices), as well as into terms
due to the cooperative effects of more than one xi . In this paper we assume that one has computed the full set of first order
sensitivity indices as well as the full set of total-order sensitivity indices (a fairly common strategy in sensitivity analysis), and
show that in this case the same set of model evaluations can be used to compute double estimates of:

• the total effect of two factors taken together, for all such
(k
2

)
couples, where k is the dimensionality of the model;

• the total effect of k − 2 factors taken together, for all
(k
2

)
such (k − 2) ples.

We further introduce a new strategy for the computation of the full sets of first plus total order sensitivity indices that is about
50% cheaper in terms of model evaluations with respect to previously published works.

We discuss separately the case where the input factors xi ’s are not independent from each other.

Keywords: Sensitivity analysis; Sensitivity measures; Sensitivity indices; Importance measures

1. Introduction

Global sensitivity analysis aims to quantify the relative importance of input variables or factors in determining
the value of an assigned output variable y . A recent review of applications of this discipline can be found in [14,17].
If the input to the model y = f (x1, x2, . . . , xk) is composed of independent random variables, the joint probability
density function of the input is:

E-mail address: andrea.saltelli@jrc.it (A. Saltelli).
URL address: http://www.jrc.cec.eu.int/uasa.
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P(x1, x2, . . . , xk) =

k∏

i=1

pi(xi). (1)

Mean and variance of y can be computed as:

E(y)=

∫ ∫
· · ·

∫
f (x1, x2, . . . , xk)

k∏

i=1

pi(xi)dxi, (2)

V (y)=

∫ ∫
· · ·

∫ (
f (x1, x2, . . . , xk)−E(y)

)2
k∏

i=1

pi(xi)dxi

=

∫ ∫
· · ·

∫
f 2(x1, x2, . . . , xk)

k∏

i=1

pi(xi)dxi −E2(y). (3)

If one of the input factors xj is fixed to a generic value x̃j , the resulting variance of y will be equal to:

V
(
y | xj = x̃j

)
=

∫ ∫
· · ·

∫ (
f (x1, x2, . . . , x̃j ..., xk)−E(y | xj = x̃j )

)2
k∏

i=1
i �=j

pi(xi)dxi

=

∫ ∫
· · ·

∫ (
f 2(x1, x2, . . . , x̃j ..., xk)

) k∏

i=1
i �=j

pi(xi)dxi −E2(y | xj = x̃j
)
. (4)

For the purpose of sensitivity analysis one is interested in eliminating the dependence upon the value x̃j by
integrating V (y | xj = x̃j ) over the probability density function of x̃j , obtaining

E
(
V (y | xj )

)
=

∫ ∫
· · ·

∫
f 2(xi, x2, . . . , xj ..., xk)

k∏

i=1

pi(xi)dxi

−

∫
E2(y | xj = x̃j

)
pj (x̃j )dx̃j . (5)

Note that we have dropped the dependence x̃j from the left-hand side, as it disappears due to the integration.
Subtracting Eq. (5) from Eq. (3) one obtains:

V (y)−E
(
V (y | xj )

)
=

∫
E2(y | xj = x̃j

)
pj (x̃j )dx̃j −E2(y). (6)

The left-hand side of Eq. (6) is also equal to V (E(y | xj )), and is a good measure of the sensitivity of y with
respect to factor xj . If one divides it by the unconditional variance, one obtains the so-called first order sensitivity
index Sj = V (E(y | xj ))/V (y). The Si ’s are nicely scaled in [0,1]. Eq. (6) is computationally impractical. In a
Monte Carlo frame, it implies a double loop: the inner one to compute E2(y | xj = x̃j ), and the outer to compute
the integral over dx̃j . For this reason the integral in (6) has been rewritten by Ishigami and Homma [7] as:

∫
E2(y | xj = x̃j

)
pj (x̃j )dx̃i

=

∫ {∫ ∫
· · ·

∫
f

(
x1, x2, . . . , x̃j , . . . , xk

) k∏

i=1
i �=j

pi(xi)dxi

}2

pj (x̃j )dx̃j

2



=

∫ ∫
· · ·

∫
f

(
x1, x2, . . . , x̃j ..., xk

)
f

(
x ′

1, x
′
2, . . . , x̃j ..., x

′
k

) k∏

i=1
i �=j

(
pi(xi)dxi

) k∏

i=1
i �=j

(
pi(x

′
i)dx ′

i

)
pj (x̃j )dx̃j

=

∫ ∫
· · ·

∫
f (x1, x2, . . . , xj ..., xk)f

(
x ′

1, x
′
2, . . . , xj ..., x

′
k

) k∏

i=1

(
pi(xi)dxi

) k∏

i=1
i �=j

(
pi(x

′
i)dx ′

i

)
. (7)

The expedient of using the additional integration variable primed, allows us to realize that the integral in (7) is the
expectation value of the function F of a set of (2k − 1) factors:

F
(
x1, x2, . . . , xj , . . . xk, x

′
1, x

′
2, . . . , x

′
j−1, x

′
j+1, . . . x

′
k

)

= f (x1, x2, . . . xk)f
(
x ′

1, x
′
2, . . . , x

′
j−1, xj , x

′
j+1, . . . x

′
k

)
. (8)

The integral (7) can be hence computed using a single Monte Carlo loop. The Monte Carlo procedure that follows
was proposed by Saltelli et al. [13].

Two input sample matrices M1 and M2 are generated:

M1 =



x11 x12 . . . x1k

x21 x22 . . . x2k

. . .

xn1 xn2 . . . xnk


 , M2 =



x ′

11 x ′
12 . . . x ′

1k
x ′

21 x ′
22 . . . x ′

2k
. . .

x ′
n1 x ′

n2 . . . x ′
nk


 , (9)

where n is the sample size used for the Monte Carlo estimate. In order to estimate the sensitivity measure for a
generic factor xj , i.e.

Sj =
V (E(y | xj ))

V (y)
=

(Uj −E2(y))

V (y)
,

Uj =

∫
E2(y | xj = x̃j

)
pj (x̃j )dx̃j

(10)

we need an estimate for both E(y) and Uj . The former can be either obtained from values of y computed on the
sample in M1 or M2. Uj can be obtained from values of y computed on matrices M1 and Nj , the latter being
defined as:

Nj =



x ′

11 x ′
12 . . . x1j . . . x ′

1k
x ′

21 x ′
22 . . . x2j . . . x ′

2k
. . . . . . . . . . . . . . . . . .

x ′
n1 x ′

n2 . . . xnj . . . x ′
nk


 , (11)

i.e. by:

Ûj =
1

n− 1

n∑

r=1

f (xr1, xr2, . . . , xrk)f
(
x ′
r1, x

′
r2, . . . , x

′
r(j−1), xrj , x

′
r(j+1), . . . , x

′
rk

)
. (12)

If one thinks of matrix M1 as the “sample” matrix, and of M2 as the “re-sample” matrix, then Ûj is obtained
from products of values of f computed from the sample matrix times values of f computed from Nj , i.e. a matrix
where all factors except xj are re-sampled. In this way the computational cost associated with a full set of first
order indices Si is n(k + 1). One set of n evaluations of f is needed to compute E(y), and k sets of n evaluations
of f are needed for the second term in the product (12).

The very same procedure for the computation of sensitivity indices was proposed by Sobol’[19]. The problem
setting of Sobol’ was that of identifying a subset of the k factors that could account for most of the variance
of y . Imagine that the factors have been partitioned into a trial set u = (xi1, xi2, . . . , xim) and the remaining set
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v = (xl1, xl2, . . . , xlk−m). Then according to Sobol’ an idea of the overall effect of the subset u on the variance of
the output can be estimated from:

Uv =

∫ ∫
· · ·

∫
f (u,v)f (u′,v)du du′ dv, (13)

V
(
E(y | v)

)
=Uv −E2(y), (14)

V
(
E(y | u)

)
+ V

(
E(y | u,v)

)
= V (y)− V

(
E(y | v)

)
. (15)

In Eq. (15), V (E(y | u)) is the first order effect of the set u, while V (E(y | u,v)) is the interaction term between the
sets u and v. If V (y)∼= V (E(y | v)), then u is non-influent, and all factors in u can be fixed in a subsequent analysis
of the model. Formula (13) shows the same expedient of the additional integration variables already described. The
Monte Carlo estimate of Uv is:

Ûv =
1

n− 1

n∑

r=1

f (xri1, xri2, . . . , xrim, xrl1, xrl2, . . . , xrlk−m)f
(
x ′
ri1
, x ′

ri2
, . . . , x ′

rim
, xrl1, xrl2, . . . , xrlk−m

)
,

(16)

i.e. to estimate the total effect of set u one must now re-sample the variables in the set u. One can easily see that (12)
is a particular case of (16). Error estimates for Ûj ’s are discussed in the original reference of Sobol’. A bootstrap
based alternative is discussed in [1].

Eq. (15) is a particular case of a general variance decomposition scheme proposed by Sobol’, whereby the total
unconditional variance can be decomposed as:

V (y)=
∑

i

Vi +
∑

i

∑

j>i

Vij + · · · + V12...k, (17)

where

Vi = V
(
E(Y | xi)

)
,

Vij = V
(
E(Y | xi, xj )

)
− Vi − Vj

and so on. The development in (17) contains k terms of the first order Vi, k(k − 1)/2 terms of the second order
Vij and so on, till the last term of order k, for a total of 2k − 1 terms. The Vij terms are the second order (or
two-way) terms, analogous to the second order effects described in experimental design textbooks (see, e.g., [2]).
The Vij terms capture that part of the effect of xi and xj that is not described by the first order terms. Formula (17)
has a long history, and various authors have proposed different versions of it. A discussion can be found in [1], as
well as in [10]. Sobol’s version of formula (17) is based on a decomposition of the function f itself into terms of
increasing dimensionality, i.e.:

f (x1, x2, . . . , xk) = f0 +
∑

i

fi +
∑

i

∑

j>i

fij + · · · + f12...k, (18)

where each term is function only of the factors in its index, i.e. fi = fi(xi), fij = fij (xi, xj ) and so on.
Decompositions (17), (18) are unique provided that the input factors are independent and that the individual terms
fi1i2...is in (18) are square integrable and have zero mean over the domain of existence.

One important aspect of Sobol’ development is that similar decompositions can be written by taking the factors
into subsets, as shown by Eq. (15). This prompted Homma and Saltelli [5] to introduce the new estimate U−j :

Û−j =
1

n− 1

n∑

r=1

f (xr1, xr2, . . . , xrj , . . . , xrk)f
(
xr1, xr2, . . . , xr(j−1), x

′
rj , xr(j+1), . . . , xrk

)
.

As before:
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V
(
E(y | x−j )

)
= Û−j − Ê 2(y), (19)

where V (E(y | x−j )) is the total contribution to the variance of y due to non-xj . This implies that the difference
V (y) − V (E(y | x−j )) is equal to the sum of all terms in the variance decomposition (15) that include xj . We
illustrate this for the case k = 3:

ST1 =
V (y)− V (E(y | x−1))

V (y)
=

E(V (y | x−1))

V (y)
= S1 + S12 + S13 + S123, (20)

where, e.g., S1 = V (E(y | x1))/V (y). Analogous expressions can be written for ST2 , ST3 . We have called the STj ’s
“total effect” terms. The total effects are useful for the purpose of sensitivity analysis, as discussed in [18], as they
give information on the non additive part of the model. It may be useful to observe here that for a purely additive
model,

∑k
i=1 Si = 1, while for a given factor xj an important difference between STj and Sj flags an important role

of interactions for that factor in y . The same information could be obtained by computing all terms in (17), but
these are as many as 2k −1. This problem has been referred to by Rabitz et al. [11] as “the curse of dimensionality”.
The computational cost of estimating all effects in (17) is in fact as high as n2k , where again n is the sample size
used to estimate one individual effect.1 For these reasons we customarily tend to compute the set of all Si plus the
set of all STi , that gives a fairly good description of the model sensitivities.

This would normally entail a computational cost of n(2k + 1) model evaluations, i.e. nk for the first order terms,
again nk for the total effect terms, plus n for Ê(y). In fact we have found in Homma and Saltelli [5], that better
estimates for the first order terms are obtained if the E2(y) term in (10) is estimated as

Ê 2 =
1

n

n∑

r=1

f (xr1, xr2, . . . , xrk)f
(
x ′
r1, x

′
r2, . . . , x

′
rk

)
(21)

rather than from

Ê 2 =

{
1

n

n∑

r=1

f (xr1, xr2, . . . , xrk)

}2

, (22)

i.e. using sample estimates from both M1 and M2 matrices rather than from M1 alone. Eq. (21) is a legitimate
estimate of the squared sample mean given the independence of the two sample vectors. It is clear from (10) and
(12) that the estimate of Sj goes more naturally to zero for a non-influential factor xj when (21) is used, as can be
seen from:

Ûj − Ê 2(y) =
1

n− 1

n∑

r=1

(f (xr1, xr2, . . . , xrk)f
(
x ′
r1, x

′
r2, . . . , x

′
r(j−1), xrj , x

′
r(j+1), . . . , x

′
rk

)

−
1

n

n∑

r=1

f (xr1, xr2, . . . , xrk)f
(
x ′
r1, x

′
r2, . . . , x

′
rk

)
. (23)

On the same ground one can see that the computation of the total effect sensitivity indices is better achieved using
(22). V (y) is computed from M1 for all indices. In conclusion, the standard computational strategy so far employed
to compute the full set of total and first order indices entailed a total of n(2k + 2) model evaluations, two samples
being used to estimate Ê 2.

Many applications of this strategy to different models can be found in various chapters of Saltelli et al. [14].
An important economy in model evaluation, that is described in [18], is that the STj and Sj terms can also

be estimated using an extended version of the Fourier Amplitude Sensitivity Test (FAST). When using extended
FAST, the same set of n model evaluations that was used to estimate a given STj can also be used to compute Sj ,

1 n(2k − 1) would be needed to compute all effects, and n more to compute Ê(y), V (y).
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that makes the entire analysis feasible at the cost of nk model evaluations. For this reason the extended FAST
method has been considered so far as the most efficient way to compute the full set of STj and Sj indices. In the
present work we introduce an extended version of Sobol’ method that out-performs FAST.

2. Extension of the method

We imagine that a model has been characterised using the Sobol’ method, computing all STj ’s and Sj ’s estimates
at the cost of n(2k+2)model evaluations. Can the same coefficient be estimated with a smaller cost? Can additional
estimates be obtained with the same sets used to compute the Ŝ T

j ’s and Ŝj ’s? Before we proceed we need to
introduce some new notation.

Let us call V c
i1i2...is

a sensitivity measure that is closed within a subset of factors, i.e. V c
i1i2...is

is the sum of all
Vi1i2...is terms in (17) that is closed in the indices i1, i2, . . . , is : V c

1 = V1, V c
ij = Vi +Vj + Vij , and so on. Likewise

V c
−i1i2...is

will indicate the sum of all indices that are closed within the complementary set of i1, i2, . . . , is , i.e.
V c

−i1i2...is
= V c

l1l2...lk−s
, where ip �= lq for all p ∈ [1,2, . . . , s], q ∈ [1,2, . . . , k − s].

Let ai1i2...is denote the vector of length n containing model evaluations corresponding to the rows of the input
factor matrix Ni1i2...is . As in Eq. (11) above, the matrix Ni1i2...is is obtained from matrix M1 by substituting all
columns except i1, i2, . . . , is by the corresponding columns of matrix M2. a0 will hence denote a set of model
evaluations corresponding entirely to matrix M2, while ai1i2...ik will indicate the vector of model evaluations
corresponding entirely to matrix M1.

A few equalities are repeated below for reader’s convenience:

V c
i1i2...is

= V
(
E(Y | xi1xi2 . . . xis )

)
=Ui1i2...is −E2(y), (24)

Ûi1i2...is =
1

n− 1

n∑

r=1

f (xr1, xr2, . . . , xrk)f
(
xri1, xri2, . . . , xris , x

′
rl1
, x ′

rl2
, . . . , x ′

rlk−s

)
, (25)

Û−i1i2...is =
1

n− 1

n∑

r=1

f (xr1, xr2, . . . , xrk)f
(
x ′
ri1
, x ′

ri2
, . . . , x ′

ris
, xrl1, xrl2, . . . , xrlk−s

)
(26)

with the special cases

Ŝj =
(Ûj − Ê 2(y))

V̂ (y)
, (27)

Ŝ T
j = 1 −

(Û−j − Ê 2(y))

V̂ (y)
. (28)

We are now ready to submit the following theorem:

Theorem 1. Given a model y = f (x1, x2, . . . , xk), it is possible to compute at the cost of n(k + 2) model

evaluations:

(1) One estimate for each of the k indices of the first order Ŝj .

(2) One estimate for each of the k total effect indices Ŝ T
j .

(3) One estimate for each of the
(
k
2

)
V c

−ij closed effect indices.
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Table 1
Terms that can be estimated given the corresponding vectors of model evaluations, k = 5

a0 a1 a2 a3 a4 a5 a2345 a1345 a1245 a1235 a1234 a12345

a0 V̂ (y)

a1 Ŝ T
1 V̂ (y)

a2 Ŝ T
2 V̂ c

−12 V̂ (y)

a3 Ŝ T
3 V̂ c

−13 V̂ c
−23 V̂ (y)

a4 Ŝ T
4 V̂ c

−14 V̂ c
−24 V̂ c

−34 V̂ (y)

a5 Ŝ T
5 V̂ c

−15 V̂ c
−25 V̂ c

−35 V̂ c
−45 V̂ (y)

a2345 Ŝ1 Ê 2(y) V̂ c
12 V̂ c

13 V̂ c
14 V̂ c

15 V̂ (y)

a1345 Ŝ2 V̂ c
12 Ê 2(y) V̂ c

23 V̂ c
24 V̂ c

25 V̂ c
−12 V̂ (y)

a1245 Ŝ3 V̂ c
13 V̂ c

23 Ê 2(y) V̂ c
34 V̂ c

35 V̂ c
−13 V̂ c

−23 V̂ (y)

a1235 Ŝ4 V̂ c
14 V̂ c

24 V̂ c
34 Ê 2(y) V̂ c

45 V̂ c
−14 V̂ c

−24 V̂ c
−34 V̂ (y)

a1234 Ŝ5 V̂ c
15 V̂ c

25 V̂ c
35 V̂ c

45 Ê 2(y) V̂ c
−15 V̂ c

−25 V̂ c
−35 V̂ c

−45 V̂ (y)

a12345 Ê 2(y) Ŝ1 Ŝ2 Ŝ3 Ŝ4 Ŝ5 Ŝ T
1 Ŝ T

2 Ŝ T
3 Ŝ T

4 Ŝ T
5 V̂ (y)

An additional theorem is the following:

Theorem 2. If we modify the setting of Theorem 1 by allowing for n(2k + 2) model evaluations (i.e. as many as in

the procedure of Section 1), we can obtain:

(1) Double rather than single estimates for each of the Ŝ T
j ’s and Ŝj ’s indices.

(2) Double estimates for each of the
(
k
2

)
V c
ij terms.

(3) Double rather than single estimates for each of the
(
k
2

)
V c

−ij terms.

Theorems 1, 2 constitute the promised extension of Sobol’ method. Let us illustrate the new procedures for the
case k = 5. We have to use this value as lower values of k are special cases and will be treated afterwards. Table 1
gives for each cell what term can be computed by the corresponding ai1i2...is vectors.

Note that:

(1) Table 1 can be interpreted by referring to Eqs. (24)–(28) above. E.g., we have labelled the entry corresponding
to the intersection a0 and a1 as Ŝ T

1 , as a0 · a1 yields Û−1 that in turn can be used to compute Ŝ T
1 (Eq. (28)) and

so on for the other terms.
(2) The diagonal has been labelled as providing an estimate of V̂ (y), as this is what can be obtained by the scalar

product a2
i1i2...is

. In fact each of the 2k + 2 vectors ai1i2...is can yield an estimate of Ê(y). Known Ê(y) each

ai1i2...is can again be used to estimate V̂ (y).
(3) The row labelled a12345 illustrates the same procedure as in Section 1 for the computation of the first order

indices and total order indices, i.e. Ŝ T
4 is obtained from V̂ (y) and V̂ T

4 , this latter being computed from
a12345,a1235.

(4) Looking at the column a0, one sees that the same set of indices (first order plus total) can be computed from a0,
a12345, and either of the sets {a1,a2,a3,a4,a5} or {a−1,a−2,a−3,a−4,a−5} ≡ {a2345,a1345,a1245,a1235,a1234},
bringing the computational cost from n(2k + 2) down to n(k + 2), with a reduction in computational cost that
tends to 50% at increasing k values.
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(5) All indices in rows other than a12345 and columns other than a0 are novel, in the sense that they were overlooked
in the procedure of Section 1. The alternative arranging of the ai1i2...is terms shows the additional terms that
can be computed.

(6) The intersection of vectors a1 and a2345 has been labelled as an estimate of Ê 2(y), as all columns in the two
sampling matrices are different and the scalar product ai1i2...is , aj1j2...jr provides an estimate of the square of
E(y), as in Eq. (21) above.

(7) The two vectors a2 and a2345 allow the computation of V̂ c
12 as columns 1 and 2 are identical in the two sampling

matrices.
(8) The two vectors a2345 and a1345 allow the computation of V̂ c

345 = V̂ c
−12 as columns 3,4,5 are identical in the

two sampling matrices.

Looking at this table, for the setting of Theorem 1 (grey cells in Table 1), it is easy to see that we have produced
the Ŝ T

j ’s and Ŝj indices, with j ∈ [1,2,3,4,5] at the reduced cost of n(k + 2)= 7n model evaluations, instead of
n(2k + 2)= 12n, with a reduction of 42% in computational cost. Furthermore, we have produced one estimate for
each of the

(5
3

)
= 10 indices complementary to the second order ones, that for k = 5 happen to be closed indices

of the third order. Note that for, e.g., k = 6 we would have obtained one estimate for each of the
(6

4

)
= 15 closed

indices of the fourth order and so on for larger values of k, and so on based on the known property that
(
k
j

)
=

(
k

k−j

)

for k � j .
For the setting of Theorem 2, it is easy to see that double, rather than single, estimates for each of the Ŝ T

j ’s,

Ŝj and V̂ c
−ij have been produced. We have additionally obtained double estimates for each of the

(5
2

)
= 10 closed

indices of the second order. Additional estimates of Ê 2(y) are also available as discussed.
The reader might wonder which among the various estimates of Ê 2(y), V̂ (y) should be used in Eqs. (24)–(28)

to obtain, e.g., the V c
i1i2...is

from the Ûi1i2...is . In [5] we suggest that the estimate of Ê 2(y) in (21) obtained from a0,
a12345 should be used for the first order indices and that from (22) based on a0 alone for the total effect ones.

In the context of the extended procedures (Theorems 1 and 2) presented here, the following approach was taken:

(1) Theorem 1 setting. Eq. (21) is used for the first order indices. This means that for computing, any of the Ŝj ,
a0 and a12345 vectors are used to estimate Ê 2(y) and a12345 to compute V̂ (y). Eq. (22) is used for the total
effect, i.e. for any of the Ŝ T

j , a0 alone is used to estimate Ê 2(y). V̂ (y) is also computed from a0 for the total

effect indices. For the closed effects of order k − 2 Eq. (22) is used for Ê 2(y), and the vector to be used in
(22) is selected as one of the two that concur in the estimation of the effect. E.g., for V̂ c

−15 (in the grey table

area), computed from a1 and a5, the Ê 2(y) is computed from a1 alone (or identically from a5 alone). V̂ (y) is
computed from the same vector used for Ê 2(y) (either a1 or a5).

(2) Theorem 2 setting. Same procedure as Theorem 1 for all double estimates of (i) first order, (ii) total order
indices and (iii) order k − 2 closed indices. For the closed indices of the second order Eq. (21) is used, where
Ê 2(y) is computed using one of the vector that concur in the estimation of the index. E.g., for that estimate
of V̂ c

12, that is computed from a1345 and a1, Ê 2(y) is computed from a1345 and a2 (or identically from a1

and a2345). The variance is correspondingly computed from a1345 or a1. These arrangements can be easily
understood by inspecting equations like (23) above.

As we said, k = 4 is a special case (Table 2). For this value of k we obtain for the setting of Theorem 2:

(1) Double estimates for each of the 4Ŝi and each of the 4Ŝ T
i .

(2) Quadruple estimates of the
(4

2

)
= 6 second order terms V̂ c

ij .

All 4 estimates of each term V c
ij are independent.
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Table 2
Terms that can be estimated given the corresponding vectors of model evaluations, k = 4

a0 a1 a2 a3 a4 a234 a134 a124 a123 a1234

a0 V̂ (y)

a1 Ŝ T
1 V̂ (y)

a2 Ŝ T
2 V̂ c

34 V̂ (y)

a3 Ŝ T
3 V̂ c

24 V̂ c
14 V̂ (y)

a4 Ŝ T
4 V̂ c

23 V̂ c
13 V̂ c

12 V̂ (y)

a234 Ŝ1 Ê 2(y) V̂ c
12 V̂ c

13 V̂ c
14 V̂ (y)

a134 Ŝ2 V̂ c
12 Ê 2(y) V̂ c

23 V̂ c
24 V̂ c

34 V̂ (y)

a124 Ŝ3 V̂ c
13 V̂ c

23 Ê 2(y) V̂ c
34 V̂ c

24 V̂ c
14 V̂ (y)

a123 Ŝ4 V̂ c
14 V̂ c

24 V̂ c
34 Ê 2(y) V̂ c

23 V̂ c
13 V̂ c

12 V̂ (y)

a1234 Ê 2(y) Ŝ1 Ŝ2 Ŝ3 Ŝ4 Ŝ T
1 Ŝ T

2 Ŝ T
3 Ŝ T

4 V̂ (y)

Table 3
Terms that can be estimated given the corresponding vectors of model evaluations, k = 3

a0 a1 a2 a3 a23 a13 a12 a123

a0 V̂ (y)

a1 Ŝ T
1 V̂ (y)

a2 Ŝ T
2 Ŝ3 V̂ (y)

a3 Ŝ T
3 Ŝ2 Ŝ1 V̂ (y)

a23 Ŝ1 Ê 2(y) V̂ c
12 V̂ c

13 V̂ (y)

a13 Ŝ2 V̂ c
12 Ê 2(y) V̂ c

23 Ŝ3 V̂ (y)

a12 Ŝ3 V̂ c
13 V̂ c

23 Ê 2(y) Ŝ2 Ŝ1 V̂ (y)

a123 Ê 2(y) Ŝ1 Ŝ2 Ŝ3 Ŝ T
1 Ŝ T

2 Ŝ T
3 V̂ (y)

For k = 3 we obtain (Table 3):

(1) Double estimates for each of the 3Ŝi and each of the 3Ŝ T
i .

(2) Double estimates of the
(3

2

)
= 3 second order terms V̂ c

ij .

(3) Two more estimates for each of the 3Ŝi .

The case k = 2 is non-relevant, as V c
12 = V (y).

3. Discussion of the methodological advantages

What benefit does the new computational procedure offer? The main advantage of the new method is that, given
the computational effort already made to compute a full set of Ŝi , Ŝ T

i estimates, one can also obtain additional
estimates.

Imagine, for the case of k � 5, that the reduced procedure of Theorem 1 has been adopted, and that a0,ai1,i2,...,ik ,
and either of the sets {a1,a2, . . . ,ak} or {a−1,a−2, . . . ,a−k} has been computed (at the cost of n(k + 2) model
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evaluations). Beside Ŝi , Ŝ T
i , we now also dispose of the Ŝ c

−ij indices. These can be very useful. If Ŝ c
−ij ≈ 1, it

means that neither xj nor xi contribute appreciably to the variance of y , neither by themselves nor in cooperation
with other factors. These factors could hence be fixed in a subsequent analysis. Note that the condition Ŝ c

−ij ≈ 1 is

equivalent to Ŝ T
i ≈ 0, Ŝ T

j ≈ 0.
If we use instead the extended procedure of Theorem 2, at the cost of n(2k + 2) model evaluations, we obtain

double estimates of Ŝi , Ŝ T
i , double estimates of the Ŝ c

−ij indices and finally double estimates of V̂ c
ij for the closed

effects of couples of factors, i.e. V c
ij = Vi + Vj + Vij . These can be used as such or converted into second order

sensitivity coefficients Ŝij = (V̂ c
ij − V̂i − V̂j )/V̂ (y). A full set of second order coefficients is likely to tell us much

of what we need to know about a model sensitivity, also because interaction of higher orders should in general be
less frequent, as discussed in [10].We know from the value of Sj if a factor is influent at the first order, and from STj
whether it has important interactions. If this is the case, inspection of the Sij for all i �= j will allow us to identify
which factor xj interacts with.

4. The case of the correlated input

Sensitivity analysis for correlated input is discussed in [8,16]. For this setting, the important computational
simplifications described in Section 1 are not applicable, and Eq. (17) loses its uniqueness. In these cases there is
no alternative to the computation of the double loop needed to estimate conditional variances such as V (E(y | xj )),
Eq. (6). For the purpose of Monte Carlo simulations, correlated input can be generated using Markov Chain Monte
Carlo (MCMC), or procedures based on Cholesky decompositions (see, e.g., [6]) or on Latin Hypercube Sampling
(LHS, [8]). The problem with correlated sample, in brief, is that the reduction in variance that can be achieved by
fixing one factor depends on whether or not other factors have been fixed, and the incremental reduction in variance
for each factor depends on the order in which factors are fixed.

We have discussed in [16] two general settings for sensitivity analysis. Each setting is based on a bet posed on
the model y = f (x1, x2, . . . , xk), for the general case where the input can be correlated. In the first bet, one has
to make a rational guess on which parameter would induce the largest reduction in variance if it were fixed to its
“true” value. Because such true value is in general unknown, the bet can be rationally placed by computing the
estimates V̂ (E(y | xj )), whether or not the input is correlated.

For the second setting, of relevance in risk analysis and control theory, the bet is on the identification of the
smallest subset of x capable of inducing a target reduction in the unconditional variance V (y), as in the work of
Sobol’ [19], discussed in Section 1. For the uncorrelated case, a rational selection strategy for the subset of interest
is based on the computation of the full sets of Sj and STj . This strategy is meant to fight the curse of dimensionality,
as attempting all combinations of factors, in a brute-force search for the smallest subset of x that gives the desired
reduction in V (y), would be computationally prohibitive; one would have to compute all 2k − 1 terms in Eq. (17)
to start with. As described in [16], an iterative procedure can be adopted for the uncorrelated case, that includes as
a step the computation of the full set of Sj and STj .

For the correlated case, one might still engage in a brute force search computing all possible closed terms
V c
i1i2...is

. Note that for the correlated case the V c
i1i2...is

can no longer be decomposed meaningfully into a sum
of lower dimensionality terms, but would still allow a perfectly informed choice, as would the Vi1i2...is in the
uncorrelated case. Also for the correlated case, we suggest in [16] a cheaper, albeit approximate, alternative that
involves the computation of the Sj and STj for the non-correlated problem.

Hence, in the context covered by these problem settings, the procedure proposed in Section 2 can still be usefully
applied.
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5. Test cases

We illustrate the algorithm on non-correlated test cases. We have selected an analytic function due to Sobol’
and known as “Sobol’ g function”, and a more complex numeric calculus test case originating from modelling of
petroleum generation in sedimentary basins. The cost of computing the former can be assumed as zero, while the
computation of a single output time series for the latter takes about 0.05 s on a 8-nodes Linux cluster, 16 CPU’s
with a Pentium 3 processor running under Linux RedHat.

The g function is a strongly non-monotonic, non-additive function of k factors xi , assumed identically and
uniformly distributed in the unit cube I k = {x | 0 � xi � 1; i = 1,2, . . . , k}.

g(x1, x2, . . . , xk)=

k∏

i=1

gi(xi) (29)

with

gi(xi)=
|4xi − 2| + ai

1 + ai
. (30)

For each of the gi(xi) functions
∫ 1

0 gi(xi)dxi = 1, and for xi ∈ [0,1] the function’s variation is

1 −
1

1 + ai
� gi(xi)� 1 +

1

1 + ai
. (31)

The importance of each factor xi is driven by its associated coefficient ai . For ai = 0, the factor is important
(0 � gi(xi) � 2). For, e.g., ai = 9 the factor in non-important (0.9 � gi(xi) � 1.1), while for ai = 99 the factor
can be considered as non-influent (0.99 � gi(xi) � 1.01). Analytical expressions are available for the sensitivity
indices ([1,15]):

∫

I k

f (x1, x2, . . . , xk)dx1 dx2 . . . dxk = 1, (32)

Vi1i2...is = Vi1Vi2 . . .Vis , (33)

Vi =

1∫

0

[
gi(xi)− 1

]2
dxi = 1

3 (1 + ai)
−2. (34)

In Figs. 1–3 we have computed the sensitivity indices for a 6-dimensional g-function with a = {0,0.5,3,9,99,
99} using first the standard procedure of Section 1, at the cost of n(2k + 2) model evaluations, then with the
restricted procedure of Theorem 1 at the cost of n(k + 2) model evaluations. Finally we have used the setting
of Theorem 2, at the cost of n(2k + 2) model evaluations. For all experiments n = 1024, and the standard error
associated with the computation of the sensitivity indices was computed using bootstrap, as described in [1], with
a bootstrap sample dimension of 10,000.

Comparing Figs. 1(a)–1(b) (Sj and STj by the standard procedure) with 2(a)–2(b) (Sj and STj by the procedure
of Theorem 1), we can see that the quality of the estimates is the same. Fig. 2(c) shows the advantage brought by
the term of the 4th order, especially to identify couples of non-influent factors ij = {45,46,56}.

Moving to the procedure of Theorem 2, Figs. 3(a)–3(b), we see that the confidence bound of the estimates is
lower (each estimate is the average of 2). Similarly for Fig. 3(c), to be compared with 2(c). Additional insight into
the structure of the model is offered by the new Fig. 3(d), with the second order indices.

The PMOD model computes the generation and expulsion of hydrocarbons from a host rock, and is part of a suite
of computer models used to estimate the oil potential of sedimentary basins. PMOD has been originally developed
at Lawrence Livermore Laboratory ([3]) and adapted at ENI-AGIP for its basin modelling environment ([12]).
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(a)  (b)

Fig. 1. First order (a) and total effect (b) indices for the g function with bootstrap-estimated 95% confidence bounds using the standard procedure
of Section 1.

(a) (b)

(c)

Fig. 2. First order (a), total effect (b), and closed effect of order (6 − 2) = 4 (c) for the g function with bootstrap-estimated 95% confidence
bounds using the procedure of Theorem 1.
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(a) (b)

(c)

(d)

Fig. 3. First order (a), total effect (b), closed effect of order (6 − 2) = 4 (c), and closed effect of order 2 (d) for the g function with
bootstrap-estimated 95% confidence bounds using the procedure of Theorem 1.
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Table 4
List of the uncertain input factors and their stochastic properties

Factor’s Factor’s Type Range of PDF
name number values

“KEM/FIZ” files 1 Discrete 1, . . . ,8 Uniform
“phi-stress” curves 2 Discrete 1,2,3 Uniform
TOC 3 Continuous 0.005–0.05 Uniform
Porosity 4 Continuous Min = 0.04 Triangular

Mode = 0.05
Max = 0.09

Permeability 5 Continuous 1.e–9–1.e–6 Log-uniform
Source thickness 6 Continuous Min = 907 Triangular

Mode = 1814
Max = 2721

Time-series 7 Discrete 1,2, . . . ,32 Uniform

Some of the uncertain input factors in PMOD are time-dependent physical quantities: the rock’s total organic
carbon content (TOC), the rock’s porosity, permeability and thickness. In the analysis, the values at the initial
time point, that corresponds to 30 million years before present (mybp), have been considered, neglecting the time
dependency.

One of the inputs, the PHI stress variable, describes the mechanic behaviour of the rock. Due to lack of data on
the specific site, three different curves relative to similar sedimentary basins for other areas have been used, and
the model selects randomly which of the three to use at runtime. Similarly for the so-called “KEM/FIZ” files, that
describe the stoichiometrics and kinetics of the chemical system considered. Eight alternative such descriptions
were generated by the experts, so that sampling from these might be considered as representative of the system
chemistry’s variability. Also in this case the model selects at runtime one of the eight files. Finally the model
needs as input 4 highly correlated time series (temperature, pressure, effective stress and hydrostatic pressure).
Thirty-two such multivariate series have been generated by the experts and the model selects one set at random for
each execution of the PMOD model. A summary of the 7 input factors is given in Table 4. All these factors are
considered independent from each other.

A sensitivity analysis for this model had already been performed before the algorithms presented in the present
paper were developed ([20]), where all coefficients of the first and total order had been computed. We have hence
repeated the analysis using the setting of Theorem 2. The model output is composed of cumulative expelled
amounts of oil, gas (CH4) and wet gas (CHx) at selected time points (i.e. at 30, 11.5, 8.5, 4.8, 1.9, 0 mybp).
Figs. 4(a)–4(c) show the first order sensitivity indices obtained with the two approaches at different time points for
the ouput CH4, as almost identical results hold for CHx and oil. Similarly for the total order indices, Figs. 5(a)–5(c).

In Figs. 6(a)–6(c) the coefficients of the second orders have been also computed using the set of Theorem 2,
and compared with estimates obtained previously using an independent sample of size n for each index (i.e. 21n
additional runs, from [20]).

For all these Figs. 5–6 there is a general agreement between the two methods, and the confidence bounds,
computed exactly as in the previous case study, are lower for the estimate from Theorem 2, as expected.

Finally the closed indices of order 5 are given in Fig. 7, as computed with Theorem 2. The results for Theorem 1
are very similar, as expected, and not shown here.

With the new procedures, we have been able to compute at no extra (or at a reduced) computational cost the
coefficients of order (k−2), that allow us to identify the non influential factors. Given the highly non linear and non
additive nature of PMOD, there are time points, such as t = 8.5 mybp, where none of the factors is non-influent,
apart from source thickness and porosity (Fig. 7(b)). At time t = 0 mybp the coefficients of order (k − 2) help us
to rule out as non-influent all factors except TOC.
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(a) (b)

(c)

Fig. 4. Main effect sensitivity indices, with bootstrap-estimated 95% confidence bounds, for CH4 at three different time points: 11.5 (a), 8.5 (b)
and 0 (c) million years before present.

(a) (b)

(c)

Fig. 5. Total effect sensitivity indices, with bootstrap-estimated 95% confidence bounds, for CH4 at three different time points: 11.5 (a), 8.5 (b)
and 0 (c) million years before present.
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(a) (b)

(c)

Fig. 6. Second order closed indices, with bootstrap-estimated 95% confidence bounds, for CH4 at three different time points: 11.5 (a), 8.5 (b)
and 0 (c) million years before present.

(a) (b)

(c)

Fig. 7. Fifth order closed sensitivity indices, with bootstrap-estimated 95% confidence bounds, for CH4 at three different time points: 11.5 (a),
8.5 (b) and 0 (c) million years before present.
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6. Conclusions

The present paper has suggested some efficient procedures for numerical experiments aimed at sensitivity
analysis of model output. We have focused here on the computation of sensitivity indices that are based on
decomposing the variance of the target function in a quantitative fashion. The approach presented here opens a
road to fight the so-called “curse of dimensionality”, that hinders the use of quantitative sensitivity analysis for
computationally expensive models. The analyst willing to use such methods disposes now of two approaches to
tackle the system. One is a parsimonious procedure (Theorem 1) that gives all effects of the first and total order,
plus all those of order k − 2, at the cost of n(k + 2) simulations. We have thus both reduced the computational cost
for the standard procedure of some 50% and extended it to compute the indices of order k − 2.

A second possible approach is the more expensive procedure (Theorem 2, cost = n(2k + 2)) that gives more
robust estimates of the index of the first and total orders, plus estimates of all indices of order 2 and k − 2.

Even assuming for n the value of 1000, the two procedures appear affordable for models whose cost per run is
in the range from milliseconds or lower to some minutes. For models whose execution is in the tenths of minutes
to a day range, quantitative methods are not applicable and efficient qualitative methods such as that of Morris [9]
should be used (see [4] for a review).
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