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ABSTRACT: The development of quick, easy-to-handle, surrogate models of complex simulations is
a key issue to derive a rapid approximation of more expensive models. For instance, Lopez-Caballero
and Khalil (2018), performed multiple finite element (FE) numerical simulations to assess the effect of
the liquefaction-induced settlements of the soil foundation of an embankment due to real earthquakes.
However, due to computational limitations of the FE analysis, they proposed a Gaussian Process (GP)
emulator to represent the output of the more expensive FE model. Furthermore, they derived the ana-
lytical fragility curves constructed on the basis of the output of the nonlinear dynamic surrogate model.
The aim of this work is to confront two different kinds of meta-models techniques, based on the same
earthquake-liquefaction-induced settlements data. Hence, we proposed a comparison between two dif-
ferent surrogate models: (1) the GP model proposed by the authors and (2) an Artificial Neural Network
(ANN) model proposed under the scope of this work. A comparison between the resultant fragility curves
of the levee using both surrogate models is discussed, together with the impact of both meta-models in
terms of fragility curves and its corresponding uncertainty. Finally, the main advantages and drawbacks
of the surrogate models are highlighted.

Keywords: surrogate models, artificial neural networks, Gaussian process, fragility function, damage
levels.

1. INTRODUCTION

The quick development of highly sophisticated
computer codes to recreate the behavior of complex
physical phenomenon is currently possible thanks
to the availability of accessible, affordable and
faster computational resources. Nowadays, state-
of-the-art simulators are parameterize in a more
elaborated way, with large number of input param-
eters describing the complexity of the model such
as: material properties, initial conditions, boundary
conditions, constitutive laws, among other. Never-
theless, and despite the fact that computational ca-
pacity of computers has increased exponentially in

the past decades [Hilbert and López (2011)], there
still exist computational limitations for plenty of
applications. Where performing uncertainty quan-
tification (UQ) tasks with Monte Carlo (MC) meth-
ods is almost always infeasible because of the need
to perform hundreds of thousands or even millions
of forward model evaluations in order to obtain
convergent statistics [Tripathy and Bilionis (2018)].
Hence, the development of quick, easy-to-handle,
surrogate models of complex simulations is a key
issue to derive a rapid approximation of more ex-
pensive models. For instance, Lopez-Caballero
and Khalil (2018), performed multiple finite ele-
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ment (FE) numerical simulations to assess the ef-
fect of the liquefaction-induced settlements of the
soil foundation of an embankment due to real earth-
quakes. However, due to computational limitations
of the FE analysis to properly perform UQ analysis,
a Gaussian Process (GP) emulator to represent the
output of the more expensive FE model was pro-
posed by the authors. Furthermore, the authors de-
rived the fragility model of the embankment con-
structed on the basis of the output of the nonlinear
dynamic surrogate model proving its use for uncer-
tainty quantification. The aim of this work is to
confront two different kinds of meta-models tech-
niques, based on the same earthquake-liquefaction-
induced settlements data. Hence, a comparison be-
tween two different surrogate models is discussed:
(1) the GP model proposed by the authors and (2)
an Artificial Neural Network (ANN) model pro-
posed under the scope of this work. A comparison
between the resultant fragility curves of the levee
using both surrogate models is provided, together
with the discussion on the impact of both meta-
models in terms of fragility curves and its corre-
sponding uncertainty. Finally, the main advantages
and drawbacks of the surrogate models are high-
lighted .

2. METHODOLOGY
The methodology followed in this article is

shown in Figure 1, and described in the following
steps: (1) Select a robust earthquake database; (2)
Propagate the different time histories (TH) through
the soil media using the FEM model; (3) Train both
surrogate models (GP and ANN) using the learning
database (LDB) and the validation database (VDB).
(4) Predict the crest settlements (δu/H[
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Proxies
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Figure 1: Methodology followed in this article.

2.1. Surrogate Models
A metamodel, an emulator or a surrogate model

is an analytical function used to provide rapid

approximations of a more expensive model (e.g.
analitical model, finite-element model) [Lopez-
Caballero and Khalil (2018)] while being compu-
tationally cheaper to evaluate . Even though there
are multiple surrogate models that could be used for
this purpose, for this case study a Gaussian Process
Metamodel (GP) and an Artificial Neural Network
(ANN) were used to predict the crest settlement of
the levee based on predefined database containing
the input an output parameters of the costly FEM
model of the embankment.

2.1.1. Gaussian Process (GP)
A Gaussian Processes is an stochastic process

(a collection of random variables indexed by time
or space) that offer a mathematically funded and
versatile framework to building statistical models.
The main assumptions are: the phenomenon out-
put is Gaussian and is a functional choice of co-
variance function (kernel). The statistical model
needs physical knowledge: through data and ex-
pertise guiding the choice of kernel (which may
come from the physical model). The statistical
model is in essence complementary to the physical
model and typically useful for decision making(e.g.
optimization, uncertainty propagation, distributions
shape, among others). Detailed Gaussian process
references include Cressie (1993), Williams and
Rasmussen (1996), Stein (1999), Rasmussen and
Williams (2006).

2.2. Artificial Neural Network (ANN)
The Artificial Neural Network (ANN) approach

was inspired by investigations into the structure
of the human brain, which consists of intercon-
nected neurons McCulloch and Pitts (1943). It
consist of a mathematical process that uses dif-
ferent layers to deal with the information its fed
with. ANN’s learn from examples and capture sub-
tle functional relationships among the data even if
the underlying relationships are unknown or hard to
describe with more physical models. Thus ANNs
are well suited for problems whose solutions re-
quire knowledge that is difficult to specify but for
which there are enough data or observations [Zhang
et al. (1998)]. The simplest ANN is composed of
an input, a hidden and an output layers, but they
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can become as complex of any order by adding ad-
ditional hidden layers, which will turn the problem
into what its better know as deep learning [Schmid-
huber (2015)]. Currently, there exist countless of
excellent ANN references and Zhang et al. (1998)
provides an excellent overview of the ANN tech-
nique. On the other hand, Kong et al. (2018) pro-
vides an overview of current applications of ma-
chine learning (ML) in seismology, while Paolucci
et al. (2018) presents an example of application for
earthquake engineering purposes.

3. CASE STUDY
The selected case study consists of an embank-

ment of 9 m height, composed of dry dense sand,
founded over a 10 m layers of loose and dense sand
overlaying bedrock, as shown in Figure 2. The first
top 4 m of foundation consists of liquefiable loose-
to-medium sand on top of 6 m of saturated dense
sand. The underlying bedrock at the bottom of the
dense sand has a mass density (ρbd) of 2,000 kg/m3

and a shear wave velocity (Vs) of 1,000 m/s. The
water table is located at 1 m below the foot of the
embankment and it was kept dry. A 1:3 (vert:horiz)
slope characterize the embankment inclination, and
the geometry used on the FEM model is based on
the one proposed by Rapti et al. (2018).
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Figure 2: Embankment geometry and soil behav-
ior used in the numerical FEM model (after Lopez-
Caballero and Khalil (2018)).

All specific details related to the FEM analy-
sis and the elastoplastic multimechanism of the
soil used to represent the soil behavior in Figure
2 are extensively described in Lopez-Caballero and
Khalil (2018) and will no further be discussed in
this work.

4. EARTHQUAKE INPUT MOTIONS
Under the scope of this work the same case study

used by Lopez-Caballero and Khalil (2018) is con-
sidered, hence, the same input ground motions used
to build the surrogate model are also considered.
A total of 540 unscaled records were selected by
the authors from the PEER database [Ancheta et al.
(2013)], the Center for Engineering Strong Motion
Data, and the Kiban Kyoshin strong-motion net-
work (KIK-NET) [Aoi and Okada (2000)]. The
events range between 5.2 and 7.6 in moment magni-
tude (Mw). The recordings have site-to-source dis-
tances from 15 to 50 km and concern dense-to-firm
soil conditions (i.e., 360 m/s < VS30 < 800 m/s).
All input signals have a baseline correction and a
sampling time (∆t) equal to 0.005 s.

Table 1: Correlation matrix of the input and output
variables for the 95 accelerograms used as the learning
database (LDB).

CORR IArias PGA TV/A δu/H[%]
IArias 1.00 0.83 0.11 0.85
PGA 0.83 1.00 -0.01 0.76
TV/A 0.11 -0.01 1.00 0.27

δu/H[%] 0.85 0.76 0.27 1.00

The signals were filtered using a noncausal
fourth-order Butterworth bandpass filter (i.e., zero-
phase digital filtering), between 0.1 and 25.0 Hz.
The correlation plots between the embankment
crest settlement, ln(δu/H[%]), and the three input
variables, Xi, are shown in Figure 3 and its corre-
sponding correlations coefficients are shown in Ta-
ble 1.

5. LEARNING, VALIDATION AND TEST
DATABASES.

The earthquake database was split as follows:
95 signals concern the learning database (LDB),
50 ground motions are used for the validation set
(VDB), and the test database (TDB) is composed
of 395 unscaled records. The ranges of the in-
put earthquake features obtained for each database
(LDB, VDB and TDB) are summarized in Table
2. The earthquake features used to derive the sur-
rogate models are: maximal outcropping accelera-
tion (PGA), Arias Intensity (Iarias) and period of
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Table 2: Statistics of the different input parameters for each database (LDB, VDB and TDB).

Index Variable Definition Units LDB (95) VDB (50) TDB (395)
X1 IArias Arias intensity. m/s 0.001 - 20.64 0.04 - 4.13 0.0036 - 20.64
X2 PGA Peak ground acceleration. g 0.01 -1.93 0.03 - 1.16 0.03 - 1.93
X3 TV/A Period of equivalent harmonic wave. s 0.09 - 1.91 0.13 - 1.42 0.13 - 1.43

Figure 3: Correlation plots for the three different
databases, LDB (green), VDB (red), TDB (blue), be-
tween the input variables (IArias, PGA and TV/A) and
the output variable (δu/H[%]) used to derived the GP
and ANN surrogate models.

equivalent harmonic wave (TV/A = α · PGV/PGA
with α=4.89). Figure 4 displays the FEM crest
settlement (δuF E M/H[%]) versus the input fea-
tures (PGA, Iarias and TV /A) plots for the learn-
ing (LDB) and validation (VDB) databases, show-
ing similar correlation and variability as the one dis-
cussed in Figure 3. The VDB was selected in such
a way that it covers a large range of the LDB and
avoids any extrapolation from it. Finally, the TDB
was also selected in a way that no extrapolation was
allowed and with a considerable amount of events
(395 events) to perform uncertainty quantification.

6. SURROGATE MODELS TRAINING
Once the LDB, VDB and TDB had been prop-

erly selected. The next step consist on training
the two different surrogate models by using the
LDB to calibrate the models, and the VDB to val-
idate the results. The validation phase consist on
comparing the predicted crest settlements of the
surrogate models with those of the FEM model,
once an acceptable accuracy is obtained after mul-
tiple sensibility analysis and optimization proce-

dures, it is possible to proceed with the predic-
tive phase. On the predictive phase, the TDB is
used to predict quick approximation of the FEM
(δuF E M/H[%]) by using the surrogate models in-
stead (δuGP,ANN/H[%]).

6.1. Gaussian Process (GP)
As mentioned previously, the aim of this work

is to confront two different kinds of meta-models
techniques, based on the same input and output
data. Nevertheless, the metamodel using a GP for
this case study has been widely discussed in Lopez-
Caballero and Khalil (2018),. Hence, the methodol-
ogy concerning the GP will not longer be discussed,
only the results provided by the authors will be used
for comparison purposes.

6.2. Artificial Neural Network (ANN)
The most significant contribution of this work is

the use of an artificial neural network (ANN) to pre-
dict the crest settlements of an embankment in or-
der to to replace the most costly FEM model.

The ANN used in the present study is the feed-
forward fully conected neural network as proposed
by Hwang and Hu (2001).The input layer contains
the external information or input variables, which
for this case study are: maximal outcropping accel-
eration (PGA), Arias Intensity (Iarias) and period
of equivalent harmonic wave (TV/A). The number
of hidden layers and neurons was finally set after an
optimization process. Figure 5 shows the simplest
architecture found under the scope of this work:
which consists of an input layer, a single hidden
layer of 7 neurons and an output layer.

The best architecture was selected trough a sensi-
tivity analysis where the different parameters of the
ANN (e.g. learning rate, activation function, num-
ber of hidden layers, number of hidden neurons)
were modified in order to maximizes the squared
correlation coefficient (Q2)[ Eq. 1] and minimizes
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Figure 4: FEM crest settlement (δu/H[%]) versus input features (Xi) plots of the learning (LDB in blue) and vali-
dation (VDB in red) database: (a) Xi = PGA; (b) Xi = Iarias; (c) Xi = TV/A;
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(X34hof�V
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Figure 5: Final Artificial Neural Network architecture
after the optimization process used as surrogate model
to predict the crest settlements (δuFEM/H) of the em-
bankment.

the root mean square error (RMSE)[ Eq. 2] simul-
taneously.

Q2(yi,y
pred
i ) = 1− ∑N

n=1(y
pred
i − yi)

2

∑N
n=1(yi −µy)2

(1)

RMSE(yi,y
pred
i ) =

√
∑N

n=1
(ypred

i −yi)2

N (2)

Once the ANN architecture is defined, then the in-
trinsically random variability of the regression pro-
cess of the ANN is studied by training 300 ANN
with the exact same architecture and input and out-
put learning and validation databases (LDB and
VDB). This uncertainty is related to the conver-
gence process of the ANN due to the feed-forward
propagation process that it uses to correct the net-
work until the ANN outputs approach the FEM out-
puts, nevertheless multiple solutions will converge,
but with different levels of accuracy. This sensi-
bility analysis was performed based on the resem-
blance of the fragility curves of the surrogate mod-
els with respect to those of the FEM model. The

fragility curves represent the probability of failure
of a system, associated with a specified criterion,
for a given intensity measure (IM) of the earthquake
motion. Failure herein represents the exceedence of
a certain limit of the crest settlement (δuFEM/H),
and the IM in this case is the peak ground accel-
eration (PGA). Thus, the fragility function can be
expressed as follows [Eq. 3][Mai et al. (2017)]:

Frag(IM;δo) = P[∆ ≥ δo|IM] (3)

F̂rag(IM;δo) = Φ( lnIM−lnα
β ) (4)

The classical approach for establishing fragility
curves consists in assuming a log-normal shape for
the curves described in Eq. 3. This expression
can be written in more general form by using the
maximum likelihood approach Eq. 4. Where Φ(·)
denotes the standard Gaussian cumulative distribu-
tion function (CDF), α is the "median" and β is the
"log-standard deviation" of the log-normal curve.

Figure 6: Fragility curves of the embankment for severe
damage level (Prob[δu/H ≥ 1.0%]), for the 300 ANN
models and its µ ± σ (blue).

Now, following this definition, Figure 6 displays
the 300 fragility curves built using the results of
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each one of the 300 trained ANN sets together with
its median (µ) and its corresponding standard de-
viation (σ ). Considering the uncertainty of the re-
gression procedure is important, since it is possi-
ble that if only a single train of the architecture is
made, even tough the solution converges, the solu-
tion could fall on the lower or upper bounds of the
300 fragility curves, affecting considerably the ac-
curacy of the ANN surrogate model. Finally, the
closest ANN to the median (µ) of the 300 models
is selected as the final surrogate model: in this par-
ticular case model 234.
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Figure 7: Fragility curve regression parameters derived
using the maximum likelihood approach for the severe
damage limit state (Prob[δu/H ≥ 1.0%]): (a) α (me-
dian) and (b) β (standard deviation).

Once defined the median (µ) fragility curve and
its corresponding ANN model (model 234), it is im-
portant to verify if the the number of ANN training
sets selected to evaluate the uncertainty: here ar-
bitrarily selected as 300; is sufficient to obtain ro-
bust statistics. Figure 7 a,b show the median (µα ,β )
and standard deviation (σα ,β ) of the α and β pa-
rameters, respectively, when considering 1 to 300
models. As it is possible to observe in both in both
figures, above 100 ANN model, neither the median
(µα ,β ) nor standard deviation (σα ,β ) vary as a func-

tion of the number of considered fragility curves.
Hence in this particular case, the 300 considered
models were adequately to predict robust statistics,
nevertheless this conclusion is structure dependent,
hence, this validation needs to be performed for
each structure and for the different considered dam-
age level.

Figure 8: Crest settlement predicted using the VDB
and the TDB databases for the GP model, δuGP/H[%],
(magenta) and the ANN model, δuANN/H[%], (blue).
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Figure 9: Fragility curves: FEM (green); ANN (µ ± σ )
(blue); GP (magenta).

7. SURROGATE MODELS PREDICTIONS
The next step consist on predicting the crest

settlements (δu/H[%]) by using the test database
(TDB) composed of 395 unscaled records and the
validation database (VDB) composed of 50 records.
Figure 8 shows the predicted (δu/H[%]) by the
ANN and the GP with respect PGA for the com-
bined databases.

The three damage level thresholds are super-
posed in the same plot and they correspond to
δu/H[%]=0.02, 0.2, and 1.0%. The damage state
limits or the performance levels of the levee are
those proposed by Swaisgood (2003). From visual
inspection, both models covered approximately the
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Figure 10: (a) FEM Vs. GP crest settlements (δu/H[%]); (b) FEM Vs. ANN crest settlements (δu/H[%])(blue); (c)
Surrogate models and the FEM model fragility curves ratio (GP or ANN/FEM); Confusion matrices between the
FEM and : (d) GP emulator; (e) ANN emulator.

same surface of the plot and with similar den-
sity distributions of sample points. Nevertheless in
the next section a quantitative comparison between
models is presented.

8. SURROGATE MODELS COMPARISON
The fragility curves of the FEM, GP and ANN

crest settlements (δuGP/H[%]) for the severe dam-
age level limits state (Prob[δu/H ≥ 1.0%]) are
shown in Figure 9. The goodness of the final
surrogate models with respect to the FEM model
has been quantitatively estimated in three differ-
ent ways: (1) Comparison of (δu/H[%]) values ob-
tained with FEM and with the surrogate models,
Figure 10a,b; (2) Ratio between the surrogate mod-
els fragility curves and the FEM model, Figure 10c.
(3) Comparison of the damage limit states confu-
sion matrix obtained considering FEM with respect
to the surrogate models, GP and ANN, respectively
Figure 10d,e. Firstly, the regression plot of the
FEM Vs. GP/ANN Figure 10a,b allows to calcu-
late the squared correlation coefficient (Q2) and the
root mean square error (RMSE)of the final surro-
gate models, where a Q2 = 1.0 and an RMS = 0
will represent the perfect model. Secondly, the ra-
tion between fragility curves, Figure 10c, allows to
estimate if the surrogate models are over estimating
or underestimating the real model: for this partic-
ular case, an overestimation of the fragility curve

is preferable since is on the safety side. For this
case example, for a given probability of exceedance
(Prob[δu/H ≥ X ]), both surrogate models overesti-
mates the IM (PGA) up to a value of 20% with re-
spect to the FEM model. Nevertheless, the ANN
tends to predict better results at larger probabilities,
while the GP does it at small probabilities, being
particularly preferable the ANN, since for risk pur-
poses it is more important to properly predict the
larger return periods. Despite this particular find-
ing, that could motivate future users to prefer the
ANN over the GP models, no general conclusion
can be drawn from this particular exercise. Finally,
the confusion matrices are a very powerful tool to
evaluate the accuracy of surrogate models, Figure
10d,e. For instance, the ANN performs slightly bet-
ter in terms of accuracy than the GP: 85% accuracy
for the former, against 79% for the later. Also, even
though both models generally tend to overestimate
damage levels III and IV, the ANN overestimates
less than the GP model, hence, with a better resem-
blance to the FEM model than the GP model. But
again, no general conclusion about which model is
better than the other can be drawn based on this par-
ticular case example.

9. CONCLUSIONS
Two surrogate models (GP and ANN) were used

as alternative to predict the liquefaction-induced
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settlements of a levee initially modeled with a more
expensive FEM. The comparative results shown
here have been evaluated in terms of the fragility
functions, damage levels, and crest settlement pre-
dictions. The main conclusions drawn from this
study are: (1) The ANN slightly predicts better re-
sults than the GP. Nevertheless, both the GP and the
ANN surrogate models have shown to be good tools
to predict accurately enough the nonlinear FEM re-
sponse. Both surrogate models represent an econ-
omy in CPU time with respect to the FEM models
proving their value for UQ purposes. Finally, it is
remarkable, that with only 3 input proxies of com-
plex waveforms it was possible to retrieve a very
close equivalent model with almost zero computa-
tion cost once the ANN or GP models are trained.
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