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Coherent Synchronization of a Chaotic Communication System Based on a QAM-4 Transmitter

Remarkable research efforts have been invested in recent years on the chaotic communications schemes. In this paper we propose a modulation technique based on QAM-4 (Quadrature Amplitude Modulation). The data is split into I and Q channels. Each channel is spread by chaotic sequences generated over a fixed time interval by a specific digital chaotic system. There are two principal advantages of introducing the chaos in a communication scheme. The first is that it allows signals to be transmitted in a secure way, so that the signal could be perceived as a noise for a potential intruder. Secondly, the spread-spectrum characteristics of the signal improve the noise rejection propreties. A new coherent receiver structure is presented to synchronize each channel. Simulation results are presented to show the effectiveness of the proposed scheme.

Introduction

Nowadays, a great deal of research is focused on chaotic communications schemes. The potential benefits that can be gained from using chaotic signals, including robustness in multipath environments, ease of spectrum spreading, added security etc has made them promising for communications systems within various sectors on industry [START_REF] Lau | Chaos Based Digital Communication Systems[END_REF]. In this paper we propose an enhanced QAM-4 (or QPSK -Quadrature Phase Shift Keying) scheme where a chaotic encoder spreads the input sequence. The data is split into two channels and transmitted from one location to another by mapping bit sequences to symbols, and symbols to sample functions of chaotic waveforms (generated over a fixed time interval by digital chaotic systems [START_REF] Assad | Digital chaotic codec for DS-CDMA Communication Systems[END_REF]). The signals are then filtered and modulated around two quadrature carriers according to the QAM modulation technique. The resulted analog waveform passes through a band limited analog channel, where the signal is distorted and noise is added.

At the receiver, the encoded information can be extracted efficiently by means of coherent detection, where all possible sample functions are known, or by noncoherent detection, where one or more characteristics of the sample functions are estimated. First of all, the received quadrature carriers are downconverted and filtered. Furthermore the data is limited at its original spectrum by multiplying it with the original chaotic sequences and finally it is combined into the original modulating information. The proposed receiver structure is based on a coherent method. The article provides in brief the advantages and disadvantages of such a system compared with non coherent method.

The contribution of this paper is to define the characteristics of the chaotic generator in order to improve error detection, and then to propose an algorithm to correct and consequently to synchronize the receiver in a QAM scheme.

This paper is organized as follows: in Section II we focus on the conception of the QAM-4 chaotic modem. In Section III a coherent demodulation technique is proposed with a specific chaotic generator. In Section IV numerical results are provided to illustrate the effectiveness and the efficiency of the proposed scheme. Conclusions and suggestions for further works are presented in Section V.

Conception of a QAM Chaotic Modem [2]

The QAM-4 transmitter based on chaotic spread spectrum signals is composed of a QAM coder which splits the binary sequence b(t) into I and Q channels. The transmitted sequence b(t) is a periodic binary sequence of

T b period (let's rect T b a rectangle function) b(t) = ∞ k=1 b k .rect T b (t -kT b ) with b k ∈ {0, 1} (1) 
Each channel is spread out by a continuous chaotic code. The chaotic generator delivers a data sequence whose value is included in the integer interval [0,254] which is converted to 8 serial bits. The coding operation is carried out by inserting the code or the opposite of the code depending if a +1 or a -1 is transmitted.

In order to product spread spectrum signal, chaotic sequences (characterized by a higher rate than that one of the symbol's component) are introduced for each symbol period as specified in the introduction part. The chaotic I and Q coded sequences can be mathematically expressed as:

c i,q (t) = ∞ k=1 c N ch i,k .rect T ch (t -kT ch ) ( 2 ) 
where T ch represents the sequence period and c N ch i,k , c N ch i,k are two vectors of integer values included in the [0,254] interval. Finally, the decimal chaotic sequence is converted into an 8-bit binary code by a Parallel/Series block. Another one chaotic generator based technique was studied by Galias [START_REF] Galias | Quadrature Chaos Shift Keying: Theory and Performance Analysis[END_REF]. Each channel is coded by two quadrature chaotic sequences obtained from a Hilbert filter at the output of the chaotic generator.

Then, the signals are filtered through a raised cosine Nyquist filter. After filtering operation, filtered signals are multiplied around two quadrature carriers characterized by the F c frequency.

The figure 1 represents the general diagram of the chaotic transmitter. If the chaotic coded sequence is known by the receiver, this base band signal is then filtered and de-spread by correlation operation in order to rebuild the original I and Q sequences. Finally, a level detection followed with a re-arrangement of the I and Q data entries makes it possible to recover the initial sequence b(t). However, due to the sensitivity of chaotic systems to initials conditions, permanent synchronicity between receiver and transmitter is necessary or else the trajectories of the two generators will be quickly uncorrelated. Moreover, the receiver must be able to synchronize itself on the associated generator and that in spite of the noise in the channel. A robust method to re-build the chaotics sequences is the crucial point.

Several receiver structures for chaotic spreaded system is based on a DCSK non-coherent method [START_REF] Kolumban | Differential Chaos Shift Keying: A robust coding for chaos communication[END_REF]. In this case, every transmitted symbol is represented by a pair of chaotic signal samples sent in two equal time slots:

the chaotic code sent in the first half of the symbol period serves as the reference (reference sample). -the reference code or its inverted version sent in the second half of the symbol period carries the information and represents the data sample.

Such structure can be easily implemented for QAM chaotic systems. Since the reference code is sent with the modulated data, permanent synchronization of the receiver is assured. It's the main advantage because two chaotics systems diverge quickly even if initials conditions are very close : As coded states are transmitted, the receiver does not try to synchronize its chaotic sequence from the corrupted sequence but only uses a delay to correlate modulated code with the reference one. Nevertheless since no modulated chaotic sequence is clearly sent, we can not prevent intruder to recover transmitted signal unless this one is sent in different carriers : coherent method present a better secure way.

Coder Demodulation Technique for a QAM Chaotic System

In this section we present a method to build a chaotic generator. The generator is based on Frey model [START_REF] Frey | Chaotic Digital Encoding: An Approch to Secure Communication[END_REF] but in our model the coefficients are based on maximal Hamming distance between the transmitted code and the estimated one when no more one error occured in each previous codes. Nevertheless optimal generator in the sense of Hamming may yield to a poor cyclic sequence. As a result, one may prefer degrading the Hamming distance to improve the chaotic trajectory of the generator. With Hamming distance, the demodulation technique proposed is based on statistical properties of chaotic sequence in a bounded noise. This method consists in estimating the next chaotic code according to the previous state in presence of limited noise.

The chaotic sequence c k is defined by the previous code (at least c k-1 and c k-2 ) and by a non linear function. By knowing the coder function, and thanks to the first chaotic codes, the chaotic sequence ĉk can be rebuild. Nevertheless, each code of the received chaotic sequence is corrupted by an additive Gaussian white noise. As a result, estimation of next code lead to several set of possible state named Ŝ and can quickly diverge to all possible state.

Once Hamming distance is optimal (by choosing the rigth characteristics of chaotic generator), we propose an algorithm based on correlation between estimated state from interval of error of previous state and noisy last received states: With c k-1 and c k-2 and bounded relative error, we can remove some state of Ŝ in order to reduce the set of possible states.

Definition of Chaotic Generator Characteristics

First to improve the receiver performance, we aim to design a chaotic modulator according to some assumptions.

Each code is defined over 8 bits. Let's assume that no more one error is occured by code. As a result, we aim to find the best coder function to detect and correct the wrong bit.

To improve detection of error and assumin that no more one error can occur in each code, we propose a coder function which Hamming distance is maximal between each error code. As one error can occur in the last code and in the previous one, the altered estimation code in the receiver from the last two codes should to be the more distant compared with the received code.

As a result, the coder function is defined by the following chaotic function :

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ x[k] = modulo (G 1 .x[k -1] + G 2 .x[k -2] + s k-1 , 255) G 1 = 9 G 2 = 6 s k-1 = 3 if x k-1 > 127 (3) 
When two codes are received, an algorithm assessed the third code. This estimated code, named ĉk is compared to the transmitted one.

For example, if the first code is 4 and second code is 1 then the third code, according to (eq 7) is 33. The binary transmitted sequence is (4) -00000100, (1) -00000001, (33) -00100001. If first code received is (36) -00100100, the second one is (3) 00000011, then the estimated code is ĉk = 11110011 . Thus, compared to (33) -00100001, the hamming distance is equal to 4 as we can find in table at line 7 (bit 6 of first code is false), and at column 3 (bit 2 of last code is false)

In a general case, let's x[k-2] and x[k-1] the transmitted code. We suppose that an error occurred on x[k-1] and x[k-2]. To simplify, suppose that an error transforms a '0' to '1'. The received codes are

x r [k -2] = x[k -2] + 2 i and x r [k - 1] = x[k -1] + 2 j
where i and j represent the position of the error. The estimated code is :

x[k] = modulo G 1 .(x[k -1] + 2 j ) + G 2 .(x[k -2] + 2 i ) + ŝk-1 , 255
We estimate the error between x[k] and x[k] thus

E[k] = x [k] -x[k] E[k] = modulo G 1 .(x[k -1] + 2 j ) + G 2 .(x[k -2] + 2 i ) + ŝk-1 , 255 -modulo (G 1 .x[k -1] + G 2 .x[k -2] + s k-1 , 255) (4) 
with x[k] and x[k] comprised between (0,254).

As a result, 4 can be written as

E[k] = (G 1 .(x[k -1] + 2 j ) + G 2 .(x[k -2] + 2 i ) + ŝk-1 -255.α) -(G 1 .x[k -1] + G 2 .x[k -2] + s k-1 -255.β) (5) 
Finally, with modulo 255, we can write :

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ E[k] = modulo G 1 .2 j + G 2 .2 i + Δs k-1 , 255 if x[k] > x[k] E[k] = 255 -modulo G 1 .2 j + G 2 .2 i + Δs k-1 , 255 if x[k] < x[k] ( 6 
)
The following table represents the Hamming distance of transmitted and estimated codes when an error occured both in the first code and in the second one and when x[k] > x [k]. The lines represent the error position of the first code and the columns represent the error position of the second code (from the least significant bit -1-to the most significant bit -8-). Of course, when no error occured (first line, first column), Hamming distance is null. 

(a) when '0' become '1' of both code, (b) when '1' of x[k-1] become '0' and '0' of x[k-2] become '1' (c)when '0' become '1' of x[k-1] and '1' become '0' of x[k-2] and (d) when '1' become '0' of x[k-1] and '1' become '0' of x[k-2]

According to such a function, the Hamming error is maximal between the received code and the estimated code when one error occured in the first and/or in the second code. As a result assuming one error in the first and/or in the second code, the Hamming distance between the transmitted and estimated sequence is at least equal to 2. Thus, even if an error occurred in the third code, the Hamming distance will be greater than 1.

Modulo 255 is preferred to 256, since with modulo 256 no error of the estimated code compared with the received code is generated when the 7th bit of first and the 6th bit of the second code are '1' instead of '0' (and according with the generator characteristics : modulo( 2

7 * G 1 , 2 6 * G 2 , 256) = 0). More generally, modulo(2 7 * G 1 , 2 7 * G 1 , 256) is null if G 1 and G 2 are both odd.
Finally, all combinaisons of G 1 and G 2 with one error of the two codes can lead to an estimated code which is equal to the received code with modulo 256.

Moreover, the Hamming distance on the previous tables is estimated when [k] the Hamming distance are also comprised between 2 and 6. It's an important result since if no more one error occurred in the first code and in the second code, the Hamming distance between the estimated code and the third received code (with no more one error) will never be null.

x[k] > x[k]. Thanks to modulo 255, if x[k] < x[k],
[k] > x[k], thus if x[k] < x

Error Correction to Synchronize the Receiver

Let's c k the integer chaotic code defined between [0,254], c t k the binary transmitted code and c r k the binary received code. If information is '0' the transmitted code is the complement of the binary chaotic code. As a result, the integer chaotic transmitted code

c t k =c k if '1' is sent or c t k =modulo -c k if '0' is sent.
In the first step, we assume a transmission without error.

According [START_REF] Moshavi | Bellcore: Multi-user detection for DS-CDMA communications[END_REF], the estimated code ĉk is

G 2 .c r k-2 + G 1 .c r k-1 + s k-1 if (1,1) is transmitted, G 2 .c r k-2 + G 1 .(modulo -c r k-1 ) + s k-1 if (1,0) is transmitted, ... First, note that ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ G 2 .(modulo -c r k-2 ) + G 1 .(modulo -c r k-1 )=modulo -(G 2 .c r k-2 + G 1 .c r k-1 ) G 2 .(modulo -c r k-2 ) + G 1 .c r k-1 )=modulo -(G 2 .c r k-2 + G 1 .(modulo -c r k-1 )) if c k < 128 then modulo -c k is greater than 128. (7) 
With this last condition, there exists one solution wich is equal to c k or (modulo-c k ) and as a result an unique 3-plet information bits

M k-2 , M k-1 , M k .
To determine if an error occurred, we have to compare c k with ĉk using the xor function. If there are no difference, the information bit M k is '1', if all bits are false then there are no error and the information bit M k is '0'.

When no more than one error occured in the first and second code, and according to the 4 possible states of information (00, 01, 10, 11) we extract from the table 1 the possible combinaisons of code c r k-2 and c r k-1 which can lead to this difference.

As a result, we define the following algorithm to correct the bit error.

Algorithm

First Step : First codes estimation 1. We assess ĉk with c r k-2 and c r k-1 . 2. We compare ĉk with c r k (XOR function). The number of errors E k gives us information about where the error may have occurred.

Comparison with table 1 if no error occur in c r

k 3-1) Assuming that M k-2 = 1 and M k-1 = 1, and with Hamming distance E k or 255 -E k according to the comparison of ĉk and c r k , we reduce the possible states ĉk-2 and ĉk-1 from the table 1 to Ŝ1,1 k-2 . According to the Table 1a, we only save the states which lead to a number of errors E k . The table 1a represents the position of the error which transforms a '0' to '1', the line is the first code and the column the second code. Let's P1(k1,k2) the position of the table 1a where Hamming distance is E k . P1(k1,k2) represents the position of a possible error of c r k-2 and c r k-1 where a '0' was transformed to a '1'. Nevertheless, suppose that at this bit position, the received bit (either on c r k-2 or on c r k-1 ) is egual to '0', thus this case is not a feasible error state. As a result this second test reduces all the possible cases : if the k1 bit of c r k-2 is '1' AND the k2 bit of c r k-2 is '1', then we extract and save a possible right code.

Same procedure with table 1b, 1c and 1d 3-2) Assuming that M k-2 = 1 and M k-1 = -1, and E k is the Hamming distance between c k and ĉk . The possible state of error from ĉk-2 and moduloĉk-1 are reduced from the table 1 to Ŝ( k -2) 1,0 (taking into account all possible errors ie, '0' become '1' and '1' became '0' and noting that if an error transform a bit '0' of moduloĉk-1 to '1' then the table of reference correspond to a '1' that becomes '0'). 4. Coming back from point 2 to point 4 assuming an error on c r k In this state, we are compelled to take into account the error on c r k to estimate c c k , the estimated corrected code. Then, according to ĉk is greater than c c k or not, the Hamming distance is E k or 8 -E k . All possible state of M k-2 = 1 and M k-1 = -1 have to be tested.

As a result, we find some combinaison of u-plet ĉk-2 , ĉk-1 , ĉk with associated bit information M k-2 , M k-1 , M k . We save these u-plet in a table T k .

Second Step : Convergence

Come back from Step 1, with c r k-1 instead of c r k-2 and c r k instead of c r k-1 . We save the u-plet in a Table T k+1 . The convergence is given by comparing the possible code ĉk-1 , ĉk with information M k-1 , M k of T k+1 and the same possible code saved at T k .

According to each state Ŝk and ĉk , we estimate ĉk+1 . Nevertheless, ĉk+1 is generated from the second bit of Ŝk and only the 8 possible states of ĉk+1 . As a result, among Ŝk couples of code,each code of the second estimated code ĉk is tested with c k+1 .

Numerical Results

Simulations have been made when no information was sent (M k ). To prove the effectiveness of our algorithm, we generated three positive consecutive errors ('0' became '1'). As a result, the number of possible case of errors is given by the number of Table 1a equal to Hamming distance, Hamming distance -1 and Hamming distance +1.

Indeed, let's the following chaotic sequence 4,1,33, 48. An error is added to the first code and to the second code at the 4th bit and in the third code to the 6th bit. The first three received code are 12, 9 and 97. According to the two first received code (12,9), the estimated third code is 153 ( 1 0 0 1 1 0 0 1). Compared to 97 (01100001), there are 5 errors. Nevertheless, as an error may have occured in the third code, we are compelled to test three Hamming distance : 4, 5 and 6.

The total number of possible error is 34. Moreover, considering that probability of Hamming distance equal to 4 is greater than Hamming distance is equal to 5, then we can conclude that there are a greater probability that an error occured in the third received code.

Nevertheless, thanks to the third point of the algorithm (First Step) we can drastically reduce the number of combinaisons. Indeed, according to table 1a, a distance of Hamming equal to 3 can be generated by an error ('0' become '1' in the third bit of the first code and in the second bit of the second code. In our exemple, the binary value of 12 is 00001100 and the binary value of 9 is 00001001. The third bit of the first code is 1 but the second bit of the second code is 0. So, since the second bit is not equal to 1 (condition of Hamming error of Three) this couple of point can not be a possibility.

As a result, we only find 5 possible errors at step 1. Let's T1 the table where the 3-plet of 5 estimated chaotic code after correction are saved ĉ1 , ĉ2 , ĉ3 .

At step 2, the chaotic sequence is shifted of one bit and launch the first step of the algorithm. We only find 6 possibles chaotic sequence after correction. Let's T2 the table of possible corrected codes ĉ2 , ĉ3 , ĉ4 .

By comparison of ĉ2 , ĉ3 in T1 and T2, we can estimate/correct and recover the chaotic sequence of the transmitter.

As a result, with no more that one error per byte and no modulated data, convergence is achieved with a few steps. nevertheless, with modulated data, more memory is necessary to test and save several ways.

Conclusion

This paper deals with a new demodulation technique based on QPSK. This schema is interesting for two reasons: on one hand the spread-spectrum characteristics of the signals authorize the usage in a multi-user system such as CDMA ( [START_REF] Yang | Chaotic Digital Code-Division Multiple acces (CDMA) Communication Systems[END_REF], [START_REF] Moshavi | Bellcore: Multi-user detection for DS-CDMA communications[END_REF]), on the other hand it makes it possible to decrease the error rate. In addition, the proposed schema does not require synchronization between the receiver and the transmitter, which constitutes a great advantage compared to the coherent detectors, especially knowing that the synchronization becomes more difficult in noise presence. Since the system is implemented in a full digital way, it makes it possible to control efficiently control all of the coder parameters. A digital signal has exact characteristics and it is possible to ensure a better interfacing with a computer data. Moreover synchronization is achieved by correcting the potential error. To prevent burst of errors we also can interleave the chaotic bits.

Nevertheless, this approach is still limited in a low noise environment, since no more than one error is accepted per code.
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 1 Fig. 1. QAM chaotic transmitter

  the Hamming distance is the complementary. As an example if Hamming distance is 3 when x[k] > x[k] (three bits over 8 are different) so, the Hamming distance becomes 5 if x[k] < x[k]. As Hamming distance in tables 1-a to 1-d are comprised between 2 and 6 when x
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