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ABSTRACT

Manteia is an integrative database available online
at http://manteia.igbmc.fr which provides a large ar-
ray of OMICs data related to the development of the
mouse, chicken, zebrafish and human. The system
is designed to use different types of data together in
order to perform advanced datamining, test hypothe-
ses or provide candidate genes involved in biolog-
ical processes or responsible for human diseases.
In this new version of the database, Manteia has
been enhanced with new expression data originat-
ing from microarray and next generation sequencing
experiments. In addition, the system includes new
statistics tools to analyze lists of genes in order to
compare their functions and highlight their specific
features. One of the main novelties of this release
is the integration of a machine learning tool called
Lookalike that we have developed to analyze the dif-
ferent datasets present in the system in order to
identify new disease genes. This tool identifies the
key features of known disease genes to provide and
rank new candidates with similar properties from the
genome. It is also designed to highlight and take into
account the specificities of a disease in order to in-
crease the accuracy of its predictions.

INTRODUCTION

Manteia is a data mining system that includes several
OMICs data produced for human, mouse, zebrafish and
chicken. These data include functional annotations, biolog-
ical pathways, protein motifs, gene expression, genetics, in-
teractomics, molecular complexes, phenotypes and human
diseases originating from various public databases (1). Data
are processed upstream so they can be compared and used
together across species. Manteia offers tools to explore each
type of data independently but also to combine them in
order to answer complex biological questions and make
predictions. This can be done using a specific query lan-
guage called QueryBuilder designed to address one or sev-

eral Boolean questions to the system. This can be achieved
as well by combining a mixture of independent tools us-
ing a data mining module called Refine. Refine filters the
results from one tool with any other module of the system
and makes it possible to get a list of genes corresponding to
very specific criteria. In addition, lists of genes can be ana-
lyzed statistically to highlight the features they share using a
similar approach to DAVID (2). Results can be visualized as
text or using interactive graphs. Manteia is a very versatile
system that can be used to analyze gene lists in many ways
including the identification of genes of high biological or
medical interest. Refine and Query Builder have been used
in several projects to identify new disease genes using a data
mining approach (1,3–5). In this new version, these tools are
complemented with an entirely automated solution using
a machine learning software called Lookalike. Lookalike is
able to predict new disease genes based on their similarities
with known causal genes in the different datasets contained
in the system. This tool is also designed to analyze groups of
diseases in order to highlight their specificities and use them
in turn to further increase the quality of predictions. With
this new release, we have also updated the gene expression
module with RNA-seq and microarray data as well as the
statistics module of the system with a set of tools designed
to analyze lists of genes to compare their functions and to
better understand their properties.

MATERIALS AND METHODS

Dataset comparison, Batch statistics and Lookalike are im-
plemented in R 3. The web site is developed in PHP 5. The
interactive graph of Lookalike is written in JavaScript using
the D3 (data driven documents) library. Plots generated for
expression data are designed using RGraph.

Expression data

In this new version of Manteia, the expression data previ-
ously based on in situ hybridizations (ISH) and expressed se-
quence tags (EST) have been replaced by RNA-seq and mi-
croarray data. These data originate from the RNA-Seq At-
las (6). They include gene expression profiles from healthy
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individuals for adipose tissue, colon, heart, hypothalamus,
kidney, liver, lung, ovary, skeletal muscle, spleen and testes.
The microarray dataset includes expression profiles from
cancer cell lines as well. The interface developed to access
these data in Manteia is based on the original tool from
the RNA-Seq Atlas, offering the possibility to search for
genes with a defined expression profile in different tissues
and experimental conditions. In addition, this interface got
enhanced in order to look for genes differentially expressed
in two conditions. This is particularly useful for searching
genes deregulated in tumors compared to a healthy tissue.
Each query generates a set of graphs summarizing the ex-
pression of every matching gene in all the conditions and
tissues available (Figure 1). This overview makes it possible
to evaluate the variation of expression levels among tissues
and conditions but also the consistency of these values de-
pending on the experimental method used.

Statistics tools

The statistics module of Manteia is designed to analyze the
annotation of a list of genes in order to highlight its main
characteristics in the different OMICs data available in the
database. This is achieved by analyzing the distribution of
each annotation feature in this list compared to a reference
like the genome or a given microarray (1). This analysis is
performed for one annotation category at a time. However,
it is often more informative to have a global picture of en-
riched terms for all the annotation categories available. To
do this, we have developed Batch statistics, which is a tool
that allows the user to combine annotation categories and
filters to generate a flat file containing all the most represen-
tative annotations of a given set of genes in terms of func-
tional annotations, protein motifs, phenotypes and chromo-
some locations.

Several results from Batch statistics generated from dif-
ferent sets of genes can be further analyzed using another
tool called Class count. Class count lists each annotation
feature and reports the gene sets where it has been found.
This makes it possible to identify the terms that are specific
to a group of genes and list which ones are shared by one or
several gene sets.

This enrichment statistics approach compares the anno-
tation of a group of genes to a larger dataset from which it
originates. In order to compare two independent datasets,
we have also developed a module called Dataset comparison.
With this new tool, the terms of a given annotation category
are listed for two lists of genes. Their respective occurrences
are then tested using the Fisher exact test to see if the distri-
bution is significantly different. This is particularly useful to
see if two sets of deregulated genes obtained in two different
conditions are involved in different biological pathways or
functions (Figure 2).

Machine learning and disease gene prioritization

In many cases, several genes can lead to the same disease
or diseases that are closely related. The annotation of these
genes can be analyzed to see if some rules can be learned and
used in turn to detect new candidate genes. These rules can
be about anything like shared biological functions, interac-

tions and chromosomal positions. To do this, we have devel-
oped a machine learning software called Lookalike. Looka-
like uses an aggregation algorithm similar to Endeavour (7)
and ToppGene (8). It analyzes the annotation of known
genes in several datasets from the system (Gene Ontology,
phenotypes, protein motifs, chromosome distribution, se-
quence homology, interactome and the co-occurrence of
genes in PubMed articles) to find new candidates sharing
a maximum of similarities. Lookalike is therefore the per-
fect upgrade for Manteia because not only this software can
utilize most of the datasets and statistics tools already de-
veloped for the system but also the aggregation algorithm is
known to provide exceptional performances (9,10). Looka-
like is very easy to use and does not require any bioinfor-
matics or programming knowledge. The user is prompted
to enter known disease genes in the training set panel of the
graphical interface to run the analysis on the entire genome
(Figure 3A). The search can be restricted to a list of candi-
dates by entering their names in the candidate genes panel.
More advanced options make it possible to select specific
datasets to use with the algorithm, change the method used
to rank candidate genes or even test the accuracy of the tool
by entering known targets to see where they rank in the final
classification (Figure 3A). Advantageously, Lookalike is in-
tegrated into a comprehensive data mining environment to
evaluate and to select the best training and candidate genes
possible. Because Manteia is a multi-species system, it of-
fers the possibility to use data from orthologous genes dur-
ing the prioritization. This gives the opportunity to use the
mouse phenotype dataset, which is the most comprehen-
sive of the database, to prioritize human genes, for example.
The result page ranks the best candidates and shows the in-
fluence of every selected datasets in the final classification.
In addition, an interactive graph allows to visually estimate
the quality of a prediction and browse the results (Figure
3B). A more detailed description of Lookalike and its per-
formances will be published elsewhere.

Combining statistics and data mining approaches to enhance
predictions

Many specific diseases belong to a more general group like
a spinal muscular atrophy belongs to the category of my-
opathies. The diseases from a same group can be analyzed
in Manteia in order to highlight the most specific features
of the targeted disease and further increase the prioritiza-
tion accuracy. This is achieved by using Batch statistics in
combination with Class count to identify the annotation el-
ements that are specific to a disease compared to the other
ones. Once identified, these elements are given more im-
portance with Lookalike using a specific weight during the
prioritization. As an example, we have computed the data
corresponding to myopathy genes. We used 141 genes cor-
responding to six different types of myopathies (muscular
dystrophies, congenital myopathies, myotonic syndromes,
ion channel muscle diseases, metabolic myopathies and con-
genital myasthenic syndromes) according to the table of
monogenic neuromuscular disorders (11). The lists of dis-
ease genes, specific features and corresponding P-values ob-
tained from Class count can be displayed from Lookalike’s
user interface by selecting a disease from the menu (Figure
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Figure 1. RNA-seq and microarray data. The RNA-seq and microarray module of Manteia makes it possible to search for genes with a defined expression
profile in a mixture of tissues in both a normal and a cancer condition. In addition the radio buttons and the lower panel are designed to search for
genes differentially expressed in two given conditions. The upper screenshot exemplifies the search for genes overexpressed in cancer kidney cells compared
to healthy kidney cells with a minimum fold change of 2. The lower screenshot shows one of the resulting gene (ODC1) and the corresponding plots
representing its expression levels for all the tissues in both RNA-seq and microarray datasets.

3A). This will automatically populate the different fields of
the tool with the optimal settings to run the prioritization
and get the best candidates related to the selected disease.

DISCUSSION

With the continuous addition of new data and tools, Man-
teia aims to assist scientists in their work by providing state
of the art solutions to analyze their data. In this new version
of the system, new microarray and RNA-seq data have been
included. In addition, new ways to compare gene expression
between datasets and new statistical tools are available. For
many years, we have developed several approaches to prior-
itize genes using the information contained in the database

with tools like Refine and QueryBuilder. With Lookalike,
these tools are complemented with an entirely automated
approach able to predict disease genes based on their simi-
larities with known causal genes. However, we tried to keep
this tool as open as possible so its predictions can bene-
fit from the investigator’s expertise with the possibility to
manually select and weight the features of interest. Like ev-
erything else in the system, Lookalike can be used together
with every other tools and data available. It makes it possi-
ble to constrain the candidate list to genes present on a given
chromosomal region or in a given pathway, select the can-
didates based on a phenotypic feature instead of a disease
or to further analyze the resulting candidates by accessing
their annotation or using all the data mining capabilities of
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Figure 2. Dataset comparison. This tool takes two sets of genes as an input and lists their annotation features to test whether their distribution is significantly
different in order to highlight their specificities. The color code (brown and blue) shows in which list the term is enriched. P-values can be corrected using
Bonferroni, Benjamini Hochberg or Benjamini Yekutieli methods. Corresponding genes can be displayed for both lists using buttons on the right hand
panel (not shown).

Figure 3. Disease gene prediction with Lookalike. (A) The user can use biological names or Ensembl identifiers to enter known disease genes and a set of
candidates to be prioritized. If no candidates are provided, the entire genome is analyzed. By default, all the different datasets contained in Manteia are taken
into account in the analysis, including the phenotype annotation from mouse orthologs. However the user can select the most relevant options using the
interface. The custom P-value panel makes it possible to manually enter the features to be searched among the candidates during the prioritization process.
It is particularly useful to focus on disease-specific features as determined by Class count. These fields are automatically filled with optimal parameters when
selecting a myopathy from the menu on top of the page. This will perform the best prioritization possible for the selected disease. (B) When a prioritization
is performed on the entire genome, the training genes are displayed on the graph, showing their rank distribution. These genes are highlighted in red in
the following ranking list. When most training genes are found within the first positions, it means that the prioritization process picked the most relevant
terms shared by a maximum of disease genes which ensure the overall quality of the prediction. The ranking of genes in individual datasets is displayed on
the right hand panel with a gradient color showing their relative importance in the final prioritization.
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the system. Lookalike’s predictions can be further enhanced
by searching for the specific elements of a disease using the
analyses from Batch statistics and Class count. These data
are available for myopathy genes directly from the user in-
terface and can easily be re-used to perform new candidate
gene prioritizations for this type of disease. In the future,
new diseases will be included in Lookalike to make it eas-
ier for different specialists to use this tool and discover new
genes of interest. Lookalike and the other predictive tools
of the system rely on an abundant and accurate gene an-
notation to provide the best results possible. The accuracy
of these predictions will increase over time as more qual-
ity data will be generated by the scientific community and
analyzed by the system.
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