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Inspector BO

BO
stands for

Bayesian Optimization

(old Lithuanian)
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Context: optimization of costly functions

min
x∈S

f (x)

S: search space, continuous, discrete, mixed, others (graphs?).
Default S ∈ Rd (hyper-rectangle). d is the dimension.

Costly: one call to f takes more CPU than the rest of the
optimization algorithm. Examples: nonlinear partial differential
equations (finite elements), training of a neural network, real
experiment . . .

To save calls to f , build a model of it based on previous evaluations
and rely on it whenever possible −→ metamodel / surrogate based
optimization. Gaussian process as metamodel : Bayesian
Optimization
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I
n the head
of inspector
BO
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Gaussian Process Regression (kriging)
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Y (x) is N (µ(x), k(x , x ′))
Y (x)|Y (X)=F is also Gaussian, interpolating and depends on k(., .)
and µ(.) through parameters θ.

Ex: k(x , x ′) = σ2 exp(−∑d
i=1

(xi−x ′i )2

2θ2
i

).

Learn the GP typically by max. (log) likelihood,
θ? = arg maxθ LL(θ;F) .
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Gaussian Process Regression (kriging)

θ’s as length scales, k(x , x ′) = σ2
∏d

i=1 correlationi

(
|xi−x ′i |
θi

)

θ = 0.1

θ = 0.5

(Matérn kernel, σ = 1)
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The Expected Improvement

Measure of progress: the improvement,
I (x) = max (0, (min(F)− Y (x) | Y (X)=F)).
Acquisition criterion: EI (x), to maximize at each iteration
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Expected Improvement

x t+1 = arg maxx∈S EI(x)

Let’s see how it works... iteration 1
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Expected Improvement

x t+1 = arg maxx∈S EI(x)... iteration 2
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Expected Improvement

x t+1 = arg maxx∈S EI(x)... iteration 5
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BO algorithm skeleton

[Mockus, 1975, Jones et al., 1998, Frazier, 2018]

1 make an initial design of experiments X and calculate the
associated F, t = length(F)

2 build a Gaussian Proc. from (X,F) (max. log likelihood → θ )

3 x t+1 = arg maxx∈S EI(x)

4 calculate Ft+1 = f (Xt+1), increment t

5 stop (t > tmax, . . . ) or go to 2.

Note the 2 internal optimization problems, one in S (d dimensions),
one in the number of parameters of the GP (typically O(d)).
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BO’s degrees of freedom

BO a mature algorithm?
Opensource implementations : Spearmint, DiceOptim, BayesOpt,
SMAC, GPyOpt, GPflowOpt, RoBO, STK, Botorch, SMT, . . .
But still many open questions. Of course: it is quite generic.
In [Le Riche and Picheny, 2021], we empirically studied

Initial DoE size

Trend function

Kernel

EI optimization

Modifying the
exploration/intensification
tradeoff

Non-linear transformations
of the input and output
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Testing BO with COCO I

COCO : COmparing Continuous Optimizers
[Hansen et al., 2016] with 24 functions of the BBOB noiseless
suite [Hansen et al., 2010].

Functions structured in 5 groups: separable, low or moderate
conditioning, unimodal with high conditioning, multimodal with
adequate structure, multimodal with weak global structure.
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Testing BO with COCO II

For each version of the algo : 15 repetitions of runs of length
30× d (=2,3,5,10) → 360 optimizations per dimension, 432000
maximizations solved, millions of covariance matrices inversions.

Default algorithm: medium DoE size (7.5× d), Matérn 5/2
kernel, constant trend and multi-start BFGS for EI optimization.
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Size of initial DoE
d = 5
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separable low cond. high cond.

multi strong struct. multi weak struct. average

Small DoE (d + 4) ≥ Medium Doe (7.5× d) > Large DoE (20× d)
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Effect of trend

Y (x) ∼ N (µ(x), k(x , x ′))

Compare trends µ():
constant, linear and quadratic
µ(x) = β0 +

∑d
i=1 βixi +

∑d
i=1 βd+1+ix

2
i

Default : constant

quadratic trend
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Effect of trend
d = 5
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separable low cond. high cond.

multi strong struct. multi weak struct. average

Quadratic trend never harms, and helps on separable functions
(which includes the quadratic sphere and ellipse).
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Other lessons from COCO tests

Other observations from [Le Riche and Picheny, 2021]:

Kernel: Matérn 5/2 is a good default

EI internal optimization: important, do it well

Modifying the exploration/intensification tradeoff: sometimes
(1/5) minimizing the kriging average is marginally better.

Non-linear transformations of the input and output: not
beneficial.

Most importantly: the effect of dimension . . .
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Effect of dimension

General curse of dimensionality :

geometrical increase in number of points (Nd) to keep the
distance between them constant

a non-informative geometry of the points w.r.t. euclidean
distance : by Central Limit Th. applied to x ∼ U [−1, 1]d , as
d ↗, the mass of the points is on a sphere of radius

√
d/3,

inter-points distances tend to a constant
√

2d/3
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Effect of dimension on a Gaussian Process

the θ’s of max. log likelihood ↗ in
√
d , marginal loss of accuracy

Histogram of fitted thetas
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Effect of dimension on Bayesian Optimization
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Bayesian optimization and dimension

Bayesian optimizers are competitive at low number of function
evaluations but they loose this advantage with dimension.
Loss of GP accuracy? EI sample too often at boundary?
Recent efforts:

search locally around good points (trust regions).

search in low dimensional linear subspaces.

“search” has 2 ingredients :
build a metamodel + max. acquisition criterion (EI).
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BO and trust regions

Principle: counteract the effect of
increasing dimension (volume) by
restricting the search to a smaller
(controlled) trust region.

x1

x2

xd

TRIKE, Trust-Region Implementation in Kriging-based
optimization with Expected Improvement, [Regis, 2016].

TURBO, a TrUst-Region BO solver, [Eriksson et al., 2019].

TREGO, a Trust-Region framework for EGO,
[Diouane et al., 2021] : mix searches inside (local) and outside
(global) the trust region.
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TREGO algorithm

global phase over S
maxx∈S EI (x)
(update DoE)

start from x∗0
k = 0

local phase
maxx∈S EI (x)

dminσk ≤ ‖x − x∗k‖ ≤ dmaxσk
(update the DoE)

failure

σk+1 = σk/β
update x∗k+1

σk+1 = βσk
x∗k+1 = x∗k

success x local
k+1 failure

stop ?

return current
iterate

xglobal
k+1

In
cr
e
m
e
n
t
k

No

Yes

Parameters : σ0, β < 1
Sufficient decrease condition for success of the local phase,

f (x local
k+1 ) ≤ f (x∗k )− 10−4σ2

k
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TREGO properties

From [Diouane et al., 2021],

TREGO iterates converge to a local minimum : by assuming f is
bounded below, Lipschitz continuous near the point of
convergence, and by considering a subsequence of the local
iterates. No assumption on GP or x∗0 .

Empirical COCO tests:

more local than global steps (4 to 1) is beneficial
TREGO is robust to the values of σ0 and β
A local GP was thought an asset for non stationary functions.
But it is a drawback on badly conditioned functions. Not kept.
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TREGO performance
Multimodal Multimodal, weak struct. Unimodal, low cond.

n
=

5
n

=
10

Trust regions solve BO’s oversampling of the boundaries in high-dim.
while helping on unimodal functions (not the natural target for BO).
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Improving Bayesian Optimization in high dimension:

search locally around good points (trust regions) ← TREGO

search in low dimensional linear subspaces

min
x ∈ S ⊂ Rd

f (x) ⇒ min
α ∈ Rδ

f (ProjS(Vα + b)) , δ � d

x1

x2

xd

V 1

V δ

Algorithm design:
choose V , b, ProjS
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BO in a linear subspace

Variable selection:

V =


. . .
0

. . . 1 . . .
0
. . .

, b = defaults for unselected variables.

In [Spagnol et al., 2019], selection based on
distance (p(xi ), p(xi | f (x) < T )),
cf. Sébastien Da Veiga’s talk at JOPT2022.

(R)REMBO & improvements, Random EMbedding Bayesian Optimization,
[Wang et al., 2016, Binois et al., 2020].

Choice of V by Partial Least Squares, SEGOKPLS [Amine Bouhlel et al., 2018] (internal
optim in high dimensions), EGORSE (EGO coupled with Random and Supervised
Embeddings [Priem, 2020]).

Choice of V by the active subspace method [Li et al., 2019].

R. Le Riche et al. (CNRS LIMOS) which GP for BO? 26/40 May 2022 26 / 40



Costly shape optimization: airfoil

An example of linear embedding for Bayesian Optimization.

Minimize the drag of an airfoil, from [Gaudrie et al., 2020],

min
φ∈S

f (φ) , S “infinite” dimensional space of feasible shapes

CAD shape φ generation,
not costly

Navier-Stokes resolution,
f (φ) the drag, costly
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Eigenshape decomposition I

From a database of possible shapes [φ(1), . . . , φ(5000)],

. . .

extract a basis of most impor-
tant shapes by principal component
analysis, {V 1, . . . ,V δ}
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Eigenshape decomposition II

Shapes are now described with their eigencomponents α’s,
φ ≈ φ +

∑δ
i=1 αiV

i
(general notation, x = Vα+ b, x ≡ φ, φ ≡ b)

(α1, . . . , αδ) make a specific manifold.

Cf. also [Raghavan et al., 2013, Li et al., 2018,

Cinquegrana and Iuliano, 2018]
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Further GP dimension control I

Build a GP to infer the drag from a shape, Y (α)
+ control effects of dimension beyond the PCA.

Anisotropic kernel has 1 θi per dimension, isotropic has 1 for all
dimensions.

Expl: kani(α, α
′) = σ2 exp

(
−∑d

i=1
(αi−α′i )

2

θi 2

)
kiso(α, α′) = σ2 exp

(
− (αi−α′i )

2

θ2

)
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Further GP dimension control II

Likelihood that favors sparsity [Yi et al., 2011]:

maxθ Log-Likelihood(θ;F)− λ‖θ−1‖1

⇒ active and non-active dimensions, αa and αā.

GP as the sum of an anisotropic and isotropic GPs
[Allard et al., 2016]:

k(α, α′) = kani(αa, α
′
a) + kiso(αā, α

′
ā)

Expl NACA22 :
αa = (α1, α2, α3) , δa = 3 , δ = 20
⇒ 21 to 6 kernel parameters
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Optimize in the reduced dimensional space:

α(t+1)∗ = arg max
[αa,α]

EI

α coordinate along a random line in non-active space,
δa + 1 dimensions.

ProjS : projection of Vα(t+1)∗ + φ onto

the closest CAD shape, φ
(t+1)
CAD with components αt+1.

Calculate f (φ
(t+1)
CAD ).

Replication : update GP with both
α(t+1)∗ and α(t+1)
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Example: NACA 22 airfoil drag minimization
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Faster decrease of the objective function in the reduced eigenshape basis (left) compared
with the standard approach (right, CAD parameter space).

Smoother airfoils are obtained because a shape basis is considered instead of a
combination of local parameters.
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Conclusions

Building a metamodel (Gaussian Process) for optimization is
different from building it for prediction : small initial DoE,
quadratic trend. Ability to rank points early in the search may
be a key.

The integration of trust regions in BO algorithms expands the
family of Derivative Free Optimization algorithms, creating a
convergence of methods.

State-of-the-art BO is competitive for multimodal functions in
up to 10 dimensions. Much research on-going to go beyond.

Main motivation for studying BO: an integrated mathematical
framework for global optimization, with possibility to look at
non-continuous spaces [Cuesta-Ramirez et al., 2022], parallel
implementations [Janusevskis et al., 2012], problems with
uncertainties [Pelamatti et al., 2022] . . .
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