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We consider the issue of strong consistency for model selection in a large class of causal time series models, including AR(∞), ARCH(∞), TARCH(∞), ARMA-GARCH and many other classical processes. We propose a penalized criterion based on the quasi likelihood of the model. We provide sufficient conditions that ensure the strong consistency of the proposed procedure. Also, the estimator of the parameter of the selected model obeys the law of iterated logarithm. It appears that, unlike the result of weak consistency obtained by Bardet et al. [2], dependence between the regularization parameter and the model structure is not needed.

Introduction

We consider a general class of autoregressive time series in a semiparametric framework. Let M, f : R N → R be two measurable functions and (ξ t ) t∈Z a sequence of centered independent and identically distributed (iid) random variables satisfying var(ξ 0 ) = 1. Consider the class of affine causal models, Class AC(M, f ) : A process X = (X t ) t∈Z belongs to AC(M, f ) if it satisfies:

X t = M (X t-i ) i∈N * ξ t + f (X t-i ) i∈N * for any t ∈ Z. (1) 
The existence of a stationary and ergodic solution of the class (1) has been studied by [START_REF] Bardet | Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes[END_REF] as a particular case of models considered in [START_REF] Doukhan | Weakly dependent chains with infinite memory[END_REF]. [START_REF] Bardet | Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes[END_REF] and [START_REF] Bardet | Asymptotic behavior of the laplacian quasimaximum likelihood estimator of affine causal processes[END_REF] carried out the inference question in the semiparametric setting in the class AC(M, f ), whereas [START_REF] Bardet | Detecting multiple change-points in general causal time series using penalized quasi-likelihood[END_REF], [START_REF] Kengne | Testing for parameter constancy in general causal time-series models[END_REF], [START_REF] Bardet | Monitoring procedure for parameter change in causal time series[END_REF] focussed on the change-point problem in this class. Numerous classical time series models belong to the class [START_REF] Bardet | Asymptotic behavior of the laplacian quasimaximum likelihood estimator of affine causal processes[END_REF], for instance AR(∞), ARCH(∞), TARCH(∞), ARMA-GARCH or APARCH processes.

Consider a trajectory (X 1 , . . . , X n ) of a process X = (X t ) t∈Z that belongs to AC(M * , f * ) where M * and f * are unknown. We consider a finite collection M of affine causal models, where the true model m * ∈ M corresponds to M * and f * . Our main aim is to select a model m (among the collection M) which is "close" to m * for large n.

We focus on the semiparametric framework and assume that the distribution of ξ 0 is unknown and that the functions f and M are known up to a parameter θ ∈ Θ, where Θ is a compact subset of R d (d ∈ N). That is, the model m * corresponds to the true parameter θ * ∈ Θ and the process X belongs to AC(M θ * , f θ * ). In the sequel :

• each model m ∈ M is considered as a subset of {1, . . . , d} and denote by |m| the dimension of the model, typically, |m| = #(m);

• for m ∈ M, the parameter space of m is Θ(m) = (θ i ) 1≤i≤d ∈ Θ, θ i = 0 if i / ∈ m ; θ(m)
is the parameter vector associated to m;

• the collection M is considered as a subset of the power set of {1, . . . , d}, i.e. M ⊂ P {1, . . . , d} .

Therefore, for any model m ∈ M, m ∈ AC(M θ , f θ ) when θ ∈ Θ(m). Also, we could consider hierarchical as well as exhaustive families of models.

For instance, assume that (X 1 , . . . , X n ) is generated from a GARCH(p * , q * ) process. The collection M could be a family of ARMA(p, q)-GARCH(p , q ) with (p, q, p , q

) ∈ {0, 1, • • • , p max } × {0, 1, • • • , q max } × {0, 1, • • • , p max } × {0, 1, • • • , p max }
where p max , q max , p max , p max are the fixed upper bounds of the orders, assumed to satisfy p * ≤ p max and q * ≤ q max . Therefore, consider Θ as a compact subset of R pmax+qmax × (0, ∞) × [0, ∞) p max +q max . Thus, a model m is a subset of {1, • • • , p max + q max + p max + q max + 1} and its (i) Under the assumptions that E|ξ 0 | r < ∞ with r > 4, the functions θ → f θ , M θ are twice continuously differentiable on Θ and satisfy some Lipschitz-type properties, we establish the strong consistency of the proposed procedure.

parameter space is Θ(m) = (θ i ) 1≤i≤d ∈ Θ, θ i = 0 if i / ∈ m .
(ii) We show that the quasi maximum likelihood estimator (QMLE) of the selected model obeys the law of iterated logarithm.

The rest of the paper is structured as follows. In Section 2, we set some notations, assumptions and define the model selection criterion. The main results are provided in Section 3 whereas Section 4 is devoted to a concluding remarks. Section 5 focuses on the proofs of the main results.

2 Assumptions and the model selection criterion

2.1 Assumptions on the class of models AC(M θ , f θ )

In the sequel, we will use the norms :

1. • applied to a vector denotes the Euclidean norm of the vector;

2. for any compact set K ⊆ R d and for any g : Θ -→ R p , g K = sup θ∈Θ g(θ) .

Throughout the sequel, we assume that the functions θ → M θ and θ → f θ are twice times continuously differentiable on Θ. Also, we will use H θ = M 2 θ and for any function g θ which is i times differentiable on Θ, we set ∂ θ i g θ = ∂ i g θ /∂θ i . Let us consider the following assumptions for any compact set K ⊆ Θ, i = 0, 1, 2 and

Ψ θ = ∂ θ i f θ or ∂ θ i M θ : Assumption A(Ψ θ , K): for any x ∈ R N , the function θ → Ψ θ (x) is continuous on Θ with Ψ θ (0) Θ < ∞ and
there exists a sequence of non-negative real numbers

α k (Ψ θ , K) k≥1 satisfying ∞ k=1 α k (Ψ θ , K) < ∞ such that: Ψ θ (x) -Ψ θ (y) K ≤ ∞ k=1 α k (Ψ θ , K)|x k -y k | f or all x, y ∈ R N .
In the sequel we refer to the particular case of the non linear ARCH(∞) (NLARCH(∞), see [START_REF] Bardet | Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes[END_REF]) processes define when f θ = 0. In this case, we consider the following assumption for i = 0, 1, 2 :

Assumption A(∂ θ i H θ , K): for any x ∈ R ∞ , the function θ → ∂ θ i H θ (x) is continuous on Θ with ∂ θ i H θ (0) Θ <
∞ and there exists a sequence of non-negative real numbers

α k (∂ θ i H θ , K) k≥1 satisfying ∞ k=1 α k (∂ θ i H θ , K) < ∞ such that : ∂ θ i H θ (x) -∂ θ i H θ (y) K ≤ ∞ k=1 α k (∂ θ i H θ , K)|x 2 k -y 2 k | f or all x, y ∈ R N .
Then define the set:

Θ(r) = θ ∈ R d , A(f θ , {θ}) and A(M θ , {θ}) hold with ∞ k=1 α k (f θ , {θ}) + ξ 0 r ∞ k=1 α k (M θ , {θ}) < 1 ∪ θ ∈ R d , f θ = 0 and A(H θ , {θ}) holds with ξ 0 2 r ∞ k=1 α k (H θ , {θ}) < 1 (2)
The above Lipschitz-type conditions are classical when studying the existence of a stationary and ergodic solution of such model, see [START_REF] Doukhan | Weakly dependent chains with infinite memory[END_REF]. In the case of the class

AC(M θ , f θ ), if θ ∈ Θ(r),
then there exists a unique causal, stationary and ergodic solution X = (X t ) t∈Z ∈ AC(M θ , f θ ) with a finite moment of order r, see [START_REF] Bardet | Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes[END_REF].

The following assumptions are useful in the study of the asymptotic behavior of the QLME .

Assumption D(Θ): ∃h > 0 such that inf θ∈Θ (H θ (x)) ≥ h for all x ∈ R N . Assumption Id(Θ): For all (θ, θ ) ∈ Θ 2 , f θ (X 0 , X -1 , • • • ) = f θ (X 0 , X -1 , • • • ) and M θ (X 0 , X -1 , • • • ) = M θ (X 0 , X -1 , • • • ) a.s. ⇒ θ = θ . Assumption Var(Θ): For all θ ∈ Θ, one of the families ∂f θ ∂θ i (X 0 , X -1 , • • • ) 1≤i≤d or ∂h θ ∂θ i (X 0 , X -1 , • • • ) 1≤i≤d is a.s. linearly independent.
In the following assumption, we make the convention that if

A(∂ θ i M θ , Θ) holds then α k (∂ θ i H θ , Θ) = 0 for all k ∈ N and if A(∂ θ i H θ , Θ) holds, then α k (∂ θ i M θ , Θ) = 0 for all k ∈ N. Set for = 0, 1, 2,
Assumption K (Θ): there exists r > 4 such that θ * ∈ Θ(r)∩Θ and for i = 0,

• • • , , A(∂ θ i f θ , Θ), A(∂ θ i M θ , Θ) (or A(∂ θ i H θ , Θ)) hold with k≥1 1 √ k log log k j≥k i=0 α j (∂ θ i f θ , Θ) + α j (∂ θ i M θ , Θ) + α j (∂ θ i H θ , Θ) < ∞.
These aforementioned assumptions hold for many classical models, including AR(∞), ARCH(∞), TARCH(∞) type processes , see for instance [START_REF] Bardet | Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes[END_REF], [START_REF] Bardet | Detecting multiple change-points in general causal time series using penalized quasi-likelihood[END_REF], [START_REF] Kengne | Testing for parameter constancy in general causal time-series models[END_REF]. In the case of assumption K(Θ), let us consider for = 0, 1, 2 :

1. The geometric case:

i=0 α j (∂ θ i f θ , Θ) + α j (∂ θ i M θ , Θ) + α j (∂ θ i H θ , Θ) = O(a j
) for some a ∈ [0, 1). In this case, assumption K (Θ) holds.

The Riemanian case:

i=0 α j (∂ θ i f θ , Θ)+α j (∂ θ i M θ , Θ)+α j (∂ θ i H θ , Θ) = O(j -γ ) with γ > 0. If γ > 3/2, then K (Θ) holds.

The model selection criterion

Consider a model m ∈ M and the class

AC(M θ , f θ ) for θ ∈ Θ(m) ⊂ Θ ⊂ R d . Assume that a trajectory (X 1 , . . . , X n ) is observed. The conditional Gaussian quasi (log)likelihood (up to a constant) L n is defined for all θ ∈ Θ(m) by, L n (θ) := - 1 2 n t=1 q t (θ) , with q t (θ) := (X t -f t θ ) 2 H t θ + log(H t θ ) (3) 
where

f t θ := f θ (X t-1 , X t-2 , • • • ), M t θ := M θ (X t-1 , X t-2 , • • • ) and H t θ = M t θ 2 .
Since L n (θ) depends on (X t ) t≤0 which are not observed, it is common practice (see [START_REF] Bardet | Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes[END_REF], [START_REF] Bardet | Detecting multiple change-points in general causal time series using penalized quasi-likelihood[END_REF], [START_REF] Kengne | Testing for parameter constancy in general causal time-series models[END_REF]) to consider the approximated quasi (log)likelihood given (up to a constant) for all θ ∈ Θ(m) by

L n (θ) := - 1 2 n t=1 q t (θ) , with q t (θ) := (X t -f t θ ) 2 H t θ + log( H t θ ) (4) 
where

f t θ = f θ (X t-1 , X t-2 , • • • , X 1 , 0, • • • ), M t θ = M θ (X t-1 , X t-2 , • • • , X 1 , 0, • • • ), H t θ = ( M t θ ) 2 .
Note that, the "best" parameter associated to the model m is defined by,

θ * (m) = argmin E[q 0 (θ)] θ∈Θ(m)
.

According to [START_REF] Bardet | Consistent model selection criteria and goodness-of-fit test for common time series models[END_REF], θ * (m) exists and it is unique under Id(Θ). When m = m * , we have θ * (m * ) = θ * . For any m ∈ M, the QMLE of θ * (m) is given by

θ(m) = argmax θ∈Θ(m)
L n (θ).

(
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The selection of the "best" model m among the collection M is performed by minimizing the penalized contrast

C(m) = -2 L n θ(m) + |m|κ n , (6) 
that is

m = argmin m∈M C(m), (7) 
where

• (κ n ) n
is the sequence of the regularization parameter (possibly data-dependent) that will be used to calibrate the penalty term;

• |m| is the dimension of the model m, typically, the cardinal of m (considered as a subset of {1, . . . , d}), which is also the number of the estimated components of θ (the others are fixed to zero).

Asymptotic results

Recall that, when the model is correctly specified, [START_REF] Bardet | Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes[END_REF] have established the consistency and the asymptotic normality of θ(m * ). The following proposition shows that the estimator θ(m * ) obeys the law of iterated logarithm.

Proposition 3.1 Let (X 1 , . . . , X n ) be a trajectory of a process X belonging to AC(M θ * , f θ * ) where θ * ∈ Θ(r) ∩ o Θ ⊂ R d with r > 4. Assume that D(Θ), Id(Θ), V ar(Θ), K 2 (Θ) hold. Then, θ(m * ) -θ * = O … log log n n a.s. . (8) 
The following theorem provides sufficient conditions that ensure the strong consistency of the model selection procedure. -→

n→∞ m * . ( 9 
)
Remark 3.1 1. This result, in addition to being stronger than those obtained by [START_REF] Bardet | Consistent model selection criteria and goodness-of-fit test for common time series models[END_REF], does not impose any condition on the dependence between the regularization parameter κ n and the Lipschitz-

type coefficients α j (∂ θ i f θ , Θ), α j (∂ θ i M θ , Θ), α j (∂ θ i H θ , Θ).
For instance, in the Riemanian case with

i=0 α j (∂ θ i f θ , Θ) + α j (∂ θ i M θ , Θ) + α j (∂ θ i H θ , Θ) = O(j -γ
) for some 3/2 < γ < 2, the BIC (κ n = log n) is strongly consistent as a consequence of this theorem, whereas the result of [START_REF] Bardet | Consistent model selection criteria and goodness-of-fit test for common time series models[END_REF] does not yield the weak consistency of the BIC. The next corollary show that the estimator of the parameter of the selected model θ( m) obeys the law of iterated logarithm.

Corollary 3.1 Let (X 1 , . . . , X n ) be a trajectory of a process X belonging to AC(M θ * , f θ * ). Under the assump- tions of Theorem 3.1, θ( m) -θ * = O … log log n n a.s. . (10) 

Concluding remarks

This paper focuses on the model selection in a large class of causal time series models in a semiparametric framework. The strong consistency of an estimator based on a penalized quasi likelihood contrast is established, under some classical conditions on the regularization parameters κ n .

For the estimation of the order of an ARMAX model, Hannan and Deistler (2012) have established that, there exists a constant c 0 such that, if lim sup κ n /(2 log log n) < c 0 then the strong consistency of the estimator of the order fails. A topic of a future works could be to investigate if such result is applied to the general class of model considered here or to derive an upper bound of κ n for which the strong consistency fails.

Another extension of this works is to carry out the model selection problem in the class AC(M θ , f θ ) with a procedure based on a non Gaussian (for instance Laplacian, see [START_REF] Bardet | Asymptotic behavior of the laplacian quasimaximum likelihood estimator of affine causal processes[END_REF]) quasi likelihood, for the purpose of reducing the number of moments required.

Proofs of the main results

The following lemma will be useful in the sequel. The proof is carried out by going along similar lines as in Lemma 2 of [START_REF] Bardet | Consistent model selection criteria and goodness-of-fit test for common time series models[END_REF] by using Corollary 1 of [START_REF] Kounias | An inequality and almost sure convergence[END_REF]; so, it is then omitted.

Lemma 5.1 Let X ∈ AC(M θ , f θ ) and Θ ⊆ Θ(r) with r > 4. Assume that the assumptions D(Θ) and K 1 (Θ)

hold. Then, 1 √ n log log n ∂ L n (θ) ∂θ - ∂L n (θ) ∂θ Θ a.s. -→ n→∞ 0. ( 11 
)
Proof of Proposition 3.1

According to [START_REF] Bardet | Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes[END_REF], it holds that θ(m * ) a.s.

- 

∂θ i = ∂ L n (θ * ) ∂θ i + ∂ 2 L n θi (m * ) ∂θ∂θ i θ(m * ) -θ * ,
where θi (m * ) lies between θ(m * ) and θ * . Therefore,

… n log log n θ(m * ) -θ * = 2 √ n log log n F -1 n (m * ) ∂ L n (θ * ) ∂θ where F n (m * ) = -2 ∂ 2 L n θi (m * ) ∂θ∂θ i i∈m * . (12) 
Note that, by dealing with the first (stationary) regime in the Corollary 6.1 of [START_REF] Bardet | Detecting multiple change-points in general causal time series using penalized quasi-likelihood[END_REF] and since θi (m * ) a.s.

-→

n→∞ θ * for i = 1, • • • , |m * |, we get F n (m * ) a.s. -→ n→∞ F (θ * , m * ) where F (θ * , m * ) = E ∂ 2 q 0 (θ * ) ∂θ i ∂θ j i,j∈m * . ( 13 
)
Since F (θ * , m * ) is invertible (see [START_REF] Bardet | Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes[END_REF]), then for n large enough and with a sufficiently large probability, the matrix F n (m * ) is invertible. We have from Lemme 5.1, ( 12) and ( 13),

… n log log n θ(m * ) -θ * = 2 √ n log log n F -1 n (m * ) ∂L n (θ * ) ∂θ + o(1) a.s. . (14) 
We have,

∂L n (θ * ) ∂θ = n t=1 ∂q t (θ * ) ∂θ .
Denote for all t ∈ Z, F t = σ(X t , X t-1 , • • • ) the σ-field generated by the whole past at time t. Then,

∂qt(θ * )
∂θ , F t is a stationary ergodic square integrable martingale difference process (see [START_REF] Bardet | Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes[END_REF]). Therefore, from the law of iterative logarithm for martingales (see [START_REF] Stout | The Hartman-Wintner law of the iterated logarithm for martingales[END_REF][START_REF] Stout | Almost sure convergence[END_REF]), we get,

1 √ n log log n ∂L n (θ * ) ∂θ = O(1) a.s. . (15) 
Thus, the proposition follows from ( 13), ( 14) and [START_REF] Resende | Model identification using the efficient determination criterion[END_REF].

Proof of Theorem 3.1

1. Let m ∈ M such as m m * . We have,

1 log log n C(m * ) -C(m) = 2 log log n L n θ(m) -L n θ(m * ) - κ n log log n (|m| -|m * |). (16) 
Let us establish that 

1 log log n L n θ(m) -L n θ(m * ) = O(1) a.s. . (17 
L n θ(m) -L n θ * ) = 1 2 θ(m) -θ * ∂ 2 L n θ(m) ∂θ 2 θ(m) -θ * . (18) 
Also, for any i = 1, • • • , |m|, we can find θi (m) between θ(m) and θ * such that, for n large enough,

0 = ∂ L n ( θ(m)) ∂θ i = ∂ L n (θ * ) ∂θ i + ∂ 2 L n θi (m) ∂θ∂θ i θ(m) -θ * .
Hence,

θ(m) -θ * = 2 n F -1 n (m) ∂ L n (θ * ) ∂θ where F n (m) = -2 ∂ 2 L n θi (m) ∂θ∂θ i i∈m . (19) 
Since θ(m), θ(m), θi (m) a.s.

-→ n→∞ θ * for i = 1, • • • , |m|, in this case of overfitting, the same arguments as in the proof of Proposition 3.1 lead to

F n (m) a.s. -→ n→∞ F (θ * , m) and -2 n ∂ 2 L n θ(m) ∂θ 2 a.s. -→ n→∞ F (θ * , m) where F (θ * , m) = E ∂ 2 q 0 (θ * ) ∂θ i ∂θ j i,j∈m . (20) 
For the overfitted model m, on can deduce from [START_REF] Bardet | Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes[END_REF] that F (θ * , m) is invertible, thus for n large enough and with a sufficiently large probability, the matrix F n is invertible. From ( 18), ( 19), (20) and Lemma 5.1, it holds Proof of Corollary 3.1

According to the proof of Theorem 3.1 (equations ( 23) and ( 25)) it holds that m = m * a.s. for large n. Thus, the corollary follows from Proposition 3.1.

  The model selection problem for time series has already been considered by several authors; we refer to the book of McQuarrie and Tsai (1998), the monograph of Rao and Wu (2001), the recent review paper of Ding et al. (2018), the recent works of Hsu et al. (2019) and the references therein for an overview on this topic. Hannan (1980) and Hannan and Deistler (2012) provided general conditions for strong consistency of the order estimator of an ARMA and ARMAX model. Resende and Dorea (2016) proposed the efficient determination criterion (introduced by Zhao et al. (2001) for the strongly consistent estimation of the order of multiple Markov chains) for model selection in a general class of multivariate time series. They established the strong consistency of the procedure under some conditions which may seem a bit strong for some applications, for instance, the existence of the third order derivative of the contrast function (likelihood), the existence of moments of order 16 for the BEKK-GARCH model. Recently, Bardet et al. (2020) addressed the model selection question in the class of model AC(M θ , f θ ). They proposed a procedure based on the quasi likelihood of the model and provided sufficient conditions that ensure the weak consistency of the selected model. In this new contribution, we focus on the model selection in the class of model AC(M θ , f θ ) with a penalized contrast which is based on the Gaussian quasi likelihood of the model.

Theorem 3 . 1

 31 Let (X 1 , . . . , X n ) be a trajectory of a process X belonging to AC(M θ * , f θ * )). Under the assumptions of Proposition 3.1, and if κ n / log log n -→ n→∞ ∞ and κ n /n -→ n→∞ 0, then m a.s.

2 .

 2 [START_REF] Hannan | The statistical theory of linear systems[END_REF] have considered the estimation of the order of an ARMAX (including ARMA), where the contrast C is based on the Gaussian likelihood of the model. Under the condition κ n /n -→ n→∞ 0, they have established that there exists a constant c 1 > 0 such that, if lim inf κ n /(2 log log n) > c 1 , then the estimator of the order is strongly consistent. From the proof of Theorem 3.1, one can see that such result holds for the general class of model considered here; that is, we can find a constant c 2 > 0 such that if lim inf κ n / log log n > c 2 , then m a.s.-→ n→∞ m * .

  → n→∞ θ * . Also, since θ * ∈ Θ(m * ) ∩ o Θ, we get ∂ L n ( θ(m * )) ∂θ = 0 for n large enough. Thus, for any i = 1, • • • , |m * |, the Taylor expansion of ∂ L n ∂θ i implies 0 = ∂ L n ( θ(m * ))

)

  Since θ * ∈ Θ(m) ∩ o Θ and θ(m) a.s. -→ n→∞ θ * , then ∂ L n ( θ(m)) ∂θ = 0 for n large enough. Therefore, from the Taylor expansion of L n , we can find θ(m) between θ(m) and θ * such that

) 2 .

 2 that 1 log log n L n θ(m) -L n θ(m * ) to (21) and (15), (17) follows. Therefore, since κ n / log log n -→ n→∞ ∞ and |m| > |m * |, then (16) and (17) lead to lim n→∞ 1 log log n C(m * ) -C(m) = -∞ a.s. .(22)This implies,C(m) -C(m * ) > 0 a.s. for large n. (23Let m ∈ M such as m m * . We have, 1 n C(m * ) -C(m) = 2 n L n θ(m) -L n θ(m * ) -κ n n (|m| -|m * |).(24)For all θ ∈ Θ, denoteL(θ) = -1 2 E[q 0 (θ)].According to the proof of Theorem 3.1 of [2], we get 1 n L n θ(m) -L n θ(m * ) = L(θ * (m)) -L(θ * ) + o(1) a.s. . Note that, from [5], the function L : Θ → R has a unique maximum at θ * . Since m m * , it holds that θ * / ∈ Θ(m). Hence, L(θ * (m)) -L(θ * ) < 0 a.s. . Thus, according to (24) and since κ n /n -→ n→∞ 0, we get lim n→∞ 1 n C(m * ) -C(m) < 0 a.s. and C(m) -C(m * ) > 0 a.s. for large n. (25) Thus, the strong consistency of m = argmin m∈M C(m) = argmin m∈M C(m) -C(m * ) follows from (23) and (25).
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