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Abstract

In the present paper we address a model of DNA-protein selective interaction. The biochemical model is

chosen on the basis of existing literature, both theoretical and experimental. This consists of a restriction

enzyme, EcoRI, binding selectively to a 6 base-pair subsequence of an oligonucleotide to cleave it. A

signature of the specific partnership of the two molecules is first obtained by applying the so-called Resonant

Recognition Model. Then the same system is investigated by means of a model inspired to the standard

Davydov and Holstein-Fröhlich models describing the electron motion along a biomolecule. Starting with a

model Hamiltonian written in second quantization, the Time Dependent Variational Principle is used to work

out the dynamical equations of the system. The time-Fourier spectra of the electron currents numerically

computed for the DNA fragment and for the EcoRI enzyme, respectively, are multiplied to get a cross-

spectrum which displays a sharp peak of co-resonance. The remarkable result is the replacement of this

sharp peak with a broad and noisy frequency pattern when the recognition sequence GAATTC on the DNA

is randomized. This sequence-dependent charge transfer phenomenology is suggestive of a potentially rich

variety of selective electrodynamic interactions of DNA molecules and transcription factors under the action

of electron excitation.
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I. INTRODUCTION

Progress in molecular and cellular biology is consistently linked to a better knowledge of the

structure of, and functional interplay between biomolecules such as DNA, RNA and proteins.

Even though these building blocks of the living matter display no apparent systematic spatial

order, it is well known that all the relevant biochemical processes follow precisely timed se-

quences, in other words display a dynamical order. DNA/RNA-interacting proteins (e.g., heli-

cases, polymerases, nucleases, recombinases) modulate essential transaction processes involving

nucleic acids to achieve DNA duplication and repair, gene expression and recombination, with

an astonishing efficiency. Such an astonishing efficiency raises a fundamental question from a

physical point of view. With biochemical reactions mostly being stereo specific, two (or more)

reacting partners have to come in close contact and exhibit a definite spatial orientation to initiate

particular reactions. Then, how do the various actors in a given biochemical process efficiently

find each other (i.e., how does a protein effectively recruits the appropriate co-effector partner(s) or

selectively connects with its DNA/RNA target(s) in a crowded cyto/nucleoplasm environment)? In

other words, what are the physical forces that bring all these players at the right place, in the right

order and in a reasonably short time to sustain cellular function and ultimately cellular life? The

classical way to tackle these issues invokes Brownian motion (actually other proposals have been

put forward, like facilitated diffusion, but these alternative explanations do not apply to bulk re-

cruitment of molecules). At physiological temperature, ubiquitously distributed water molecules

undergo chaotic motion, colliding with larger/heavier fluid components. On the latter, the neat

outcome from simultaneous hits is a force of both random intensity and direction. Hence, large

molecules move in a diffusive way throughout the cellular spaces and sooner or later shall en-

counter their cognate partners. Is this truly a good answer to the problem formulated here? Many

doubts arise when one tries to estimate diffusion driven activation for some of the biochemical

processes mentioned above, in fact free diffusion is considerably slowed down in the crowded

cellular space [1]. Moreover, the discrepancy between the observed reaction rates in cells and

the predictions of strict random diffusion modelling are being recently questioned [2–7]. There-

fore, it is timely to reconsider a longstanding hypothesis, put forward in the 1960s by H. Fröhlich

[8] who surmised that certain biochemical reactions could be accelerated by selective electrody-

namic forces acting over long distances. This hypothesis would explain a number of phenomena

in living matter, such as the extraordinary efficiency of enzymatic reactions [9], of the molecular
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DNA transcription machinery, of certain ligand-receptor recruitments, and so on [10, 11]. For both

technological and theoretical reasons, no formal confirmation (or refutation) of this hypothesis of

electrodynamic interactions between biomolecules has been validated until recently. After a thor-

ough theoretical revisitation of Fröhlich’s theory [12], an experimental feasibility study [13, 14]

and the experimental observation of an out-of-equilibrium phonon condensation in a model protein

[15] which is a necessary condition [12] to activate intermolecular electrodynamic interactions, a

first experimental evidence of the activation of these forces has been provided very recently [16].

Within this newly opened field, the aim of the present work is to investigate whether intermolec-

ular electrodynamic interactions can be also put at work under different conditions of activation,

but without giving up the ingredient of resonance, a crucial one for selective recruitment of the

cognate partners of a biochemical reaction. To this aim we will combine and adapt the Resonant

Recognition Model [17], detailed below, and a recent picture of intermolecular interactions as be-

ing mediated by water dipolar waves [18]. This paper is organized as follows. In Section II the

RRM is quickly sketched and applied to the interaction of the EcoRI restriction enzyme with an

oligonucleotide (a 66 base pairs double stranded DNA fragment) containing a cleavage sequence

recognized by the enzyme. In Section III we define the model used to describe the electron mo-

tion along the DNA fragment and the enzyme separately. Section IV contains the definition of

the physical parameters used in the numerical simulations of the model equations. The results of

these numerical simulations are then reported in Section V. The possibility of activating water me-

diated DNA-EcoRI interaction is discussed in Section VI. Finally, in Section VII some concluding

remarks are reported.

II. THE RESONANT RECOGNITION MODEL

The Resonant Recognition Model (RRM), which has been extensively published [17, 20–22],

is based on discovery that crucial driving force for macromolecules (protein, DNA and RNA) acti-

vation and interaction is resonant electromagnetic energy transfer at specific frequency unique for

specific activation and interaction. The RRM model is capable to calculate these frequencies from

periodicities within the distribution of energy of delocalised electrons along protein, DNA and/or

RNA molecules using charge velocity through these macromolecules. This concept has been ap-

plied on number of proteins, DNA and/or RNA examples [17, 20–23], as well as on some medical

conditions like: Crigler-Najjar syndrome [24], pain [25] and influence of environmental light to
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health [26]. This concept has been also experimentally tested by predicting the electromagnetic

frequencies for activation of L-Lactate Dehydrogenase [27] and has been tested on experimen-

tal measurements of photon emission from dying melanoma cells [28], on photon emission from

lethal and non-lethal Ebola strains [29], as well as on differentiation of osteoblasts stem cells

[30]. These findings could be used, not only to understand biological processes and resonances

in biomolecules, but also to influence these processes using either radiation or design of related

molecules and conductive particles.

A. The RRM applied to the DNA-EcoRI model

In order to meet with the model considered in Refs.[18, 32], we have applied here the RRM

model to analyse forces driving DNA-enzyme interaction between a 66bp oligonucleotide contain-

ing a cleavage subsequence of the EcoRI enzyme and EcoRI enzyme itself, as presented in Figure

1.

Figure 1: Top: Sequence of an oligonucleotide (66 bp) containing a cleavage subsequence of EcoRI enzyme.

Bottom: amino acid sequence of EcoRI enzyme.

Through the RRM model it is possible to analyse interactions directly computationally between

amino acid sequences (proteins) and nucleotide sequences (DNA and RNA), based only on match-

ing frequencies within free electron energy distribution along these macromolecules. When we

have applied the RRM model to compare 66bp oligonucleotide containing a cleavage subsequence
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of the EcoRI enzyme and EcoRI enzyme, we have found very strong common RRM frequency at

f = 0.1699±0.0152, indicating that this frequency is crucial for mutual interaction between 66bp

oligonucleotide and EcoRI enzyme, as presented in Figure 2. Interestingly, we have also found

that nucleotide pair C-G at the position 33, which is within the cleavage site of 66bp oligonu-

cleotide is mostly contributing to RRM characteristic frequency at f = 0.1699± 0.0152 and thus

represent ‘hot spot’ [17, 20, 21] for this interaction. Furthermore, electromagnetic frequencies that

correspond to RRM frequencies depend on velocity of charge through macromolecular backbone.

For the velocity of 7.87 × 105m/s as proposed by RRM [17, 20, 21], the corresponding electro-

magnetic frequency for RRM frequency f = 0.1699± 0.0152 would be from 160THz to 192THz.

Figure 2: Characteristic RRM frequency for mutual interaction between 66bp oligonucleotide and EcoRI

enzyme at f = 0.1699± 0.0152

However, for the velocity of 1.2 × 105 m/s as proposed by Yomosa [31], the corresponding

electromagnetic frequency for RRM frequency f = 0.1699 ± 0.0152 would be from 24THz to

29THz, which is in accordance with the range of frequencies calculated in the next sections of this

paper.
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III. DEFINITION OF A DYNAMICAL MODEL AND ITS SOLUTION

In our recent work we found a rich phenomenology of intermolecular interactions of DNA

molecules under the action of an external source of energy. Depending on the initial electron

excitation site and excitation energy, we saw the concentrated periodic motions of the electrons

arising a well-peaked frequency spectrum of the electron current to the motions with a spread

noisy frequency spectrum. This motivated us strongly to interpret Resonant Recognition Model

(RRM) with the aid of an explicit modelling of the electronic motions along the backbones of

interacting DNA-protein biomolecules. In order to describe these electronic motions and their

electrodynamic interactions we resort to a model partly borrowed from the standard Davydov and

Holstein-Fröhlich models that have been originally introduced to account for electron-phonon in-

teraction [33–35]. Thus, to model the electrons moving along a given DNA sequence and along

the backbone of a DNA-interacting enzyme (we will consider the EcoRI restriction enzyme), sep-

arately, the following common Hamiltonian operator for both EcoRI enzyme and DNA is assumed

Ĥ = Ĥel + Ĥph + Ĥint, (1)

with

Ĥel =
N∑
n=1

[
E0B̂

†
nB̂n + ε〈B̂†nB̂n〉B̂†nB̂n + Jn(B̂†nB̂n+1 + B̂†nB̂n−1)

]
, (2)

Ĥph =
1

2

∑
n

[ p̂2n
Mn

+ Ωn(ûn+1 − ûn)2 +
1

2
µ(ûn+1 − ûn)4

]
, (3)

Ĥint =
∑
n

χn(ûn+1 − ûn)B̂†nB̂n. (4)

in which Ĥel and Ĥph are respectively the electronic and phononic Hamiltonians and Ĥint indi-

cates the electron-phonon interaction term. The coupling parameters are assumed dependent on

the electron excitation site with respect to the site-independent case [36]. Considering only a longi-

tudinal chain of amino acids (or nucleotides), B̂n and B̂†n denote the lowering and raising operators

between the lattice site n ∈ {1, 2, . . . , N} labelling the amino acids along the EcoRI enzyme (or

nucleotides along a DNA). The parameter E0 implies the initial excitation energy of the electron

according to the initial form of the electronic state vector. The nonlinear constant ε is the coupling

energy of the interaction between the moving electron along the chain with the electrons of the

substrate of amino acids (or nucleotides). The coupling parameter Jn is site-dependent tunnelling

term of electron across two nearest neighbouring amino acids (or nucleotides).
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The momentum and position operators p̂n and ûn of the vibronic Hamiltonian determine the

longitudinal displacements of the n-th phonon in the sequence of amino acids (or nucleotides) from

their equilibrium position and the coupling term Ωn denotes the site-dependent spring parameter

of two neighbouring sites. Mn is the mass of the n-th amino acid of EcoRI enzyme sequence (

or nucleotide of a DNA segment) and the nonlinear coupling constant µ implies phonon-phonon

interaction, absent in the harmonic approximation. Finally, the parameter χn of the interaction

Hamiltonian is the electron-phonon coupling dependent of the n-th site.

The wave function |ψ(t)〉 at any time t may be written in the Davydov ansatz by the following

factorization

|ψ(t)〉 = |Ψ(t)〉|Φ(t)〉, (5)

with the normalization condition 〈ψ(t)|ψ(t)〉 = 1. The state vector |Ψ(t)〉 describes a single

quantum excitation of electron propagating along a protein chain of N amino acids ( or a DNA

sequence of N nucleotides)

|Ψ(t)〉 =
∑
n

Cn(t)B̂†n|0〉el, (6)

in which |0〉e is the electronic vacuum state, and |Φ(t)〉 is the vibronic wave function

|Φ(t)〉 = e−i/~
∑

[βn(t)p̂n−πn(t)ûn]|0〉ph, (7)

for which the expectation values for longitudinal displacement ûn and momentum p̂n are respec-

tively, 〈Φ|ûn|Φ〉 = βn(t) and 〈Φ|p̂n|Φ〉 = πn(t). According to the time-dependent variation prin-

ciple (TDVP), we define a phase factor (S(t) ∈ R) and set a new wave function |φ(t)〉 from Eq.(5)

as |φ(t)〉 = eiS(t)/~|ψ(t)〉 satisfying the normalization 〈φ(t)|φ(t)〉 = 1. Integrating the quantum

Schrödinger equation, i~〈φ(t)|∂t|φ(t)〉 = 〈φ(t)|Ĥ|φ(t)〉 leads to S(t) =
∫ t
0
L(t′)dt′ which can be

supposed as the classical Lagrangian associated to the system

L(t) = i~〈ψ(t)|∂t|ψ(t)〉 − 〈ψ(t)|Ĥ|ψ(t)〉. (8)

Now, TDVP which is equivalent to the least action principle reads as

δS(t) = δ

∫ t

0

L(t′)dt′ = 0. (9)

Then from the wave function (5) and Lagrangian (8) we have

L =
∑
n

{
i~Ċn(t)C∗n(t) +

1

2

(
πn(t)β̇n(t)− π̇n(t)βn(t)

)
−H(Cn, C

∗
n, βn, πn)

}
, (10)
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in which H(Cn, C
∗
n, βn, πn) = 〈ψ(t)|Ĥ|ψ(t)〉. Here we fulfill the stationary action (9) and obtain

δS(t) =
∑

n

{
i~
(
− Ċ∗n(t)δCn(t) + Ċn(t)δC∗n(t)

)
+ β̇n(t)δπn(t)− π̇n(t)δβn(t)

−(∂CnH)δCn − (∂C∗
n
H)δC∗n − (∂βnH)δβn − (∂πnH)δπn

}
= 0, (11)

which gives the equations

i~Ċn = ∂C∗
n
H

β̇n = ∂πnH

π̇n = −∂βnH. (12)

According to the expectation value of the Hamiltonian

〈ψ|Ĥ|ψ〉 =
∑

n

[
E0|Cn|2 + ε|Cn|4 + Jn(C∗nCn+1 + C∗n+1Cn)

+1
2

(
1
Mn
π2
n + Ωn(βn+1 − βn)2 + 1

2
µ(βn+1 − βn)4

)
+χn(βn+1 − βn)|Cn|2

]
. (13)

and Eqs. (12) the equations of the motion are found as

i~Ċn =
(
E0 + 2ε|Cn|2 + χn(βn+1 − βn)

)
Cn + JnCn+1 + Jn−1Cn−1,

Mnβ̈n = Ωnβn+1 + Ωn−1βn−1 − Ωn−1βn − Ωnβn + χn|Cn|2 − χn−1|Cn−1|2

+ µ
(

(βn+1 − βn)3 − (βn − βn−1)3
)
. (14)

It is worth noting that the dynamical equations worked out by means of the TDVP are formally

classical but give the time evolution of actual quantum expectation values.

IV. PHYSICAL PARAMETERS FOR THE NUMERICAL COMPUTATIONS

We need to determine the physical and authentic values of the coupling parameters of the

Hamiltonian to do our numerical simulations. In so doing, we borrow the quantities from

Ref.[37, 38] of the potential interaction energies between an electron and each of all the amino

acids reported in table I as well as the potential energies of the interaction between an electron
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Nucleotide EIIP Ry EIIP eV Nucleotide EIIP Ry EIIP eV

A 0.1260 1.7143 T 0.1335 1.8164

G 0.0806 1.0966 C 0.1340 1.8232

Table I: Electron-Ion interaction potential (EIIP) values for nucleotides adenine (A), thymine (T), guanine

(G), and cytosine (C). From Ref.[37].

Amino acid EIIP Ry EIIP eV Amino acid EIIP Ry EIIP eV

Leu 0.0000 0.0000 Tyr 0.0516 0.7017

Ile 0.0000 0.0000 Trp 0.0548 0.7452

Asn 0.0036 0.0489 Gln 0.0761 1.0349

Gly 0.0050 0.0680 Met 0.0823 1.1192

Val 0.0057 0.0775 Ser 0.0829 1.1274

Glu 0.0058 0.0788 Cys 0.0829 1.1274

Pro 0.0198 0.2692 Thr 0.0941 1.2797

His 0.0242 0.3291 Phe 0.0946 1.2865

Lys 0.0371 0.5045 Arg 0.0959 1.3042

Ala 0.0373 0.5072 Asp 0.1263 1.7176

Table II: Electron-Ion interaction potential (EIIP) value for 20 amino acids. From Ref.[37].

with each of four nucleotides presented in table II. The electron in motion with the initial en-

ergy E0, during its route, experiences a periodic sequence of square potential barriers of different

height and of the same width a - the average distance between two nearest neighboring sites - by

tunneling across the chain of amino acids constituting a protein or the sequence of nucleotides

composing DNA. Such a distance is a = 4.5Å and a = 3.4Å respectively in EcoRI enzyme and

DNA fragment. Then we can estimate roughly the electron tunneling term as Jn = E0Tn,n+1 by

introducing the transmission coefficient Tn,n+1 from the probability P (n → n ± 1) of tunneling

from one potential barrier to the nearest one as follows

• Case 1: E0 < En+1

Tn,n+1 =

[
1 +

E2
n+1 sinh2(βn+1a)

4E0(En+1 − E0)

]−1
, (15)

where βn+1 = [2me(En+1 − E0)/~2]1/2.
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• Case 2: E0 > En+1

Tn,n+1 =

[
1 +

E2
n+1 sin2(βn+1a)

4E0(E0 − En+1)

]−1
, (16)

in which βn+1 = [2me(E0 − En+1)/~2]1/2.

Here me is the mass of electron and En+1 are the potential interaction energies between the elec-

trons in motion and the local amino acids ( or nucleotides). Moreover, in a rough estimation we

set χn = dE/dx = (En+1 − En)/a as the site-dependent electron-phonon coupling.

In order to perform the numerical simulations, the dimensionless expectation value of the Hamito-

nian (13) and of the dimensionless equations of motion (14) are found by rescaling time t = ω−1τ

and length βn = Lbn where L = (~ω−1M−1
n )1/2. Then we obtain

〈ψ|Ĥ|ψ〉 =
∑
n

[
E ′|Cn|2 + ε′|Cn|4 + J ′n(C∗nCn+1 + C∗n+1Cn)

+
1

2

(
ḃ2n + Ω′n(bn+1 − bn)2 +

1

2
µ′(bn+1 − bn)4

)
+ χ′n(bn+1 − bn)|Cn|2

]
, (17)

and

i
dCn
dτ

=
(
E ′ + 2ε′|Cn|2 + χ′n(bn+1 − bn)

)
Cn + J ′nCn+1 + J ′n−1Cn−1,

d2bn
dτ 2

= Ω′nbn+1 + Ω′n−1bn−1 − Ω′n−1bn − Ω′nbn + χ′n|Cn|2 − χ′n−1|Cn−1|2

+ µ′
[
(bn+1 − bn)3 − (bn − bn−1)3

]
, (18)

where the dimensionless parameters are

E ′ =
E0

~ω
; ε′ =

ε

~ω
; J ′n =

Jn
~ω

;

χ′n =
χn√

~Mnω3
; Ω′n =

Ωn

Mnω2
; µ′ =

µ~
M2

nω
3
. (19)

The sound speed of amino acids is V ∼ 4 Km/s from [33, 40] and of nucleotides is V = 1.69

Km/s from [39] (neglecting small local variations due to the different masses of the amino acids

or the nucleotides). We apply two different analyzes for computing the spring parameter in our

simulations. First, we consider the known speed of sound V = a(Ωn/Mn)1/2 leading to the

constant dimensionless parameter Ω′ = V 2/a2ω2 from (19) where Ω′ = 0.79 for amino acids

and Ω′ = 0.25 for nucleotides. Second, from [33] we borrow the spring constant of amino acids

Ω = 18.3N/m giving us from (19) the site-dependent dimensionless Ω′n = 1.83/mn. Third, we

11



assume the average spring constant Ω = V 2〈M〉/a2 of DNA -in which 〈M〉 is the average masses

of the nucleotides- and acquire the dimensionless site-dependent parameter Ω′n = 0.48/mn for

nucleotides. The expressionmn represents the dimensionless mass of amino acids and nucleotides.

In order to perform numerical integration of the dynamical equations it is useful to introduce the

variables

qn =
Cn + C∗n√

2
, pn =

Cn − C∗n
i
√

2
, (20)

then we rewrite Eqs.(18) as

q̇n =
[
E ′ +

ε′

2
(q2n + p2n) + χ′(bn+1 − bn)

]
pn + J ′npn+1 + J ′n−1pn−1, (21)

ṗn = −
[
E ′ +

ε′

2
(q2n + p2n) + χ′(bn+1 − bn)

]
qn + J ′nqn+1 + J ′n−1qn−1

]
, (22)

b̈n = Ω′(bn+1 + bn−1 − 2bn) +
1

2

(
χ′n(q2n + p2n)− χ′n−1(q2n−1 + p2n−1)

)
+ µ′

[
(bn+1 − bn)3 − (bn − bn−1)3

]
. (23)

Substituting the r.h.s of above equation (23) with Bn[b(t),q(t),p(t)] reads as bn(t + ∆t) =

2bn(t)− bn(t−∆t) + (∆t)2Bn[b(t),q(t),p(t)]; therefore

ḃn = πn

π̇n = Bn[b(t),q(t),p(t)] . (24)

Furthermore, we denote Qn[b(t),q(t),p(t)] and Pn[b(t),q(t),p(t) respectively with the r.h.s. of

Eqs.(21) and (22) and obtain the numerical integrations by combining a finite differences scheme

and a leap-frog scheme as follows

qn(t+ ∆t) = qn(t) + ∆t Qn[b(t),q(t),p(t)],

pn(t+ ∆t) = pn(t) + ∆t Pn[b(t),q(t),p(t),

bn(t+ ∆t) = bn(t) + ∆t πn(t),

πn(t+ ∆t) = πn(t) + ∆t Bn[b(t+ ∆t),q(t+ ∆t),p(t+ ∆t)]. (25)

The integration scheme for bn(t) and pn(t) is a symplectic one, meaning that all the Poincaré

invariants of the associated Hamiltonian flow are conserved, among these invariants there is energy.

We can not apply the simple leap-frog scheme to the equations for q̇n(t) and ṗn(t) due to the r.h.s.

of the equations for q̇n(t) explicitly depend on qn(t) and bn(t); therefore, we integrate the first two
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equations in (25) with an Euler predictor-corrector to arrive

q(0)n (t+ ∆t) = qn(t) + ∆t Qn[b(t),q(t),p(t)],

p(0)n (t+ ∆t) = pn(t) + ∆t Pn[b(t),q(t),p(t)],

q(1)n (t+ ∆t) = qn(t) +
∆t

2

{
Qn[b(t),q(t),p(t)] + Qn[b(t),q(0)(t+ ∆t),p(0)(t+ ∆t)]

}
,

p(1)n (t+ ∆t) = pn(t) +
∆t

2

{
Pn[b(t),q(t),p(t)] + Pn[b(t),q(0)(t+ ∆t)),p(0)(t+ ∆t)]

}
,

bn(t+ ∆t) = bn(t) + ∆t πn(t),

πn(t+ ∆t) = πn(t) + ∆t Bn[b(t+ ∆t),q(1)(t+ ∆t),p(1)(t+ ∆t)]. (26)

The integration of half of the set of the dynamical equations (25) by means of a symplectic al-

gorithm, and half of the equations by means of the Euler predictor-corrector (26) results in the

very well conservation of total energy without any shift- just with zero-mean fluctuations around a

given value fixed by the initial conditions- by considering sufficiently small integration time steps

∆t. We need also to define the initial states of electron and phonon independently of the spe-

cific physical excitation mechanism. The electron wavefunction (6) is described by the amplitudes

Cn(t = 0) centered at the excitation site n = n0 and distributed at time t = 0 [33] as

Cn(t = 0) =
1√
8σ0

sech
(n− n0

4σ0

)
(27)

where σ0 specifies the amplitude width. Concerning the phonon part of the system, we consider a

thermalized macromolecule EcoRI enzyme and DNA fragment at room temperature T = 310◦K.

At thermal equilibrium, average kinetic and potential energies per degree of freedom are equal, and

the total energy is equally shared among all the phonon modes. Accordingly, the displacements

and the associated velocities have been initialized with random values of zero-mean at t = 0, then

in a dimensionless form we have

〈|bn(0)|〉n =

√
kBT

~ωΩ′
; 〈|πn(0)|〉n =

√
kBT

~ω
. (28)

Periodic boundary conditions have been used for the both electron and phonon part of the DNA-

EcoRI interacting system and the frequency has been assumed ω = 1013s−1.

V. NUMERICAL RESULTS

We have used an integration time step ∆t = 5 × 10−6 to work out our numerical simulations

with a very good energy conservation and the typical relative error ∆E/E = 10−6. The following
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analyses have reported the spectral properties of electron currents in the interaction of a DNA

fragment of N = 66 nucleotides and an EcoRI restriction enzyme of N = 276 amino acids for

the different initial activation energies of electron E0, the various initial excitation sites of electron

n0 of the probability amplitude (27) and the distinct forms of the phononic spring term Ωn. We

study the Fourier spectrum of the electron current activated on a segment of DNA and also DNA-

interacting enzyme, separately and, from now on, use the index 1 and 2 for all the terms of DNA

and EcoRI, respectively. Resorting to the standard probability current j(x, t) of the electron wave

function (6) the electron density current is given by

j(x, t) =
e~

2mei
(ψ?∇ψ − ψ∇ψ?)

hence the average electron current, in a spatially discretized form for numerical computation, is

i1,2(t) =
1

l1,2

∫ l1,2

0

j1,2(x, t)dx =
e~

2N1,2a1,2mei

×
N1,2∑
j=1

(
Ψ∗1,2(xj, t)

Ψ1,2(xj+1, t)−Ψ1,2(xj−1, t)

2

− Ψ1,2(xj, t)
Ψ∗1,2(xj+1, t)−Ψ∗1,2(xj−1, t)

2

)
, (29)

where l1,2 are the lengths, and i1,2 are the currents flowing along the DNA fragment and the EcoRI

enzyme macromolecules, respectively. In Figures. (3) and (5), we have plotted the cross Fourier

spectrum of the currents ĩ∗1(ν )̃i2(ν) of DNA containing the sites CTTAAG, recognized by the

enzyme EcoRI, and studied whether they are specific sites, which has a fundamental role in the

DNA-protein interaction. Fig. (3) shows the behavior of the system when the excited electron

on the DNA has the initial energy E1,0 = 0.72 eV and its wavefunction is initially centered at

the site n1,0 = N/2, while for the restriction enzyme the initial excitation energy of the electron

is E2,0 = 0.2 eV localized at n2,0 = N/3. Besides, as we discussed already in Section IV, we

consider the dimensionless expressions of the site-dependent phononic spring Ω′1,n = 0.48/mn

for the nucleotides and the constant term Ω′2 = 0.79 for the amino acids. We see the very inter-

esting phenomenon of a clear co-resonance around 20 THz when the specific CTTAAG restriction

sequence is taken into account. This result is in qualitative agreement, and possibly also in very

good quantitative agreement as discussed in Section II, with the peak found by applying the RRM.

Another significant finding is that the cross spectrum becomes completely spread when the recog-

nition sites are randomly chosen AGCTTA. Moreover, when we exchange just one nucleotide of
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the restriction sequence with its own complementary as CATAAG the co-resonance undergoes a

little alteration and broadens by changing two nucleotides of the recognition sites in the form of

GTTAAC. In Figure (5) the results are reported as numerical simulations obtained for the different

initial conditions which confirm well the robustness of the phenomenology previously seen. Here

we assume the initial electronic activation energy E1,0 = 0.85 eV posited in the site n1,0 = N/2

in DNA macromolecule and the ones in the DNA-interacting enzyme E2,0 = 0.85 eV located in

n2,0 = N/3. Also, the dimensionless parameter of phononic spring in DNA fragment is assumed

constant Ω′1 = 0.25 and in EcoRI enzyme is considered site-dependent Ω′2,n = 1.83/mn. The

sharp peak of co-resonant spectrum of the DNA-EcoRI interaction with the characteristic site re-

striction sites CTTAAG happens around 29 THz that broads entirely by choosing the randomized

recognition sites TCATGA. It is clear that the sharp frequency spectrum ramifies very little by ex-

changing only one nucleotide of the sites, cleaved by EcoRI, with its complementary as CTTATG

and destroys somehow more when two nucleotides are exchanged with their complementary sites

as CTATAG
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Figure 3: The cross frequency spectrum of the interaction between DNA strand with N1 = 66 nucleotides

and the EcoRI enzyme with N2 = 276 amino acids for the initial conditions: T = 310◦K, N0,1 = N/2,

N0,2 = N/3, E′1,0 = 110, E′2,0 = 30, ε′1 = ε′2 = 5, µ′1 = µ′2 = 0.5, Ω′2 = 0.79 and site-dependent

parameters Ω1,n = 0.48/mn, J ′1,n, J ′2,n, χ′1,n and χ′2,n corresponding to E0,1 = 0.72 eV, E0,2 = 0.2 eV,

ε1 = ε2 = 0.0329 eV, µ1 = µ2 = 0.5, Ω2,n = V 2〈M〉/a2, Ω1,n = V 2Mn/a
2, J1,n, J2,n, χ1,n and

χ2,n regarding to the Equations (15) and (16); and σ1,0 = σ2,0 = 0.1. a) DNA containing the specific

CTTAAG recognition sites, b) randomized restriction sites AGCTTA, c) exchanging only one nucleotide

with its complementary CATAAG, d) exchanging two nucleotides with their complementaries GTTAAC.
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Figure 4: Same physical conditions of Figure 3. The cross frequency spectrum of the interaction be-

tween DNA and the EcoRI enzyme. e) The randomized restriction sites TCATGA, f) exchanging only one

nucleotide with its complementary CTTAAC, g) exchanging two nucleotides with their complementaries

CATATG. The frequency ν is measured in 1013s−1.
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Figure 5: The cross frequency spectrum of the interaction between DNA strand with N1 = 66 nucleotides

and the EcoRI enzyme with N2 = 276 amino acids for the initial conditions: N0,1 = N/2, N0,2 = N/3,

E′1,0 = E′2,0 = 129.17, Ω′1,n = 0.25, Ω′2,n = 1.83/mn corresponding to E1,0 = E2,0 = 0.85 eV,

Ω1,n = V 2Mn/a
2 and Ω2 = 18.3 N/m. The other parameters are the same as Figure (3); a) DNA containing

the specific recognition sites CTTAAG, b) randomized restriction sites TCATGA, c) exchanging only one

nucleotide with its complementary site CTTATG, d) exchanging two nucleotides with their complementaries

CTATAG.
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Figure 6: Same physical conditions of Figure 5. The cross frequency spectrum of the interaction between

DNA and the EcoRI enzyme. e) randomized restriction sites AGATCT, f) exchanging only one nucleotide

with its complementary site CATAAG, g) exchanging two nucleotides with their complementaries GT-

TATG. The frequency ν is measured in 1013s−1.

VI. POSSIBLE MECHANISMS ACTIVATING LONG RANGE DNA-ENZYME INTERACTION

In principle, the results reported in the preceding section can be at the origin of a selective

electrodynamic interaction between DNA and enzyme. In order to assess the actual relevance in

biological contexts of the co-resonance of electron currents, a quantitative estimate of the strength

of the implied interaction requires to work out a similar approach to the one reported in [12] from

the analytical viewpoint, and to get experimental information about the intensity of the currents

and the possible mechanisms of their activation in a biological environment. These points will

be tackled in future investigations, in what follows we qualitatively sketch possible scenarios to

activate electrodynamic DNA-enzyme interaction.

First, given two electron currents j(1)(x, t) and j(2)(x, t), representing those of DNA and
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EcoRI, respectively

~j(1,2)(x, t) =
e~

2mei

(
ψ?~∇ψ − ψ~∇ψ?

)
according to the D’Alembert equations (in Gaussian units and Lorenz gauge)

�2 ~A(1)(x, t) = (4π/c)~j(1)(x, t)

and

�2 ~A(2)(x, t) = (4π/c)~j(2)(x, t)

the mutual interaction is described by the coupling terms

~j(2)(x, t) · ~A(1)(x, t) and ~j(1)(x, t) · ~A(2)(x, t) .

Since the D’Alembert equation is linear, the vector potential inherits the spectral properties of the

current that generates it. As a consequence, the co-resonance between the two currents j(1)(x, t)

and j(2)(x, t) entails the largest values of the time averages of the interaction energies.

Second, intriguing connections exist between the models presented above, which describe elec-

tronic motions along a given DNA sequence and a given protein sequence, and the coordinated

electronic fluctuations that arise from van der Waals many-body dispersion forces [18, 42–44]

in a variety of molecular contexts. Specifically, productive insights have emerged from attempts

to unify atomistic, continuum, and mean-field treatments in the quantum electronic behaviors of

DNA and proteins in water [18, 44–47]. Even in the presence of thermally turbulent aqueous en-

vironments, it has been shown that these collective electronic dispersion correlations can persist at

several nanometers from the protein-water interface, and these correlations are energetically rele-

vant for protein folding processes at the microsecond scale [46], and likely for even longer times

in vivo.

Kurian and coworkers [18, 42] have additionally shown that such collective electronic (Drude

quantum harmonic oscillator) modes are suitably fine-tuned for the synchronized catalysis of two

phosphodiester bonds (∼ 0.46 eV), and that the palindromic mirror symmetry of the double-

stranded DNA target sequence recognized by the enzyme (see Figure 7) allows for conservation

of parity in the symmetric, site-specific cleavage of both DNA strands. By considering the radia-

tive field E created by the collective electronic fluctuation modes in the DNA target sequence, a

nonvanishing polarization density emerges spontaneously in the orientational correlations of the

water dipole network through the interaction HamiltonianH = −de ·E, where de is the permanent

electric dipole moment for a single water molecule.
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Figure 7: Aromatic network in EcoRI-DNA complex. Tryptophan (blue), tyrosine (purple), and phenylala-

nine (green) form correlated electronic dispersion networks in EcoRI, shown here in the top panel bound

to its double-stranded DNA substrate, with adenine-thymine (yellow) and cytosine-guanine (orange) base

pairs highlighted. Other amino acids (gray) are displayed in the context of their secondary structures within

the enzyme, and in the bottom panel only one of the two EcoRI dimers is shown for clarity, to showcase

the π − π stacking of the DNA bases. Image of EcoRI (PDB ID: 1CKQ) at 1.85 Å resolution created with

PyMOL and adapted from [18].

Following standard treatments in quantum optics [48], this interaction between the DNA radia-

tive field and the surrounding (quasi-continuous) water dipole field can be written in the form of a

Jaynes-Cummings-like Hamiltonian that scales with the number of water molecules N as

Hint = ~
√
Nγ(a†S− + aS+), (30)

where γ is the coupling constant proportional to the matrix element of the molecular dipole mo-

ment and inversely proportional to the volume square root, a† and a are the creation and anni-

hilation operators, respectively, for the DNA radiative electric field E, and S+ and S− are the
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raising and lowering operators, respectively, for the collective water dipole state. The quasi-

continuum water dipole “field” thus takes the place of the N two-level systems described in the

Tavis-Cummings model [49].

It should be noted that the coupling
√
Nγ in Equation (30) between the DNA radiative field and

the collective water orientational state levels [18] scales with the square root of the water density

ρ, which varies with temperature and pressure. However, if we consider that the number of water

molecules in a (cubic) domain encompassed by infrared wavelengths & 1µm exceeds 10 billion,

such sufficiently large N for the collective state can provide a protective gap against thermaliza-

tion (kBT ≈ 0.02 eV at physiological temperatures) for the long-range correlations we consider.

Furthermore, the spontaneous breakdown of phase symmetry generates a field polarization (in the

so-called “limit cycle” regime) that preserves gauge invariance by dynamical coherence between

the matter quasi-continuum field (DNA, water, enzyme) and the phase-locked electromagnetic

field (radiative field from DNA, water, enzyme).

As a toy model, we use Faraday’s law of induction for the DNA double helix, considered here

as a long solenoid with radius R, n turns per unit length, and current along the backbone varying

as I = I0e
−αt, where α is in general complex. For distances from the longitudinal axis r > R

outside the helix-solenoid, we can estimate the induced electric field E(r, t) tangent to a circular

path surrounding the cylindrically symmetric system:

|E(r, t)| = Ω

2

|e−αt|
r

, (31)

where Ω = |α|µnI0R2 and µ is the magnetic permeability in water. From Equation (31) we can

thus derive the creation and annihilation operators a†, a for the radiative field in the interaction

Hamiltonian of Equation (30).

The resulting interaction energies range between∼ 0.1−1 eV, populating bands in the infrared

spectrum between 0 < ν < 1000 cm−1, which overlaps with the energy scale of the collective elec-

tronic fluctuation modes in the DNA target sequence and in the enzyme when taken separately, but

remains distinct from the more energetic intramolecular vibrations and purely electronic transi-

tions of individual water molecules. These collective electronic fluctuation modes in the 0.1 − 1

eV range do not couple to the rotational quantum transitions of individual water dipoles (meV

scale), but rather to the emergent polarization modes present in the collective dipole network. The

spectroscopic peaks for liquid water also lie completely within this range.

Chiral sum frequency generation spectroscopy experiments [50] have demonstrated the exis-
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tence of a chiral water superstructure surrounding DNA under ambient conditions, thereby con-

firming that the chiral structure of DNA can be imprinted electrodynamically on the surrounding

solvent. These experiments have also shown that some sequence-specific fine structure persists in

this chiral spine of hydration, providing a mediating context for DNA target sequence recognition

by the enzyme.

VII. CONCLUDING REMARKS

The aim of the present paper is twofold. First, we put forward a novel physical interpreta-

tion for the Resonant Recognition Model (RRM) of biomolecular interactions, emerging from a

widely used electron-phonon Hamiltonian applied to alternating currents along the backbone of

specific DNA target sequences. Second, the work here reported contributes to the still wide open

discussion of long-distance electrodynamic intermolecular interactions, which have recently been

demonstrated [16, 19].

Regarding the first aim, the RRM has produced phenomenologically interesting outcomes since

its conceptualization in the early ’80s. The RRM in its original formulation was applied to the

pair of partners of the biochemical reaction involving a DNA fragment and a restriction enzyme,

EcoRI, that binds to a specific subsequence of the DNA fragment to cleave it. The interaction

energies of an electron with the sequence of nucleotides composing a specific DNA fragment

on the one side, and the interaction energies of an electron with the sequence of amino acids

composing the EcoRI enzyme on the other side, yield two numerical sequences. The product of

their Fourier spectra, or cross-spectrum, displays a sharp peak. The peak so found qualitatively

witnesses to the specific relationship between the two biomolecules, though the physics behind

this co-resonance still needs to be clarified. Such a clarification is provided by the co-resonance

of the time-domain Fourier spectra of the alternating electron currents moving along the DNA

and enzyme, respectively. These currents are worked out through quantum dynamical models

describing the electron-phonon coupling, derived from standard Davydov and Holstein-Fröhlich

treatments [33–35]. The remarkable finding is the disappearance of the co-resonance peak when

the six-base-pair (bp) target recognition subsequence GAATTC on the DNA is randomized in

different ways.

Regarding the second aim of the paper, the prospective relevance for biology of long-range se-

lective and attractive intermolecular interactions was discussed in the Introduction and has recently
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been given experimental confirmation [16] in the presence of collective intramolecular oscilla-

tions. The question naturally arises whether the electronic degrees of freedom of electrodynam-

ically interacting molecules can offer alternative or complementary mechanisms to activate such

long-range intermolecular forces. We have presented a first step in this second direction, and the

remarkable finding mentioned above motivates further investigations. In fact, at present we have

considered the motion of a single electron, but we can think that under suitable excitation processes

(for example, under repeated ATP hydrolysis events or near an ionic channel) definitely stronger

currents can be activated, producing either direct electrodynamic current-to-current interactions,

or, as intriguingly proposed in [18] and discussed in the preceding section, water-mediated electro-

dynamical interactions between the radiative field emerging from electronic fluctuational motions

in DNA and in protein, and the water dipole (matter) field in the quasi-continuum limit. Finally,

the observed sequence-dependent co-resonance phenomenology for the chosen biochemical model

is suggestive of a potentially rich variety of selective electrodynamic interactions of more general

kind, like, for example, of DNA molecules and transcription factors under the action of electron

excitation.
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