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Abstract
Over the last few years, some studies showed that the
acoustic energy density in closed or semi-closed spaces
may be the solution of a diffusion equation. This the-
ory allows non-uniform repartition of energy, and is espe-
cially relevant in room acoustics for long rooms or com-
plex spaces such as networks of rooms. In this work, the
three-dimensional diffusion equation is solved directly by
using a finite-element solver. This approach is used to
simulate the acoustics of coupled rooms in terms of spa-
tial variations of intensity levels and sound decay. The
obtained results match satisfactorily with a model based
on the classical statistical theory of room acoustics, but it
allows to perform a finer spatial description of the acous-
tics of coupled rooms.

1. Introduction

Development of diffuse sound field models in architec-
tural acoustics has attracted considerable developments
since Sabine’s pioneer works, and has given rise to many
analytical and numerical solutions. Among these mod-
els, the diffusion model [1] takes into account the non-
uniform repartition and decay of the sound energy in a
room. Recent studies have shown that this analytical
model is especially relevant in architectural acoustics for
simple configurations such as long enclosures [2]. For
more complex spaces, a numerical approach of the dif-
fusion model has also been investigated using a finite
element model (FEM) [3], leading to results in agree-
ment with the analytical approach, both in the station-
ary and in the time varying state. Among these complex
spaces, the coupled rooms have long been studied in ar-
chitectural acoustics [4], since it represents many inter-
ests for acousticians and architects (theatres coupled to
the auditorium, churches with chapels, mezzanines and
half-open offices for example). However, one may re-
mark that the sound distribution and the energy decay in
coupled rooms are still difficult to predict with a good

accuracy, particularly for weak coupling. On the other
hand, the diffusion model seems well adapted to coupled
rooms, since it allows to distribute the sound energy ev-
erywhere in both enclosures, regardless the shapes of the
enclosures, the source and the receiver locations, and the
aperture size. Thus, in this paper we present a numeri-
cal application of the diffusion model to coupled room.
The analytical model and its numerical implementation
will be presented in the next section. Then, numerical
simulations will be detailed in sections 3 and 4, both in
stationary and impulse states, and compared to a model
of coupled rooms developed in the context of statistical
theory of room acoustics.

2. Diffusion model and resolution

In a recent paper [1], a model was proposed to simu-
late the sound fields in rooms with diffusively reflecting
boundaries. It was shown that the energy flow per unit
surfaceJ(r , t) in a directionn and at locationr in the
room, may be described by a diffusion gradient equation:

J(r , t) = −Dgrad(w(r , t)) (1)

wherew(r , t) is the acoustic energy density andD is a
diffusion coefficient which can be written asD = λc

3 , c
being the sound velocity andλ the mean free path of the
room (equal to4V/S, V being the room volume andS
the total area of the surfaces of the room). The energy
density in the room, outside the direct field, is then de-
scribed by a diffusion equation:

D∆w =
∂w

∂t
. (2)

The absorption of acoustic energy at boundaries is taken
into account by an exchange coefficienth. For a bound-
ary with absorption coefficientα, it can be shown [2] that
the energy flowJ through this surface verifies:

J = −D
∂w

∂n
= hw, (3)
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with h = cα
4 . The symbol ∂

∂n denotes the normal deriva-
tive to the boundary.

As explained in the introduction section, the diffusion
equation (2) is solved numerically by means of a FEM
solver [3]. The room volume is modelized by a media
with a given diffusion coefficient (see Fig. 1) and meshed
with Lagrange linear elements. The walls absorption is
taken into account as a Fourier-type boundary conditions
as written in equation (3). Each wall can be character-
ized by a specific exchange coefficienth, i.e. a specific
absorption coefficient.

Figure 1:Diagram of the principle of the numerical ap-
proach.

3. Simulation of stationary response of
coupled rooms

Let us consider two rooms (further noted 1 and 2), of
respective volumesV1 andV2, separated by an aperture
which area isS12 (Fig. 2). A source providing a station-
ary acoustic energy is located in room 1. The problem
adressed in this section aims at estimating the spatial dis-
tribution of acoustic energy in each room.

3.1. Statistical theory model

The classical statistical analysis theory for reverberant
rooms can provide estimates of the difference between
the acoustic energies located in the two coupled rooms. It
distinguishes between the mean energy densitiesE1 and
E2 equally distributed in the respective rooms 1 (source
room) and 2. This analysis is then not able to describe the
graduate change of energy at the coupling area, but pro-
vides coarse estimates than can provide reference values
for validating the results issued from the diffusion model.

In the context of this theory, it can be shown that the
ratio betweenE2 andE1 can be simply written as [4]:

E2

E1
=

S12

S12 + A2
= k, (4)

or equivalently, in terms of intensity levels:

LI1 − LI2 = −10 log(k). (5)

The term A2 represents the absorption area of the
surfaces of room 2. The termk is usually called the

Figure 2:Diagram of two coupled rooms.

coupling factor from room 2 to room 1, and depends both
on the absorption coefficients of all the surfaces of room
2 and on the coupling area. When the coupling factor
gets small with respect to 1 (S12 ¿ A2), the drop-off of
energy density entering room 2 is enhanced.

3.2. Results and discussion

The physical problem investigated here concerns the
excitation of coupled rooms with a stationary source.
Hence, the stationary diffusion equation:

D∆w = 0, (6)

corresponding to the equation (2) without the time-
dependent term, is solved numerically in a three-
dimensional medium which shape represents the volume
defined by the two coupled rooms. For each room, the
diffusion coefficient is calculated by using the mean free
pathλ equal to the one of the individual room. This in-
volves the assumption that the mean free path of each
room is not significantly influenced by the coupling aper-
ture, i.e.S12 is small with respect to the area of the sur-
faces of the room. The results presented in this study
concern only the diffuse sound field and do not take into
account the contribution of the direct field.

An example of calculation results is presented for two
loosely coupled identical rooms of dimensions(10×10×
3) m3 with uniform absorption coefficientα = 0.1. The
coupling surfaceS12 is 6 m2 and the coupling factork is
0.16. A point source is located at point (−2; 0 m) in the
(X, Y ) plane, at 1.5 m height: It retrieves at its location
an intensity level of 60 dB. The spatial distribution of in-
tensity level in an horizontal plane at 1 m height, obtained
from the numerical resolution of equation (6), is depicted
in Fig. 3. As opposed to the statistical theory, the diffu-
sion model restitutes spatial variations of the sound level
over the rooms. An area of higher level of the diffuse
sound field is noticeable around the source location, and
the level is rapidly changing around the coupling ara.

To better observe the level variations, Fig. 4 plots
the sound level variations along two lines atY = 0 and
Y = 3 m (top curves), and along two lines in the orthog-
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Figure 3:Intensity level map in dB at 1 m height for two
coupled rooms (k=0.16) with uniform absorptionα=0.1.

onal direction, atX = 0 andX = 10 m (bottom curves).
The following observations holds for all the simulations
carried out in this study : two area of sharp variation (top
of Fig. 4,Y = 0) of the diffuse sound field are observed,
one around the source, and the other one in the vicinity
of the coupling area, where occurs the graduate change
of energy between the rooms. Conversely the level varia-
tion for Y = 3 m is weaker (about 2 dB for each room),
with a 4 dB jump at the wall. In the same way, the level
exhibits low variations in theY direction (about 1 dB, see
bottom of Fig. 4). For comparison with results given by
the statistical theory, which restitutes uniform levels for
each room, a difference between two average values of
the sound level in the rooms is provided by calculating
the level difference between the two curves of the bot-
tom of Fig. 4. This difference is about 8 dB for the case
considered here. The result given by the statistical theory,
calculated from−10 log(k) (equation (5)) withk=0.16, is
very close to 8 dB. Both models are then in good agree-
ment.

Additive calculations show that the level difference
of level between both rooms does not depend on the ab-
sorption coefficient of the source room. Some systematic
simulations have assessed the agreement of the diffusion
model with the statistical theory model, when the follow-
ing set of parameters is varied: Neighbouring room ab-
sorption, volume, and size of the coupling areaS12. In
all cases both methods have given very similar results,
with differences not exceeding 2 dB.

4. Simulation of sound decay in coupled
rooms

4.1. Statistical theory model

The sound decay is studied for the same general con-
figuration than in section 3 (see Fig. 2). By using a
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Figure 4: Sections of the intensity level map of Fig. 3.
Top: Intensity level in dB forY = 0 (solid line) and
Y = 3 (◦). Bottom: Level in dB forX = 0 (solid line)
andX = 10 (◦).

time-varying formulation of sound energy in two coupled
rooms within the theory classical statistical analysis [4],
it can be shown that the mean energies densitiesE1 and
E2 are:

E1 = E11 exp(−2δIt) + E21 exp(−2δIIt) (7)

E2 = E12 exp(−2δIt) + E22 exp(−2δIIt), (8)

where the ratios between the initial valuesEii (i = 1, 2)
of each decay function are functions of the parameters of
the coupling. The damping constantsδI,II can be writ-
ten:

δI,II =
(δ1 + δ2)

2
(9)

∓
√

(δ1 + δ2)2

4
+ κ2δ1δ2.

δi (i = 1, 2) are the damping constantsc(S12 + Ai)/8Vi,
whereAi is the absorption area of the surfaces of each
room i: they correspond to the decays of each room
as if they were uncoupled. The termκ is equal to√

S2
12/((S12 + A1)(S12 + A2): it is the mean coupling

factor. In both rooms, the reverberation ends with the
exponential function having the smaller value ofδ. For
weakly coupled rooms (i.e.κ2 ¿ 1), the damping con-
stantsδI,II are very close toδ1,2.

4.2. Two identically damped rooms

The diffusion equation (2) is solved numerically for a
point source providing a supply of energy at timet=0.
The sound decays can then be retrieved at any location
in the room. It is first noticed that, for a given room, the
sound decay remains almost identical for any point in
this room. Fig. 5 presents the decays obtained for two
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Figure 5: Sound decays in two coupled rooms with uni-
form absorption (α = 0.01). Solid line and¦ : rooms
1 and 2 with statistical theory,◦ and + : rooms 1 and 2
with diffusion model.

highly reverberant rooms with uniform absorption coef-
ficient (α = 0.01), volumesV1 andV2 of respectively
150 and 100 m3, and with a coupling apertureS12 of
3.75 m2. The mean coupling coefficient is high in this
case (κ=0.69). One can see that the decay is described
by the lower damping constant for both rooms. The
damping constant given by the statistical model (eqs.
(7-8)) and the diffusion model are in good agreement.
The slight shift between the curves lies in the problem
of determining an identical initial energy located in the
source room for both models, as the statistical model
imposes a uniform initial energy and the diffusion model
modelizes a more realistic point source. This question is
currently being addressed.

4.3. Highly damped room coupled with a reverberant
room

In the case of a room with high absorption coupled with a
reverberant room, a phenomenon of “double-decay” can
appear in the source room: the reverberation with short
decay is first heared, and then the longer reverberation of
the neighbouring room appears. This situation is simu-
lated with two rooms of volume 125 m3, respective ab-
sorption 0.2 and 0.02 for rooms 1 and 2, and a coupling
area of 2.5 m2. In this case the damping constantsδI,II

are close to the damping constants of each room taken in-
dividually (κ = 0.17). Fig. 6 shows the obtained decays
for each room and both models. The double-decay in
room 1 appears clearly, the longer reverberation of room
2 appearing clearly aftert = 0.2 s. The tendency is very
similarly restituted by both models. A slight difference
lies in the damping constant in room 2: the estimated de-
cay is slightly faster with diffusion theory. Moreover the
difference of levels in both rooms at a given time is about
3 dB lower for the diffusion model. The decay at the cou-

Figure 6: Sound decays in two coupled rooms with ab-
sorption (α=0 .2 and 0.02). Solid line and¦ : rooms 1
and 2 with statistical theory,◦ and + : rooms 1 and 2
with diffusion model,•: decay at coupling aperture .

pling area, as given by the diffusion model, is also plot-
ted, to show that the graduate change in decay behaviour
between both rooms can be investigated, as opposed to
the statistical theory which provides identical decays all
over each room.

5. Conclusions

The numerical resolution of a diffusion equation has been
used to predict the acoustics of coupled rooms, in terms
of stationary response and sound decays. The obtained
results match satisfactorily with a model based on the
classical statistical theory. The advantage of the pre-
sented method is that it is able to provide a finer descrip-
tion of the spatial variation of intensity level and sound
decay. Experimental measurements are being conducted
to validate the predictions of the diffusion model.
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