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ON DUCLOS-EXNER’S CONJECTURE ABOUT WAVEGUIDES
IN STRONG UNIFORM MAGNETIC FIELDS

ENGUERRAND BON-LAVIGNE, LOÏC LE TREUST, NICOLAS RAYMOND,
AND JULIEN ROYER

Abstract. We consider the Dirichlet Laplacian with uniform magnetic field on
a curved strip in two dimensions. We give a sufficient condition ensuring the
existence of the discrete spectrum in the strong magnetic field limit.

1. Introduction and statement of the main results

In this article, we address the question of existence of the discrete spectrum
for a magnetic Laplacian with Dirichlet boundary condition on a two-dimensional
curved waveguide.

1.1. What is a waveguide? Let γ : R → R2 be a smooth and injective curve
with |γ′| = 1. We set N = (γ′)⊥, where for (a, b) ∈ R2 we write (a, b)⊥ for (−b, a).
We denote by κ the algebraic curvature of γ. It is defined by

γ′′ = κN .

In this article, we work under the assumption that κ is compactly supported. For
δ > 0 small enough, the function

Θ :

{
R× (−δ, δ) → R2

(s, t) 7→ γ(s) + tN(s)

is injective. We set

Ω = Ωγ,δ = Θ(Ω0) , with Ω0 = Ω0,δ = R× (−δ, δ) .
The open set Ω is what we call a waveguide in this work.

1.2. The magnetic Laplacian with Dirichlet boundary conditions. The
waveguide Ω is subject to a perpendicular uniform magnetic field with intensity
B. That is why we consider a vector potential A = (A1, A2) that is smooth on Ω,
and such that

∂x1A2 − ∂x2A1 = 1 . (1.1)
A fundamental property related to magnetic problems on simply connected do-
mains is the gauge invariance. It is nothing but the fact that (1.1) only defines
A up to adding a gradient vector field. Of course, it is trivial that there is a
smooth solution to (1.1), since it is sufficient to consider A = (0, x1). Actually,
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one will see that there is a natural choice of vector potential in our setting. Find-
ing a gauge that is adapted to the structure of the waveguide is in fact part of
our problem and it has been tackled in the past; see, for instance, [6] where a
curvature-dependent gauge is introduced. We now assume that A can be chosen
smooth on Ω and bounded with bounded derivatives (at any order). It will be
explained in Proposition 1.3 that we may indeed assume this.

For B > 0, we consider on Ω the magnetic Laplacian corresponding to the
uniform field equal to B:

(−i∇−BA)2 −B , (1.2)
subject to Dirichlet boundary conditions. The subtraction of B is made for the
convenience of the analysis and does not change the presence or absence of discrete
spectrum (it is based on relating the Schrödinger operator to the square of a Dirac
operator). In order to use semiclassical analysis we also introduce the positive
parameter h = B−1 and set

Ph = (−ih∇−A)2 − h.

The operator Ph is well defined and selfadjoint on the domain

Dom(Ph) = H1
0 (Ω) ∩H2(Ω) .

1.3. A subtle question and a conjecture by P. Duclos and P. Exner. Our
aim is to study the existence of the discrete spectrum of Ph in the semiclassical
limit h→ 0 (equivalent to the large magnetic field limit, see (1.2)). This question
of existence is actually subtle since, when h goes to 0, not only the bottom of the
spectrum moves, but also the bottom of the essential spectrum. In this limit, it is
natural to wonder if the bottom of the spectrum stays away from the threshold of
the essential spectrum or collides with it. This question is all the more appealing
that, when the magnetic field is zero, that is when considering the Dirichlet Lapla-
cian on a strip, one knows that the discrete spectrum always exists as soon as the
strip is not straight (see, for instance, [3] or the book [8, Chapter 1]). It is also
known that (variable) magnetic fields can play against the existence of the discrete
spectrum. Such considerations can be found in [13, Theorem 2.8 & Proposition
2.11] where a magnetic Hardy inequality is proved when the magnetic field has
compact support and used to establish that the discrete spectrum is empty when
the magnetic field is strong enough (see also the original work [4])1.

In the mid nineties, buoyed by the momentum of their work [3], Pierre Duclos
and Pavel Exner conjectured that the discrete spectrum of (1.2) is empty when
the magnetic field is strong enough (and uniform). This conjecture was explicitely
formulated ten years ago during an "Open Problems" session in Barcelona, see [7].

1Let us also mention that, in [13], the spectrum is also analyzed (by means of resolvent
convergence) in the shrinking limit δ → 0 with a possibly δ-dependent magnetic field. Deriving
effective operators in such regimes can actually be done in a quite general framework, see [9].
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Our main result disproves the conjecture when the waveguide has a fixed width δ
assumed to be small enough, but independently of B.

1.4. Main result. Our main result is the following.

Theorem 1.1. Assume that κ2 has a unique maximum, which is non-degenerate.
There exist δ0 > 0 and h0 > 0 such that for all δ ∈ (0, δ0) and all h ∈ (0, h0) we
have

inf sp(Ph) < inf spess(Ph).

In particular, Ph has non-empty discrete spectrum.

We can be more precise and provide some bounds for the bottoms of spectrum
and essential spectrum. For this we compare the spectral properties of the mag-
netic Laplacian on Ω to those on Ω0. On Ω0 we set A0(s, t) = (−t, 0) and we
consider on L2(Ω0) the operator Ph,0 = (−ih∇−A0)2− h, with Dirichlet bound-
ary conditions. Then, we have the following result about the essential spectrum
of Ph.

Proposition 1.2. For h > 0 we set

λess(h) = inf sp(Ph,0).

Then
spess(Ph) = spess(Ph,0) = sp(Ph,0) = [λess(h),+∞)

and

λess(h) >
(πh)2

4δ2
e−δ

2/h .

To prove an upper bound on the bottom of the spectrum we first introduce on
Ω0 the function φ0 defined by

φ0(s, t) =
t2 − δ2

2
.

Then we define φ̂0 = φ0◦Θ−1 ∈ C∞(Ω). In particular, φ̂0 vanishes on ∂Ω. In order
to perform the analysis of the bottom of the spectrum, we will use a function φ,
looking like φ̂0 at infinity, defined thanks to the following proposition.

Proposition 1.3. There exists a unique φ ∈ C∞(Ω) such that ∆φ = 1, φ|∂Ω = 0,
and φ − φ̂0 ∈ S (Ω). Moreover, there exists c0 > 0 such that ∂νφ > c0 on ∂Ω, ν
being the outward pointing normal to the boundary.

Then, by gauge invariance, we can choose A = ∇φ⊥ in the definition of Ph. In
particular, we may assume that A is bounded on Ω, as announced in Section 1.2.
Here comes our result ensuring the existence of the discrete spectrum.
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Theorem 1.4. Assume that φ given by Proposition 1.3 has a unique minimum φmin

(reached at xmin ∈ Ω), which is non-degenerate and smaller than minφ0 = −δ2/2.
Then, as h→ 0 we have

inf sp(Ph) 6
J

π

√
det Hessxmin

φe2φmin/h
(
1 + o(1)

)
,

with
J = inf

f∈E
‖(∂νφ)

1
2f‖2

∂Ω ,

and
E = {f ∈ O(Ω) ∩H1(Ω) : f(xmin) = 1} ,

where O(Ω) is the set of holomorphic functions on Ω.

Remark 1.5.
i) The set E is not empty as we can see by considering a function of the form
f : z 7→ c(z − z1)−2 with z1 /∈ Ω and c such that f(xmin) = 1.

ii) Due to a classical trace theorem and the fact that ∂νφ is bounded, J is finite.
iii) The fact that φ has a unique minimum (which is non degenerate) can be

ensured under explicit assumptions on the curvature κ and on the width of
the waveguide, see Proposition 1.6 below.

iv) By using Proposition 1.2 and under the assumption on φ in Theorem 1.4, we
have inf sp(Ph) < inf spess(Ph).

Our proof of Theorem 1.4 is based on extensions of strategies used in [1]2, where
the asymptotic simplicity of the low-lying eigenvalues is established, under generic
assumptions on Ω. Let us emphasize that, in [1], Ω is assumed to be bounded and
that the assumption on φ can be ensured, in the uniform magnetic field case, when
Ω is strictly convex (thanks to the works by Kawohl [11, 12]). In the present setting,
Ω is neither bounded, nor convex. Moreover, in our unbounded setting, one needs
to be very careful since the functional spaces (such as the Hardy spaces) involved
in [1] are no more obviously well-defined. The study of such spaces on strips3 has
an interest of its own and their use to deduce precise spectral asymptotics will
be the object of a future work. Fortunately, we do not need them to disprove
Duclos-Exner’s conjecture.

To complete our analysis, it remains to give a sufficient condition under which
the assumption of Theorem 1.4 is satisfied.

Proposition 1.6. Assume that κ ∈ C∞0 (R) and that κ2 has a unique maximun,
which is non-degenerate. There exists δ0 > 0 such that, for all δ ∈ (0, δ0), φ has a
unique minimum in Ω, which is non-degenerate. Moreover, φmin < (φ0)min.

2motivated by the seminal works [5] and [10].
3which started a long time ago, see, for instance, [14].
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Theorem 1.1 follows from Proposition 1.2, Proposition 1.3, Theorem 1.4 and
Proposition 1.6. Due to our motivation to disprove a conjecture from the nineties,
we provide the reader with rather self-contained proofs (and sometimes recall basic
arguments). In Section 2, we analyze the essential spectrum and we prove Propo-
sition 1.2. In Section 3, the existence of the function φ is established and we prove
Propositions 1.3 and 1.6. In Section 4, we prove Theorem 1.4.

2. The Essential Spectrum

In this section, we prove Proposition 1.2, which follows from Lemmas 2.2 and
2.4. We first recall a classical result.

Lemma 2.1. Let φ ∈ C∞(Ω) be bounded with bounded derivatives and A = ∇φ⊥.
For all ψ ∈ H1

0 (Ω), we have

‖(−ih∇−A)ψ‖2
L2(Ω) − h‖ψ‖2

L2(Ω) = 4h2

∫
Ω

e−2φ/h|∂zu|2dx ,

where u := eφ/hψ ∈ H1
0 (Ω).

Proof. We have

4h2

∫
Ω

e−2φ/h|∂zu|2dx =

∫
Ω

|e−φ/h(h∂1 + ih∂2)u|2dx

=

∫
Ω

|(h∂1 + ih∂2)e−φ/hu− [h∂1 + i∂2, e
−φ/h]u|2dx

=

∫
Ω

|(h∂1 + i∂2φ+ ih∂2 + ∂1φ)ψ|2dx

=

∫
Ω

|(h∂1 − iA1 + ih∂2 + A2)ψ|2dx

=

∫
Ω

|(L1 + iL2)ψ|2dx , Lj = −ih∂j − Aj .

Then, we get

4h2

∫
Ω

e−2φ/h|∂zu|2dx = ‖(−ih∇−A)ψ‖2 + 2Re 〈L1ψ, iL2ψ〉

= ‖(−ih∇−A)ψ‖2 + 2Im 〈L1ψ,L2ψ〉.

Note that

2Im 〈L1ψ,L2ψ〉 = 2Im 〈ψ,L1L2ψ〉
= 2Im 〈ψ,L2L1ψ + [L1, L2]ψ〉
= 2Im 〈L2ψ,L1ψ〉 − 2h .

The conclusion follows. �



6 E. BON-LAVIGNE, L. LE TREUST, N. RAYMOND, AND J. ROYER

Proposition 2.2. For all h > 0 we have

sp(Ph,0) = [λess(h),+∞) ,

and

λess(h) >
(πh)2

4δ2
e−δ

2/h .

Proof. By using the Fourier transform, we have

Ph,0 =

∫ ⊕
Ph,0,ξdξ ,

where the operator
Ph,0,ξ = −h2∂2

t + (ξ + t)2 − h
is equipped with the Dirichlet conditions at t = ±δ. Let us denote by (γn(ξ, h))n>1

the increasing sequence of its eigenvalues. A straightforward application of the
min-max theorem shows that, for all h > 0,

lim
ξ→±∞

γn(ξ, h) = +∞ .

We get
sp(Ph,0) = [min

ξ∈R
γ1(ξ, h),+∞) = spess(Ph,0) .

By the min-max principle, we have

inf sp(Ph,0) = inf
ψ∈H1

0 (Ω0)\{0}

‖(−ih∇−A0)ψ‖2 − h‖ψ‖2

‖ψ‖2
,

and, by letting ψ = e−φ0/hu, we get

inf sp(Ph,0) = inf
u∈H1

0 (Ω0)\{0}

4h2‖e−φ0/h∂zu‖2

‖e−φ0/hu‖2
.

This allows to get the rough lower bound

inf sp(Ph,0) > e−δ
2/h inf

u∈H1
0 (Ω0)\{0}

4h2‖∂zu‖2

‖u‖2

> h2e−δ
2/hλDir

1 ((−δ, δ))

>
(πh)2

4δ2
e−δ

2/h .

This last argument already appeared in [10, Theorem 3.1]. �

Let us recall the following classical result.

Lemma 2.3. Consider (T1,Dom(T1)) and (T2,Dom(T2)) two closed operators on
a Banach space E. Assume that there exists z0 ∈ ρ(T1) ∩ ρ(T2) such that the
operator K : (T1 − z0)−1 − (T2 − z0)−1 : E → E is compact. Then,

spess(T1) = spess(T2) .
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Proof. Let us recall the proof and note that it does not require the selfadjointness
of T1 or T2. We recall that λ ∈ spess(T1) if and only if T1 − λ is not a Fredholm
operator with index 0.

Consider λ /∈ spess(T1) and write

T2 − λ = T2 − z0 + (z0 − λ) =
(
Id + (z0 − λ)(T2 − z0)−1

)
(T2 − z0)

=
(
Id + (λ− z0)K + (z0 − λ)(T1 − z0)−1

)
(T2 − z0)

=
(
(λ− z0)K + (T1 − λ)(T1 − z0)−1

)
(T2 − z0) .

Now, notice that T2 − z0 : Dom(T2) → E is Fredholm with index 0 (since it is
bijective). The operator (T1 − z0)−1 : E → Dom(T1) is also bijective and thus
Fredholm with index 0. Therefore (T1 − λ)(T1 − z0)−1 : E → E is also Fredholm
with index 0 (see [2, Corollary 5.7]). Since K is compact,

(λ− z0)K + (T1 − λ)(T1 − z0)−1

is still Fredholm with index 0 (see [2, Corollary 5.9]). Thus, T2 − λ is Fredholm
with index 0 (again by [2, Corollary 5.7]). �

Thanks to Lemma 2.3, it is rather easy to get the following.

Lemma 2.4. For all h > 0, we have spess(Ph) = spess(Ph,0).

Proof. The operator Ph is unitarily equivalent to the selfadjoint operator P̃h (on
L2(Ω0, dsdt)) given by

P̃h = −∂2
t + (a−

1
2 (Ds − Ã(s, t))a−

1
2 )2 − κ2

4a2
− h , a(s, t) = 1− tκ(s) ,

where Ã(s, t) = t − κ(s) t
2

2
. Since κ is compactly supported, we see that P̃h acts

as Ph,0 away from a compact set.
Let us now apply Lemma 2.3 with T1 = Ph,0, T2 = P̃h and z0 = i. The

resolvent formula gives

K = (T1 − z0)−1(T2 − T1)(T2 − z0)−1 .

In our case, we have

T2 − T1 = a−
1
2

[
(Ds − Ã)a−1(Ds − Ã)

]
a−

1
2 − (Ds − t)2 − κ2

4a2
.

Computing some commutators shows that we can find three smooth functions on
Ω0, compactly supported with respect to s, W1, W2 and W3 such that

T2 − T1 = W1(s, t)D2
s +W2(s, t)Ds +W3(s, t) .

Then, by elliptic regularity and the Kolmogorov-Riesz theorem (see [2, Theorem
4.14 & Remark 4.15]), we notice that W (P̃h− i)−1 : L2(Ω0)→ H1(Ω0) is compact
for all W ∈ C∞0 (Ω0). This shows that the terms involving W2 and W3 in K are
compact operators on L2(Ω0) (by using that the set of compact operators forms
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an ideal). Concerning the term involving W1, we notice, on the one hand, that
D2
s(P̃h− i)−1 is bounded on L2(Ω0) and, on the other hand, that (Ph,0− i)−1W1 :

L2(Ω0)→ L2(Ω0) is compact since the operators

[(Ph,0 − i)−1,W1] = −(Ph,0 − i)−1[Ph,0,W1](Ph,0 − i)−1

and W1(Ph,0 − i)−1 : L2(Ω0)→ L2(Ω0) are compact.
Applying Lemma 2.3, the conclusion follows. �

3. On the function φ

In this section we prove Propositions 1.3 and 1.6. We recall that φ0 and φ̃0 were
defined before Proposition 1.3.

3.1. Proof of Proposition 1.3. Assume that two functions φ1 and φ2 satisfy
the conclusions of the proposition. Then φ1 − φ2 is harmonic in Ω and belongs to
H1

0 (Ω). This implies that φ1 = φ2 and gives uniqueness.
Since the tube Ω is straight at infinity, we have ∆φ̂0 = 1 outside a compact set.

In particular, 1−∆φ̂0 ∈ L2(Ω). By the Poincaré inequality (see, for instance, [3]
for the case of a waveguide) and the Riesz representation theorem, there exists a
unique f0 ∈ H1

0 (Ω) such that

∀ϕ ∈ H1
0 (Ω),

∫
Ω

∇f0 · ∇ϕ dx =

∫
Ω

(1−∆φ̂0)ϕ dx

Then −∆f0 = 1−∆φ̂0 in the sense of distributions, and f0 belongs to C∞(Ω) by
elliptic regularity.

Let V = 1−∆φ̂0 and consider a non-negative and bounded Lipschitzian function
Φ on Ω. We have

〈−∆f0, e
2Φf0〉 =

∫
Ω

V e2Φf0dx .

Taking the real part and integrating by parts in the left-hand-side, we get the
"Agmon formula"

‖∇(eΦf0)‖2
L2(Ω) − ‖f0e

Φ∇Φ‖2
L2(Ω) = Re

∫
Ω

V e2Φf0dx .

Since V has compact support, it follows that

‖∇(eΦf0)‖2
L2(Ω) − ‖f0e

Φ∇Φ‖2
L2(Ω) 6 ‖V ‖L2(Ω)‖f0‖L2(Ω) max

suppV
e2Φ .

By the Poincaré inequality we have

‖∇(eΦf0)‖2 > λ1(Ω)‖eΦf0‖2 ,

where λ1(Ω) > 0 is the infimum of the spectrum of the Dirichlet Laplacian on Ω.
This shows that(

λ1(Ω)− ‖∇Φ‖2
∞
) ∫

Ω

e2Φ|f0|2dx 6 ‖V ‖L2(Ω)‖f0‖L2(Ω) max
suppV

e2Φ .
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Choosing Φ(x) = Φm(x) = αmin(〈x〉,m) (with α > 0 fixed small enough) and
letting m→ +∞, we see by the Fatou lemma that there exists C > 0 such that∫

Ω

e2α〈x〉|f0|2dx 6 C‖f0‖L2(Ω) .

Coming back to the Agmon formula, we also see that f0 exponentially decays in
H1-norm. By means of elliptic estimates, we can check that it is also the case in
Hk(Ω) for all k. This proves in particular that f0 belongs to the Schwartz class
S (Ω).

We set φ = φ̂0 − f0. It is smooth, it satisfies the Dirichlet condition, φ − φ̂0

belongs to S (Ω) and ∆φ = 1. It remains to discuss the uniform positivity of the
normal derivative. By the Hopf lemma we already know that ∂νφ > 0 on ∂Ω, so
it is enough to show that this estimate is uniform at infinity.

We have
∂νφ = ∂νφ̂0 − ∂νf0.

Since Θ is a rotation at infinity, we see by the explicit expression of φ0 that there
exists c1 > 0 such that, for all x ∈ ∂Ω with a sufficiently large curvilinear abscissa,

∂νφ̂0 > 2c1 .

On the other hand, since f0 ∈ S (Ω) we have

lim
|x|→+∞
x∈∂Ω

∂νf0(x) = 0 .

Then ∂νφ(x) > c1 for x ∈ ∂Ω large enough, and we deduce the uniform positivity
of ∂νφ on ∂Ω.

3.2. Proof of Proposition 1.6. For (s, t) ∈ Ω0 we set

a(s, t) = det
(
Jac(Θ)(s, t)

)
= 1− tκ(s).

Let φ̃ = φ ◦Θ. For s ∈ R and τ ∈ (−1, 1) we set

aδ(s, τ) = a(s, δτ) and ψ(s, τ) = δ−2aδ(s, τ)
1
2 φ̃(s, δτ),

Finally we define on R× (−1, 1) the differential operator

Mδ = ∂2
τ + δ2

(
a
− 1

2
δ ∂sa

− 1
2

δ

)2
+
δ2κ2

4a2
δ

.

Lemma 3.1. We have Mδψ = a
1
2
δ and ψ(·,±1) = 0.

Proof. Since φ̃(s,±δ) = 0 we have ψ(·,±1) = 0 for all s ∈ R. In the tubular
coordinates the equality ∆φ = 1 reads(

a−1∂sa
−1∂s + a−1∂ta∂t

)
φ̃ = 1 .
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Setting φ̌ = a
1
2 φ̃ we get[(

a−
1
2∂sa

− 1
2

)2
+
(
a−

1
2∂ta

1
2

)(
a

1
2∂ta

− 1
2

)]
φ̌ = a

1
2 ,

or [(
a−

1
2∂sa

− 1
2

)2
+
(
∂t −

κ

2a

)(
∂t +

κ

2a

)]
φ̌ = a

1
2 ,

which gives [(
a−

1
2∂sa

− 1
2

)2
+ ∂2

t +
κ2

4a2

]
φ̌ = a

1
2 .

Since ψ(s, τ) = δ−2φ̌(s, δτ), the conclusion follows. �

Proof of Proposition 1.6. We look for an approximation Ψ5 of ψ, in the sense that

Mδ(ψ −Ψ5) = OH2(R×(−1,1))(δ
5) , ψ −Ψ5 ∈ H2 ∩H1

0 (R× [−1, 1]) . (3.1)

By elliptic regularity this will give

‖ψ −Ψ5‖H4(R×[−1,1]) = O(δ3),

and then, by Sobolev embeddings,

‖ψ −Ψ5‖C 2(R×[−1,1]) = O(δ3) . (3.2)

We look for Ψ5 of the form ψ0 + δψ1 + δ2ψ2 + δ3ψ3 + δ4ψ4. Note that we could
proceed similarly to get a rest of order O(δN) in C k(R× [−1, 1]) for any N and k.

There exist M0, . . . ,M4 ∈ L(H4(R × [−1, 1]), H2(R × [−1, 1])) such that in
L(H4(R× [−1, 1]), H2(R× [−1, 1])) we have

Mδ =
4∑

k=0

δkMk + O(δ5).

In particular,

M0 = ∂2
τ , M1 = 0 , M2 = ∂2

s +
κ2

4
.

Similarly, in H2(R× [−1, 1]) we have by Lemma 3.1

Mδψ =
4∑

k=0

δkαk + O(δ5),

with

α0 = 1, α1 = −κτ
2
, α2 = −τ

2κ2

8
,

and α3, α4 ∈ C∞(Ω). We compute ψk by induction on k. It satisfies

M0ψk = −
k∑
j=2

Mjψk−j + αk, ψk(·,±1) = 0.
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This gives in particular

ψ0(s, τ) =
τ 2 − 1

2
, ψ1(s, τ) =

κ(s)

12
(τ − τ 3) .

Then ψ2 has to be a solution of

M0ψ2 = −M2ψ0 −
κ2τ 2

8
=
κ2

4

(
−τ

2 − 1

2
− τ 2

2

)
=
κ2

4

(
1

2
− τ 2

)
.

This leads to take

ψ2(s, τ) =
κ2

4

(
τ 2 − 1

4
− τ 4 − 1

12

)
=
κ2

4

(
τ 2

4
− τ 4

12
− 1

6

)
.

Due to the asymptotic behavior of φ given in Proposition 1.3, ψ − ψ0 belongs
to the Schwartz class. Thus, Ψ5 satisfies (3.1) and hence (3.2). Now setting
Ψ = ψ0 + δψ1 + δ2ψ2 we deduce

‖ψ −Ψ‖C 2(R×[−1,1]) = O(δ3) .

This gives
‖δ−2φ̃(s, δτ)− a(s, δτ)−

1
2 Ψ‖C 2(R×[−1,1]) = O(δ3)

or ∥∥∥∥δ−2φ̃(s, δτ)−
(

1 + δτ
κ

2
+ δ2 3

8
τ 2κ2

)
Ψ

∥∥∥∥
C 2(R×[−1,1])

= O(δ3) .

Then ∥∥∥δ−2φ̃(s, δτ)− fδ(s, τ)
∥∥∥

C 2(R×[−1,1])
= O(δ3) , (3.3)

where we have set

fδ(s, τ) = ψ0 + δ
(
ψ1 +

τκ

2
ψ0

)
+ δ2

(
3τ 2κ2

8
ψ0 +

τκ

2
ψ1 + ψ2

)
We have

fδ(s, τ) =
τ 2 − 1

2
− δκ(s)

6

(
τ − τ 3

)
+ δ2κ2P2(τ) ,

where

P2(τ) =
3τ 2(τ 2 − 1)

16
+
τ(τ − τ 3)

24
+
τ 2

16
− τ 4

48
− 1

24
.

Let us explain why fδ has a unique minimun, non attained at infinity, and which
is non-degenerate. Firstly, when s /∈ suppκ, we have

fδ(s, τ) =
τ 2 − 1

2
> −1

2
= fδ(s, 0).

This shows that fδ has a minimum. This minimum is in fact strictly less than
−1

2
and thus attained at points where the curvature is not 0. Indeed, consider s0
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the maximum of κ2. We have κ(s0) 6= 0, κ′(s0) = 0, and κ(s0)κ′′(s0) < 0. Let us
notice that

fδ

(
s0,

δκ(s0)

6

)
= −1

2
+ δ2κ2(s0)

(
1

72
− 1

36
− 1

24

)
+ O(δ3)

= −1

2
− δ2κ2(s0)

18
+ O(δ3) .

This shows that, for δ small enough,

inf
(s,τ)∈R×(−1,1)

fδ(s, τ) 6 −1

2
− δ2 maxκ2

18
+ Cδ3 < −1

2
,

and that the infimum is a minimum (which is not attained at infinity).
Now we prove that for δ small enough all the possible minima are non-degenerate.

Consider a minimum (s1, τ1) of fδ. We have τ1 ∈ (−1, 1) and κ(s1) 6= 0. Moreover,
we must have

∂τfδ(s1, τ1) = 0 ,

which implies that

τ1 =
δκ(s1)

6
+ O(δ2) . (3.4)

Then,

fδ(s1, τ1) = −1

2
− δ2κ2(s1)

18
+ O(δ3) .

With the upper bound on the minimum, we deduce that

0 6 κ2(s0)− κ2(s1) 6 Cδ .

By using the uniqueness and non-degeneracy of the minimum, this implies that

s1 = s0 + O(δ
1
2 ) , τ1 =

δκ(s0)

6
+ O(δ2) , (3.5)

where we used (3.4) and that κ′(s0) = 0.
Let us now estimate the second derivative of fδ at (s1, τ1). We have

∂2
sfδ(s1, τ1) = −κ(s0)κ′′(s0)

9
δ2 + o(δ2) , ∂s∂τfδ(s1, τ1) = O(δ

3
2 ) ,

and
∂2
τfδ(s1, τ1) = 1 + O(δ2) .

We infer that there exist δ0, c > 0 such that for all δ ∈ (0, δ0) and all minimum
(s1, τ1),

Hess(s1,τ1)fδ > cδ2 .

By definition, this means that the minima are non-degenerate.
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Let us finally prove that there is only one minimum. Consider two minima
X1 = (s1, τ1) and X2 = (s2, τ2). From (3.5), we have, uniformly in t ∈ [0, 1],

X1 + t(X2 −X1) =

(
s0,

δκ(s0)

6

)
+ (O(δ

1
2 ),O(δ2)) . (3.6)

Since the differential of fδ vanishes at X1, the Taylor formula gives

fδ(X2)− fδ(X1) =

∫ 1

0

(1− t)HessX1+t(X2−X1)fδ(X2 −X1, X2 −X1)dt .

By using (3.6), we deduce as before that there exist δ0, c > 0 such that for all
δ ∈ (0, δ0) and all t ∈ [0, 1],

HessX1+t(X2−X1)fδ > cδ2 .

This shows that

0 = fδ(X2)− fδ(X1) >
δ2

2
|X1 −X2|2 .

Therefore, for δ small enough, fδ has a unique minimumX(δ), which is not attained
at infinity and non-degenerate, and

HessX(δ)fδ > cδ2 .

By a perturbative argument using (3.3), this shows that δ−2φ̃(s, δτ) has also a
unique minimum, which is not attained at infinity and non-degenerate. The same
conclusion follows for φ. �

4. Upper bound for the bottom of the spectrum

This last section is devoted to the proof of Theorem 1.4. From the min-max
principle, we have

inf sp(Ph) = inf
ψ∈H1

0 (Ω)\{0}

‖(−ih∇−A)ψ‖2 − h‖ψ‖2

‖ψ‖2
.

From Lemma 2.1, we have

inf sp(Ph) = inf
u∈H1

0 (Ω)\{0}

4h2
∫

Ω
e−2φ/h|∂zu|2dx∫

Ω
e−2φ/h|u|2dx

. (4.1)

Let us construct a convenient test function. It is natural to consider a test function
in the form

u(x) = f(x)χ(x) ,

where f ∈ O(Ω)∩H1(Ω) is such that f(xmin) 6= 0 and χ is of the form χ = ρ◦Θ−1

with ρ(s,±δ) = 0 and ρ(s, t) = 1 for all s ∈ R and t ∈ (−δ+ε, δ−ε). This function
ρ will be determined below to optimize an upper bound, see (4.5).
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4.1. Estimate of the numerator. By using the change of variable Θ, we have

4h2

∫
Ω

e−2φ/h|∂zu|2dx

= h2

∫
Ω0

e−2φ̃(s,t)/h|f̃(s, t)|2
(
a−2|∂sρ|2 + |∂tρ|2

)
a(s, t)dsdt , (4.2)

with φ̃ = φ ◦ Θ and f̃ = f ◦ Θ. Since ρ is constant on R × [−δ + ε, δ − ε], the
right-hand side is actually an integral over R×

(
(−δ,−δ+ε)∪(δ−ε, δ)

)
. We begin

with the contribution of the integral over R × (δ − ε, δ). Thanks to the Taylor
formula near t = δ, we have

∫
R

ds

∫ δ

δ−ε
dt e−2φ̃(s,t)/h|∂tρ|2|f̃(s, t)|2a(s, t)

6 (1 + Cε+ Cε2/h)

∫
R

ds

∫ δ

δ−ε
dt e−2(t−δ)∂tφ̃(s,δ)/h|∂tρ|2|f̃(s, t)|2a(s, δ) .

We also want to replace |f̃(s, t)|2 by |f̃(s, δ)|2. To do so, we remark that, for all
(s, t) ∈ R× (δ − ε, δ),

∣∣∣|f̃(s, t)|2 − |f̃(s, δ)|2
∣∣∣ 6 2Re

∫ δ

t

|f̃(s, τ)||∂tf̃(s, τ)|dτ

6
(
‖f̃(s, ·)‖2

L2([δ−ε,δ]) + ‖∂tf̃(s, ·)‖2
L2([δ−ε,δ])

)
,

so that

∫
R

ds

∫ δ

δ−ε
dt e−2(t−δ)∂tφ̃(s,δ)/h|∂tρ|2a(s, δ)

∣∣∣|f̃(s, t)|2 − |f̃(s, δ)|2
∣∣∣

6
∫
R

ds a(s, δ)R(s, ε, h) ,

with

R(s, ε, h) =
(
‖f̃(s, ·)‖2

L2([δ−ε,δ]) + ‖∂tf̃(s, ·)‖2
L2([δ−ε,δ])

)∫ δ

δ−ε
dt e−2(t−δ)∂tφ̃(s,δ)/h|∂tρ|2 .

(4.3)



15

Therefore,∫
R

ds

∫ δ

δ−ε
dt e−2φ̃(s,t)/h|∂tρ|2|f̃(s, t)|2a(s, t)

6(1 + Cε+ Cε2/h)

∫
R

ds

∫ δ

δ−ε
dt e−2(t−δ)∂tφ̃(s,δ)/h|∂tρ|2|f̃(s, t)|2a(s, δ)

6(1 + Cε+ Cε2/h)
(∫

R
ds

∫ δ

δ−ε
dt e−2(t−δ)∂tφ̃(s,δ)/h|∂tρ|2|f̃(s, δ)|2a(s, δ)

+

∫
R

ds a(s, δ)R(s, ε, h)
)
.

(4.4)

Looking at the right-hand-side suggests to consider a function ρ that minimizes∫ δ
δ−ε dt e−2(t−δ)∂tφ̃(s,δ)/h|∂tρ|2 among the H1-functions equal to 1 in δ− ε and 0 in δ.
This leads to the explicit choice

ρ(s, t) =
1− e2(t−δ)∂tφ̃(s,δ)/h

1− e−2ε∂tφ̃(s,δ)/h
, ∀(s, t) ∈ R× (δ − ε, δ) . (4.5)

The minimum satisfies∫ δ

δ−ε
dt e−2(t−δ)∂tφ̃(s,δ)/h|∂tρ|2 =

2∂tφ̃(s, δ)

h(1− e−2ε∂tφ̃(s,δ)/h)
.

We recall from Proposition 1.3 that ∂tφ̃(s, δ) = ∂νφ(Θ(s, δ)) is uniformly positive.
Choosing ε = h| lnh|, we get, uniformly with respect to s,∫ δ

δ−ε
dt e−2(t−δ)∂tφ̃(s,δ)/h|∂tρ|2 =

2∂tφ̃(s, δ)

h
+ o(h−1) = O(h−1) , (4.6)

where we used that Θ and Θ−1 have uniformly bounded Jacobians.
Using that f ∈ H1(Ω), we get∫

R
ds
(
‖f̃(s, ·)‖2

L2([δ−ε,δ]) + ‖∂tf̃(s, ·)‖2
L2([δ−ε,δ])

)
−→
ε→0

0 ,

so that, with (4.3) and (4.6), it follows that∫
R

ds a(s, δ)R(s, ε, h) = oh→0(h−1) .

With (4.4), this gives∫
R

ds

∫ δ

δ−ε
dt e−2φ̃(s,t)/h|∂tρ|2|f̃(s, t)|2a(s, t)

6 2h−1

∫
R
∂νφ(Θ(s, δ))|f̃(s, δ)|2a(s, δ)ds+ oh→0(h−1) .
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Let us now come back to (4.2). Considering the term with the tangential derivative,
we get with similar computations∫

R
ds

∫ δ

δ−ε
dt e−2φ̃(s,t)/h|∂sρ|2|f̃(s, t)|2a(s, t) = oh→0(h−1) .

We play the same game with the contribution of the integral over R× (−δ,−δ+ ε)

in (4.2) (notice that ∂tφ̃(s,−δ) = −∂νφ(Θ(s,−δ)) is now uniformly negative). We
get

4h2

∫
Ω

e−2φ/h|∂zu|2dx 6 2h‖(∂νφ)
1
2f‖2

∂Ω + oh→0(h) .

4.2. Estimate of the denominator and conclusion. We have∫
Ω

e−2φ/h|u|2dx =

∫
Ω

e−2φ/h|f(x)χ(x)|2dx

= e−2φmin/h

∫
Ω

e−2(φ−φmin)/h|f(x)χ(x)|2dx .

The Laplace method yields∫
Ω

e−2φ/h|u|2dx = he−2φmin/h

(
|f(xmin)|2 π√

det Hessxmin
φ

+ oh→0(1)

)
.

With (4.1), this shows that

inf sp(Ph) 6 2
√

det Hessxmin
φ
‖(∂νφ)

1
2f‖2

∂Ω

π|f(xmin)|2
(1 + oh→0(1))e2φmin/h ,

and Theorem 1.4 since this estimate holds for all the functions f in E .
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