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Abstract

From the topological viewpoint, Morse shellings of finite simplicial complexes are
pinched handle decompositions and extend the classical shellings. We prove that ev-
ery discrete Morse function on a finite simplicial complex induces Morse shellings on
its second barycentric subdivision whose critical tiles -or pinched handles- are in one-
to-one correspondence with the critical faces of the function, preserving the index.
The same holds true, given any smooth Morse function on a closed manifold, for any
piecewise-linear triangulation on it after sufficiently many barycentric subdivisions.

Keywords : Simplicial complex, Shellable complex, Handle decomposition, Barycen-
tric subdivision, Discrete Morse theory, Triangulation, Piecewise linear manifold.
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1 Introduction

Every compact piecewise linear manifoldM carries a piecewise linear handle decomposition,
that is a filtration ∅ ⊂ M0 ⊂ · · · ⊂ MN = M of compact PL-manifolds such that each
level Mp, p ∈ {1, . . . , N}, is obtained from Mp−1 by attaching a PL-handle on its boundary
using some piecewise linear homeomorphism, see [24] and §3.1. When the manifold is
smooth, such a decomposition can be deduced from the sublevel sets of any smooth Morse
function and defined in the smooth category, see [21, 27, 20]. When the manifold is
combinatorial, that is equipped with a piecewise linear triangulation, see §2.3, such a
PL-handle decomposition can be obtained out of the second barycentric subdivision of the
latter, where the handles are derived neighborhoods of the barycenters of the simplices, see
Definition 2.7, Proposition 6.9 of [24] and §3.1. However, a PL-handle decomposition does
not carry any canonical triangulation and in fact, triangulated manifolds which are not
combinatorial do not carry any such decomposition in the PL-category, for the underlying
piecewise linear structure would then be that of a PL-manifold, see [24, 23]. Closed
topological manifolds do carry some handle decompositions in the topological category
though, except when four-dimensional and non smooth, see [16, 12]. We recently introduced
some counterparts to handle decompositions in the simplicial category, which we called
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shelled h-tilings and Morse tilings due to their relations with the classical combinatorial
notions of shellings [6, 15, 31, 36, 24], h-vectors [29, 4, 13, 30, 28] and discrete Morse
theory [10, 11, 3], see Definition 3.1 and [32, 26]. Such shelled tilings exist on all finite
simplicial complex after finitely many stellar subdivisions at facets [32], they encode a class
of compatible discrete Morse functions whose critical faces are in one-to-one correspondence
with the critical tiles -or pinched handles- of the tiling, preserving the index, see §2.2 as well
as [26, 33] and they compute the (co)homology of the complex via two spectral sequences
whose first pages are free graded modules over the critical tiles [33].

Our main result now goes in the opposite direction and provides Morse shellings out of
any discrete Morse function after two barycentric subdivisions.

Theorem 1.1. Let f be a discrete Morse function on a finite simplicial complex K. Then,
the second barycentric subdivision of K carries Morse shellings whose critical tiles are in
one-to-one correspondence with the critical faces of f , preserving the index.

We recall the definitions of simplicial complexes and discrete Morse functions in §2.1 and
that of Morse shellings in §3.1. In fact, the proof of Theorem 1.1 provides a relative version
of this theorem as well, see Remark 3.6. In the case of the trivial discrete Morse function,
for which all simplices are critical, Theorem 1.1 provides a Morse shelling on the second
barycentric subdivision whose critical tiles are in one-to-one correspondence with the faces
of the complex. It thus gives some simplicial counterpart to the PL-handle decomposition
of [24] in the case of combinatorial manifolds. The first barycentric subdivision already
inherits Morse shellings by [32], but without control on their critical tiles. This however
plays a crucial role in the proof of Theorem 1.1, in a slightly refined form which we establish
in Theorem 3.5.

In the case of smooth Morse functions on smooth manifolds, we deduce the following.

Corollary 1.2. Let f be a smooth Morse function on a smooth closed manifold M and let
h : K → M be any PL-triangulation on M . Then, as soon as d is large enough, the d-th
barycentric subdivision of the simplicial complex K carries Morse shellings whose critical
tiles are in one-to-one correspondence with the critical points of f , preserving the index.

Recall that every smooth manifold carries a canonical piecewise linear structure from
Whitehead’s theorem, see [35] and §3.1. We also deduce.

Corollary 1.3. The second barycentric subdivision of any collapsible finite simplicial com-
plex carries Morse shellings using one closed simplex as unique critical tile.

This result applies in particular to regular neighborhoods of collapsible subcomplexes in
closed triangulated manifolds and provides thus some counterpart to Whitehead’s regular
neighborhood theorem [34, 24] up to which these are PL-balls in the case of combinatorial
manifolds.

Theorem 1.1 combined with [26], see also Theorem 5.2 of [33], closely relates Morse
shellings with discrete Morse functions. In particular, the minimal number of critical points
of discrete Morse functions on all barycentric subdivisions of a finite simplicial complex
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coincides with the minimal number of critical tiles of their Morse shellings. How much
of the topology and combinatorics of a simplicial complex does a shelled h-tiling encodes
remains puzzling, see §3.1. Every Morse shelling can be turned into some shelled h-tiling
after finitely many stellar subdivisions at facets by [33], but adding critical tiles in the
process.

We recall in section 2 what we need from the theories of simplicial complexes and
discrete Morse functions. We also introduce Morse tiles, describe them as pinched handles
and study their structure and first barycentric subdivision. Section 3 is mostly devoted
to the proof of Theorem 1.1 and its corollaries. We first introduce Morse shellings and
prove Corollaries 1.2, 1.3. We then prove the existence of specific Morse shellings on
first barycentric subdivisions of Morse tiles, see Theorems 3.3 and 3.4, and of simplicial
complexes, see Theorem 3.5. The latter slightly refines earlier results of [26, 32] for the
need of Theorem 1.1.

2 Morse tiles

2.1 Relative simplicial complexes and discrete Morse functions

As in [32], let us first recall what we need from the theory of simplicial complexes, see
[17, 22]. From the combinatorial point of view, an n-simplex σ is a set of cardinality n+ 1
whose elements are called vertices. Any subset of this finite set, including the empty set, is
called a face. Its geometric realization is the convex set |σ| = {λ : σ → R+ |

∑
v∈σ λ(v) =

1}, it spans the n-dimensional real affine space Aσ = {λ : σ → R |
∑

v∈σ λ(v) = 1}.
Likewise, from the combinatorial point of view, a finite simplicial complex K is a collection
of subsets of a finite set VK which contains all singletons and all subsets of its elements.
The elements of K are simplices and any simplex defines itself a finite simplicial complex.
The geometric realization of a finite simplicial complex K is the subset |K| = {λ : VK →
R+ |

∑
v∈VK λ(v) = 1 and supp(λ) ∈ K} of AVK , where supp(λ) = {v ∈ VK |λ(v) 6= 0}.

This topological space is then covered by the geometric realizations of all the simplices
of K which are maximal with respect to the inclusion, called facets, and moreover, any
two simplices intersect along a unique common face, possibly empty. A face which has
codimension one in any facet containing it is called a ridge. The dimension of a simplicial
complex K is the maximal dimension of its facets and when they all have same dimension,
K is said to be pure dimensional. We denote by K [p] the subset of p-simplices of K,
p ≥ 0. When |K| turns out to be homeomorphic to a closed topological manifold, it is
said to be a closed triangulated manifold. This condition is less restrictive than that of
combinatorial or piecewise-linear manifold, see §2.3. Note that any function from VK to
some real affine space E extends to an affine map AVK → E which restricts to |K| and when
this restriction is injective, it embeds |K| into E. For example, the boundary of any convex
simplicial polytope of Rn is the geometric realization of a triangulated sphere, embedded
into Rn. This notion of simplicial complex has some relative counterpart introduced by R.
Stanley in [28], see also [31, 8]. A relative simplex P is a simplex P deprived of several of its
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proper faces τ0, . . . , τk. A face of P is a relative simplex τ \ (τ0 ∪ · · · ∪ τk), where τ is a face
of its underlying simplex P not contained in τ0∪· · ·∪τk, and its dimension is the dimension
of τ . The geometric realization of P is the complement |P | = |P | \ (|τ0| ∪ · · · ∪ |τk|), while
from the combinatorial point of view, τ0, . . . , τk and their faces are no more faces of P . We
will call them the missing faces of P . Some relative simplices are of special interest for us
and we devote the remaining part of section 2 to their study, see Definition 2.1. A relative
finite simplicial complex S is a collection of relative simplices {σ \ (σ ∩ L) |σ ∈ K}, where
L is a subcomplex of a finite simplicial complex K. We may assume the subcomplex L of
K not to contain any facet of K, deleting them from K and L otherwise. We set S = K
and call with some abuse this complex the underlying simplicial complex of S, while the
faces of L ∩ S = S \ S are called the missing faces of S. Contrary to the case of relative
simplices, the pair (K,L) such that S = K \ L is not unique. The geometric realization
of S is the complement |S| = |S| \ |L|. A relative subcomplex S ′ of S is a relative complex
K ′ \ L, where K ′ is a subcomplex of K.

The first barycentric subdivision sd(K) of a finite simplicial complex K is a collection
of sets {σ0, . . . , σq} of elements of K such that ∅ 6= σ0 ( σ1 ( · · · ( σq, so that Vsd(K) =
K \ {∅}. The map σ ∈ K \ {∅} 7→ σ̂ ∈ |K| ⊂ Aσ, where σ̂ denotes the barycenter of |σ|,
defines by extension an homeomorphic embedding |sd(K)| → |K|, see Proposition 2.33 of
[17]. To avoid any confusion, we will denote by σ̂ the vertex of sd(K) associated to the
simplex σ of K. The first barycentric subdivision of a finite relative simplicial complex
S = K \ L is the relative simplicial complex sd(S) = sd(K) \ sd(L). The join σ1 ∗ σ2
of two simplices σ1, σ2 is the simplex σ1 ∪ σ2. Its geometric realization gets isomorphic
to the set of convex combinations {tx1 + (1 − t)x2 | xi ∈ |σi| and t ∈ [0, 1]}, see [24].
Likewise, the join K1 ∗ K2 of two finite simplicial complexes is the collection of joins
{σ1 ∗ σ2 | σi ∈ Ki}, where by convention ∅ ∗ σ = σ ∗ ∅ = σ. The join S1 ∗ S2 of two
finite relative simplicial complexes S1 = K1 \ L1 and S2 = K2 \ L2 is the finite relative
simplicial complex (K1 ∗K2) \

(
(L1 ∗K2)∪ (K1 ∗L2)

)
. Finally, a subcomplex S ′ of a finite

relative simplicial complex S is an elementary collapse of S iff S \ S ′ consists of a facet of
S together with one of its ridges not contained in any other facet of S. It is a collapse of S
if it can be obtained from S after a finite sequence of elementary collapses, see for instance
[1, 10]. This notion is closely related to the discrete Morse theory of R. Forman [10]. A
discrete Morse function f on a finite simplicial complex K is a function f : K \ {∅} → R
such that for every simplex σ ∈ K, the sets {τ ∈ K | σ ( τ and f(σ) ≥ f(τ)} and
{θ ∈ K | θ ( σ and f(σ) ≤ f(θ)} have cardinalities at most one. Of special interest are
the Morse functions which are monotone in the sense that f(σ) ≤ f(τ) whenever σ ⊂ τ ,
semi-injective in the sense that all of their preimages have cardinalities at most two and
generic in the sense that an equality f(σ) = f(τ) implies that σ is a face of τ or vice-
versa. A simplex σ ∈ K at which such a discrete Morse function f is injective is called
a critical face of f of index dim(σ). The sublevel sets {σ ∈ K | f(σ) ≤ m}, m ∈ R, are
subcomplexes of K and one deduces a sublevel set from the next one either by deleting a
critical face, that is removing it from the complex, or by an elementary collapse. It follows
from Theorems 3.3 and 3.4 of [10] that every discrete Morse function can be perturbed
into such a monotone, semi-injective and generic one, so that one can restricts oneself to
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the the latter without much loss of generality, as is done in [3] for instance.

2.2 Morse tiles versus pinched handles

The following two families of relative simplices are in the core of our study, they were
introduced in [25, 26].

Definition 2.1. A basic (resp. Morse) tile of dimension n and order k ∈ {0, . . . , n + 1}
is an n-simplex deprived of k ridges (resp. together with possibly a unique face of higher
codimension, called its Morse face).

If T is a basic tile of order k = ord(T ), then every non-empty face µ of T has to
contain the (k− 1)-dimensional face r(T ), called its restriction set, whose missing vertices
are opposite to the missing ridges of T , compare [31]. The tile T \ µ is said to be critical
of index k = ind(T \ µ) when µ = r(T ) and it is said to be regular otherwise. The closed
simplex deprived of its empty face, denoted by σ̇ = σ \ {∅}, is thus critical of vanishing
index, but we also consider the closed simplex itself as being critical of vanishing index,

though it differs from σ̇ as a relative simplex. As for the open simplex, denoted by
◦
σ, it is

critical of index dim(σ) and when the latter vanishes,
◦
σ and σ̇ coincide.

Figure 1: The basic tiles in dimension two.

Figure 2: The critical tiles in dimension two.

From the topological viewpoint, an n-dimensional critical tile of index k ∈ {0, . . . , n}
is a simplicial pinched handle of dimension n and index k. It is obtained by pinching onto

µ the missing face µ × θ of a piecewise linear handle
◦
σ ×θ, where σ is a k-simplex, θ an

(n− k)-simplex and µ a ridge of σ. The projection onto the first factor σ× θ → σ = µ ∗ v,
where v denotes the vertex opposite to µ in σ, indeed factors through the join µ∗θ, the first
arrow of the diagram σ× θ → µ ∗ θ p→ σ pinching µ× θ onto µ. By removing the preimage

of the boundary of σ, we deduce the diagram
◦
σ ×θ → Cn

k→
◦
σ, where Cn

k = (µ∗θ)\p−1(∂σ)
is a critical tile of index k.
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Likewise, an n-dimensional regular basic tile is an n-simplex deprived of a union of
ridges defining an (n − 1)-dimensional piecewise linear ball embedded in its boundary,
whereas for a non-basic regular Morse tile, the latter gets pinched as well. Let indeed T
be a non basic regular Morse tile of dimension n and order k, whose Morse face µ has
dimension l ≥ k. Let σ = µ ∗ v be an (l + 1)-simplex and τ a union of k + 1 ridges
of σ containing µ, so that σ \ τ is a regular basic tile. Let finally θ be an (n − l − 1)-
simplex. By depriving the preimage of τ of the diagram σ × θ → µ ∗ θ→σ, we deduce the
map (σ \ τ) × θ → T which pinches the missing face µ × θ onto µ, whereas τ × θ is an
(n− 1)-dimensional PL-ball embedded in the boundary of σ × θ.

Lemma 2.2. Let T be a basic tile of order k and T ′ be a basic (resp. Morse) tile of order
k′. Then, T ∗ T ′ is a basic (resp. Morse) tile of order k + k′.

Proof. Set T = σ \ (σ0 ∪ · · · ∪ σk−1) and T ′ = σ′ \ (σ′0 ∪ · · · ∪ σ′k′−1 ∪ µ), where σ0, . . . , σk−1
(resp. σ′0, . . . , σ

′
k′−1) are ridges of the simplex σ (resp. σ′) and µ is a higher codimensional

face of σ′, possibly empty. Then, T ∗T ′ = (σ∗σ′)\
(
∪k−1i=0 (σi ∗σ′)∪∪k

′−1
j=0 (σ∗σ′j)∪(σ∗µ)

)
is

a Morse tile of order k+k′ which is basic if and only if µ is empty, that is iff T ′ is basic.

For instance, the cone v ∗ T with apex v over a basic tile T of order k is itself a basic
tile of order k, whereas the cone deprived of its basis v̇ ∗ T is a basic tile of order k + 1.

Proposition 2.3. Every Morse tile splits uniquely as a join σ∗
◦
θ ∗τ̇ , where σ is a closed

simplex,
◦
θ an open one and τ̇ a closed simplex of non-vanishing dimension deprived of its

empty face. Conversely, every such join is a Morse tile, which is critical different from a
closed simplex (resp. basic) if and only if σ (resp. τ) is empty.

Each factor of the decomposition σ∗
◦
θ ∗τ̇ of a Morse tile may be empty, that is missing.

If the tile is a closed simplex, an open one or a dotted one for instance, only one factor
enters the decomposition. The condition on the dimension of τ is required to get the

uniqueness of the decomposition. Observe that the index of
◦
θ as a critical tile is dim(θ),

whereas the one of
◦
θ ∗τ̇ is dim(θ) + 1 as soon as τ is not empty. These two formulas

coincide though when τ is empty if one writes
◦
θ=

◦
θ′ ∗τ̇ ′, with dim(τ ′) = 0.

Proof. Let T be a relative simplex which splits as a join σ∗
◦
θ ∗τ̇ and let θ0, . . . , θk−1 be

the ridges of θ, so that k = dim(θ) + 1. Then, if τ is not empty, T = (σ ∗ θ ∗ τ) \
(
∪k−1i=0

(σ ∗ θi ∗ τ) ∪ (σ ∗ θ)
)
, where σ ∗ θ = {∅} if σ and θ are empty, so that it is a non-basic

Morse tile of order k with Morse face σ∗
◦
θ. It is thus critical in this case if and only if

dim(σ∗
◦
θ) = k − 1, that is iff σ is empty. If τ is empty, T = (σ ∗ θ) \

(
∪k−1i=0 (σ ∗ θi)

)
is a

basic tile of order k which is thus critical iff either σ or θ is empty.
Conversely, let T be an n-dimensional Morse tile of order k, so that T = λ \ (λ0 ∪ · · · ∪

λk−1∪µ), where λ0, . . . , λk−1 are ridges of the n-simplex λ and µ some higher codimension

face of λ, possibly empty. Let
◦
θ= r(T ) be the restriction set of T , whose vertices are the
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vertices opposite to λ0, . . . , λk−1. The face µ, provided it is not empty, contains r(T ) and

can thus be written σ∗
◦
θ for some face σ of λ0 ∩ · · · ∩ λk−1, possibly empty. Denoting by

τ the link of σ ∗ θ in λ, that is the face whose vertices are the ones not contained in σ ∗ θ,
we deduce that T = σ∗

◦
θ ∗τ̇ . This decomposition has to be unique, since

◦
θ= r(T ) and

µ = σ∗
◦
θ.

Remark 2.4. We saw in the proof of Proposition 2.3 that the uniqueness of the decompo-

sition T = σ∗
◦
θ ∗τ̇ follows from the fact that

◦
θ has to be the restriction set of T and σ∗

◦
θ

has to be its Morse face as soon as τ is not empty, that is as soon as T is not basic.

Corollary 2.5. Let T be a Morse tile and v a vertex. Then, the cone v ∗ T is a closed
simplex if and only if T is a closed simplex and a regular Morse tile otherwise. Likewise,
the cone deprived of its basis v̇ ∗T is a Morse tile which is critical iff T is critical different
from a closed simplex and its index equals then ind(T ) + 1.

Proof. By Proposition 2.3, T splits as a join σ∗
◦
θ ∗τ̇ , so that v ∗ T = (v ∗ σ)∗

◦
θ ∗τ̇ is a

closed simplex if and only if θ and τ are empty and a regular Morse tile otherwise, since

v ∗ σ 6= ∅. Likewise, v̇ ∗ T = σ ∗ (v̇∗
◦
θ) ∗ τ̇ is critical if and only if σ = ∅ and its index

equals then dim(v̇∗
◦
θ) if τ is empty and dim(v̇∗

◦
θ) + 1 otherwise, that is ind(T ) + 1 in any

case.

2.3 Star neighborhoods

Recall that the star neighborhood of every face σ of a simplicial complex K is the sub-
complex stK(σ) = {τ ∈ K | σ ∗ τ ∈ K}, that is the smallest subcomplex of K which is a
neighborhood of σ. The link of σ in K equals lkK(σ) = {τ ∈ stK(σ) | σ ∩ τ = ∅}, so that
lkK(σ) = {∅} when stK(σ) = σ and in general, stK(σ) = σ ∗ lkK(σ), see [24].

We then recall that a closed combinatorial manifold is a finite simplicial complex whose
links share common subdivisions with boundaries of simplices, see [19]. Every link is
thus a combinatorial sphere of lower dimension. The underlying topological space of a
combinatorial manifold inherits a piecewise linear structure which is that of a piecewise
linear manifold, that is of a topological manifold whose change of coordinates are piecewise
linear homeomorphisms, see [24, 23]. Not all triangulated manifolds are combinatorial [7, 9].

Let us finally recall for the reader’s convenience the structure of links in the first and
second barycentric subdivisions of K, see Proposition 6.9 of [24] and [2].

Proposition 2.6. Let K be a finite simplicial complex. Then,
1) For every face σ of K, the map λ ∈ lkK(σ) 7→ σ∗λ ∈ stK(σ) induces the isomorphism

of simplicial complexes sd(∂σ)∗sd(lkK(σ))→ lksd(K)(σ̂), where sd(∂σ) = {∅} if dim(σ) = 0.
2) As soon as K is not empty, sd(K) =

⋃
v∈K[0] stsd(K)(v̂), where the union is taken

over all vertices of K.
3) For every vertices v1 6= v2 of K, stsd(K)(v̂1) ∩ stsd(K)(v̂2) = lksd(K)(v̂1) ∩ lksd(K)(v̂2)

is not empty if and only if v1 and v2 share a common edge of K and in this case, this
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intersection is the image of stsd(lkK(v1))(v̂2) (resp. stsd(lkK(v2))(v̂1) ) in lksd(K)(v̂1) (resp.
lksd(K)(v̂2)) under the isomorphism 1).

Proof. 1) By definition, lksd(K)(σ̂) is the collection of simplices [σ̂0, . . . , σ̂i−1, σ̂i+1, . . . , σ̂p]
of sd(K) such that σ0 ⊂ · · · ⊂ σi−1 ⊂ σi+1 ⊂ · · · ⊂ σp is a flag of simplices of K and σi−1 ⊂
σ ⊂ σi+1. Such a simplex is thus a join [σ̂0, . . . , σ̂i−1] ∗ [σ̂i+1, . . . , σ̂p], where [σ̂0, . . . , σ̂i−1] ∈
sd(∂σ) and [σ̂i+1, . . . , σ̂p] is in bijective correspondence with [lkσi+1

(σ), . . . , lkσp(σ)] ∈ sd(lkK(σ))
via the map λ ∈ lkK(σ) 7→ σ ∗ λ ∈ stK(σ). The first part of the proposition follows.

2) By definition, every simplex of sd(K) reads [σ̂0, . . . , σ̂p], where ∅ 6= σ0 ⊂ · · · ⊂ σp is
a flag of K. Such a simplex thus belongs to stsd(K)(v̂) for every vertex v of σ0.

3) It follows that if v1 6= v2 are vertices ofK, stsd(K)(v̂1)∩stsd(K)(v̂2) is the set of simplices
[σ̂0, . . . , σ̂p] of sd(K) such that both v1 and v2 are contained in σ0, so that this intersection
coincides with lksd(K)(v̂1) ∩ lksd(K)(v̂2) and that its preimage under the isomorphism 1)
equals stsd(lkK(v1))(v̂2) (resp. stsd(lkK(v2))(v̂1)) in sd(lkK(v1)) (resp. sd(lkK(v2))).

Following [2, 24], we adopt the following definition.

Definition 2.7. The first derived neighborhood of a subcomplex L in a simplicial complex
K is the neighborhood N(L,K) =

⋃
v∈L[0] stsd(K)(v̂) of sd(L) in sd(K).

Corollary 2.8. Let K be a finite simplicial complex. Then,
1) For every simplex σ of K, the map λ ∈ lkK(σ) 7→ σ ∗ λ ∈ stK(σ) induces the

isomorphism of simplicial complexes sd
(
sd(∂σ) ∗ sd(lkK(σ))

)
→ lksd2(K)(ˆ̂σ).

2) For every simplices σ 6= τ of K, stsd2(K)(ˆ̂σ) ∩ stsd2(K)(ˆ̂τ) = lksd2(K)(ˆ̂σ) ∩ lksd2(K)(ˆ̂τ)
is not empty if and only if σ is a face of τ or vice-versa. Moreover, this intersection is the
image of N

(
τ̂ , sd(∂σ) ∗ sd(lkK(σ))

)
(resp. N

(
σ̂, sd(∂τ) ∗ sd(lkK(τ))

)
) in lksd2(K)(ˆ̂σ) (resp.

lksd2(K)(ˆ̂τ)) under the isomorphism 1).

In the second part of Corollary 2.8, if σ is a face of τ for instance, σ̂ is a vertex of sd(∂τ),

subcomplex of sd(∂τ) ∗ sd(lkK(τ)), whereas τ̂ denotes the vertex l̂kτ (σ) of sd(lkK(σ)) to
which it gets identified by the first part of Proposition 2.6.

Proof. 1) The first part of Proposition 2.6 applied to the vertex σ̂ of sd(K) provides the
isomorphism of simplicial complexes sd(lksd(K)(σ̂))→ lksd2(K)(ˆ̂σ). A second application of
Proposition 2.6 to the simplex σ of K provides the isomorphism sd(∂σ) ∗ sd(lkK(σ)) →
lksd(K)(σ̂). The result follows by composition of these isomorphisms.

2) Likewise, by the third part of Proposition 2.6, stsd2(K)(ˆ̂σ)∩ stsd2(K)(ˆ̂τ) = lksd2(K)(ˆ̂σ)∩
lksd2(K)(ˆ̂τ) is non empty if and only if σ̂ and τ̂ share a common edge of sd(K), that is
iff σ is a face of τ or vice-versa. Moreover, in this case, this intersection gets identified
with stsd(lksd(K)(σ̂))(

ˆ̂τ) (resp. stsd(lksd(K)(τ̂))(
ˆ̂σ)) in lksd2(K)(ˆ̂σ) (resp. lksd2(K)(ˆ̂τ)), that is, by

the first part of Proposition 2.6 and Definition 2.7, with N
(
τ̂ , sd(∂σ) ∗ sd(lkK(σ))

)
(resp.

N
(
σ̂, sd(∂τ) ∗ sd(lkK(τ))

)
).
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Let now S = K \L be a relative simplicial complex. We set, for every simplex σ of K,
stS(σ) = stK(σ) \ stL(σ), where stL(σ) = ∅ if σ /∈ L. We then set lkS(σ) = lkK(σ) \ lkL(σ),
so that stS(σ) = σ ∗ lkS(σ). These links and star neighborhoods are thus defined even for
the missing faces of S, but they depend on the decomposition S = K \L, so that they are
rather defined for pairs (K,L) than for complements K \ L.

Example 2.9. If
◦
θ is an open simplex of positive dimension and v a vertex of θ, then

θ = v ∗ θ′, where θ′ = lkθ(v), but st◦
θ
(v) = v∗

◦
θ′ differs from

◦
θ and lk◦

θ
(v) =

◦
θ′.

In Example 2.9, neither the link lk◦
θ
(v) nor the star neighborhood st◦

θ
(v) detects that

the face θ′ opposite to v in θ is missing in
◦
θ.

Example 2.10. Let T = θ\v be a regular Morse tile, where θ is a closed simplex of positive
dimension and v one of its vertex, so that θ = v ∗ θ′ with θ′ = lkθ(v). Then stT (v) = T
and lkT (v) = θ̇′, since lkv(v) = {∅}.

In Example 2.10 on the contrary, the link lkT (v) detects the fact that the opposite
vertex v is missing in T . In general, the stars and links of vertices in Morse tiles are given
by the following lemma, see Proposition 2.3.

Lemma 2.11. Let T = σ∗
◦
θ ∗τ̇ be a Morse tile. Then,

1) For every vertex v of σ, lkT (v) = lkσ(v)∗
◦
θ ∗τ̇ .

2) For every vertex v of θ, lkT (v) = σ ∗ lk◦
θ
(v) ∗ τ̇ , where lk◦

θ
(v) = {∅} if dim(θ) = 0.

3) For every vertex v of τ , lkT (v) = σ∗
◦
θ ∗lkτ (v).

As in Example 2.9, the link given in the second (resp. third) part of Lemma 2.11 does
not detect the fact that the face opposite to v (resp. the Morse face) is missing in T . The
link lk◦

θ
(v) is given by Example 2.9.

Proof. Let us write T = K \ L, with K = σ ∗ θ ∗ τ and L = (σ ∗ ∂θ ∗ τ) ∪ (σ ∗ θ) if τ
is not empty and T not reduced to τ̇ , whereas L = {∅} if T = τ̇ and L = σ ∗ ∂θ if τ is
empty. By definition, if v ∈ σ (resp. v ∈ θ, v ∈ τ), then lkK(v) = lkσ(v) ∗ θ ∗ τ (resp.
lkK(v) = σ ∗ lkθ(v) ∗ τ , lkK(v) = σ ∗ θ ∗ lkτ (v)). Likewise, if v ∈ σ (resp. v ∈ τ), then
lkL(v) = (lkσ(v) ∗ ∂θ ∗ τ) ∪ (lkσ(v) ∗ θ) (resp. lkL(v) = σ ∗ ∂θ ∗ lkτ (v)), whereas if v ∈ θ
and if θ′ = lkθ(v), then lkL(v) = (σ ∗ ∂θ′ ∗ τ) ∪ (σ ∗ θ′), see Example 2.9. The result thus
follows from the definition lkT (v) = lkK(v) \ lkL(v).

The stars and links of vertices in the first barycentric subdivisions of Morse tiles are
then given by the following corollary, see Proposition 2.3.

Corollary 2.12. Let T = σ∗
◦
θ ∗τ̇ be a Morse tile. Then,

1) For every vertex v of σ ∗ θ ∗ τ , the map λ ∈ lkT (v) 7→ v ∗ λ ∈ stT (v) induces the
isomorphism of relative simplicial complexes sd(lkT (v))→ lksd(T )(v̂).
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2) If T is not reduced to τ̇ , sd(T ) =
⋃
v stsd(T )(v̂), where the union is taken over all

vertices of σ ∗ θ ∗ τ and deprived of the empty face if T = τ̇ .
3) For every vertices v1 6= v2 of σ∗θ∗τ , stsd(T )(v̂1)∩stsd(T )(v̂2) = lksd(T )(v̂1)∩ lksd(T )(v̂2)

and this intersection is the image of stsd(lkT (v1))(v̂2) (resp. stsd(lkT (v2))(v̂1) ) in lksd(T )(v̂1)
(resp. lksd(T )(v̂2)) under the isomorphism 1).

Proof. Let K = σ ∗ θ ∗ τ and L = (σ ∗∂θ ∗ τ)∪ (σ ∗ θ) if τ is not empty and T 6= τ̇ , L = {∅}
if T = τ̇ and L = σ ∗ ∂θ if τ is empty, so that T = K \ L and sd(T ) = sd(K) \ sd(L).

1) Let v be a vertex of K. By Proposition 2.6, the map λ ∈ (lkK(v), lkL(v)) 7→ v ∗ λ ∈
(stK(v), stL(v)) induces an isomorphism of pairs (sd(lkK(v)), sd(lkL(v)))→ (lksd(K)(v̂), lksd(L)(v̂)).
Hence the isomorphism sd(lkT (v)) = sd(lkK(v)) \ sd(lkL(v)) → lksd(T )(v̂) = lksd(K)(v̂) \
lksd(L)(v̂).

2) By Proposition 2.6, sd(K) =
⋃
v∈K[0] stsd(K)(v̂) and as soon as L is not reduced to

{∅}, sd(L) =
⋃
v∈L[0] stsd(L)(v̂). We deduce that sd(T ) = sd(K) \ sd(L) =

⋃
v∈K[0] stsd(T )(v̂)

whenever L is not reduced to {∅}.
3) The third part follows from Proposition 2.6 along the same lines.

3 Morse shellings of barycentric subdivisions

3.1 Morse shellings versus pinched handle decompositions

Let us now define the key notion of the paper, which we gradually introduced in [25, 26, 32]
under more restrictive forms.

Definition 3.1. A tiling of a relative simplicial complex S is a partition of its geometric
realization by relative facets. It is shellable iff it admits a filtration ∅ = S0 ⊂ S1 ⊂ · · · ⊂
SN = S by relative subcomplexes, called a shelling, such that for every p ∈ {1, . . . , N},
Sp \ Sp−1 consists of a single relative facet of the tiling. It is said to be an h-tiling (resp. a
Morse tiling) iff all the relative facets involved are basic or critical tiles (resp. Morse tiles)
given by Definition 2.1.

If S = K \ L, where L is a subcomplex of a finite simplicial complex K containing no
facet of K, then the relative simplices involved in any tiling of S are of the form σ \ τ ,
where σ is a facet of K and τ a subcomplex of σ containing σ ∩ L. Classical shellings
[6, 15, 2, 36, 24] are shelled h-tilings using only basic tiles. Recall that the boundary of any
convex simplicial polytope is shellable in the classical sense [6], but a compact triangulated
manifold, in order to be shellable, has to be piecewise-linearly homeomorphic to a simplex
or its boundary, see [17, 24]. Moreover, many triangulated three-spheres are not shellable
and cannot be as soon as they contain a knotted triangle in their one skeleton by [15],
see also [18]. In contrast, we proved the following existence result in [32] and refer to this
paper for the classical definition of stellar subdivision.

Theorem 3.2 (Theorem 1.3 of [32]). Every finite relative simplicial complex carries a
shellable h-tiling after finitely many stellar subdivisions at facets. Moreover, the same
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holds true using stellar subdivisions at ridges instead, or also using mixed ones. Finally,
in bounded dimension, both the sequence of subdivisions and the shelling are given by some
quadratic time algorithm.

The definition of tiling used in [32] to get Theorem 3.2 was actually even a bit more
restrictive than that of 3.1, namely it required that for every d ≥ 0, the union of tiles of
dimensions greater than d is a subcomplex of the relative simplicial complex, which forces
these tiles to be relative facets. In the case of a shelled h-tiling using only basic tiles, this
stronger condition gets always satisfied but in general it does not and the Morse tilings
given by Theorem 1.1 may not satisfy this stronger condition as well.

From the topological viewpoint, the filtration given by any shelled h-tiling provides a
pinched handle decomposition of the relative simplicial complex, see §2.2. Recall that every
closed piecewise-linear manifold M carries some piecewise linear handle decomposition,
that is some filtration ∅ = M0 ⊂M1 ⊂ · · · ⊂MN = M by compact PL-submanifolds such
that for every p ∈ {1, . . . , N}, the manifold Mp is the union of Mp−1 with a handle Hp, the
latter being a product of simplices σ×θ attached to the boundary ofMp−1 along ∂σ×θ using
some piecewise linear homeomorphism, see [24]. If M is equipped with some triangulation
compatible with its PL-structure, that is with some PL-homeomorphism h : K → M
from some finite simplicial complex K, then an explicit PL-handle decomposition of M
is given by the union ∪σ∈Kstsd2(K)(ˆ̂σ), where the filtration is obtained by ordering the
simplices of K in increasing dimensions, see Proposition 6.9 of [24]. Conversely, given that
every handle is attached using some PL-homeomorphism, the manifold obtained after a
sequence of handle attachments inherits the structure of a piecewise linear manifold, so
that a triangulated manifold which is not combinatorial, that is whose underlying piecewise
linear structure is not that of a piecewise linear manifold, cannot carry such a PL-handle
decomposition. Moreover, a manifold obtained as a sequence of PL-handle attachments
does not inherit any specific triangulation from the handle attachments, for the handles
are not triangulated and the attaching homeomorphisms are not simplicial with respect
to any natural triangulation. Theorem 3.2 on the contrary provides some pinched handle
decomposition for every triangulated manifold, even every finite simplicial complex, after
finitely many stellar subdivisions at facets. Moreover, the latter is produced in the category
of relative simplicial complexes, so that it carries some triangulation. The price to pay for a
triangulated manifold is the need to transit through finite simplicial complexes, say singular
triangulated manifolds, along the decomposition. The pinched handle decomposition given
by any shelled h-tiling indeed provides a filtration ∅ = M0 ⊂ M1 ⊂ · · · ⊂ MN = M where
for every p ∈ {1, . . . , N}, the simplicial complex Mp is obtained from Mp−1 by either
attaching a pinched handle or a regular basic tile by some simplicial embedding from the
missing subcomplex of the tile to Mp−1. In the case of a regular basic tile Tp, such an
attachment is called an elementary shelling and does not change the PL-homeomorphism
type provided that Mp−1 is locally collarable near the union of ridges where Tp is attached,
which consists of a PL-ball, see [24]. In the case of a Morse shelling, the attachment of a
regular basic tile is replaced by the attachment of a regular Morse tile, that is of a simplex
along a pinched PL-ball of its boundary, see §2.2.
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A finite simplicial complex may carry shellable Morse tilings but no h-tiling, as for
instance the union of two triangles sharing a common vertex. Nevertheless, every Morse
tiling (resp. shellable Morse tiling) can be turned into some h-tiling (resp. shellable h-
tiling) after finitely many stellar subdivisions at facets, see [32].

Let us now prove Corollaries 1.2 and 1.3, while the remaining part of the paper is
devoted to the proof of Theorem 1.1. Note that in the case of a smooth closed manifold
of dimension at most three, the existence of a triangulation carrying a Morse shelling
satisfying the conditions of Corollary 1.2 has already been established in [26] using different
methods. However, even in these dimensions, Corollary 1.2 is stronger since it holds true
for every triangulations after sufficiently many barycentric subdivisions, compare [3].

Proof of Corollary 1.2. We know from Theorem A of [3] that provided d is large enough,
sdd(K) carries a discrete Morse function whose critical faces are in one-to-one correspon-
dence with the critical points of f , preserving the index, see also [14]. We then deduce
from Theorem 1.1 that sdd+2(K) carries the desired Morse shelling.

Proof of Corollary 1.3. By Lemma 4.3 of [10], every collapsible finite simplicial complex
carries a discrete Morse function having a single critical face, of vanishing index, see also
§2.2. The result thus follows from Theorem 1.1.

We already observed that Corollary 1.3 applies in particular to regular neighborhoods
of collapsible subcomplexes in closed triangulated manifolds. The latter has to be piecewise
linearly homeomorphic to a simplex in the case of combinatorial manifolds by Whitehead’s
regular neighborhood theorem [34, 24], but is not PL-homeomorphic, not even homeo-
morphic to a ball in general, see [2]. In particular, one cannot replace Morse shellings by
shelled h-tilings in Corollary 1.3, since a pure-dimensional simplicial complex which carries
a shelled h-tiling using a single closed simplex as critical tile is shellable in the classical
sense and thus PL-homeomorphic to a simplex, see [17, 24]. Shellable h-tilings thus encode
in a more puzzling way the topology and combinatorics of triangulated manifolds or finite
simplicial complexes.

Let us finally recall that topological handle decompositions exist on all closed topolog-
ical manifolds except the non smooth four-dimensional ones, see [16, 12]. Do the latter
carry any topological pinched handle decomposition, that is any filtration ∅ = M0 ⊂M1 ⊂
· · · ⊂ MN = M by topological spaces such that for every p ∈ {1, . . . , N}, Mp is obtained
from Mp−1 by attaching either a basic tile or a pinched handle along their missing faces
using some homeomorphism?

3.2 Morse shellings of subdivided tiles

We already proved [25, 26] that the first barycentric subdivision of any basic (resp. Morse)
tile T carries shellable h-tilings (resp. Morse tilings) which use a critical tile if and only if
T is critical and this tile is then unique, isomorphic to T , see also [32]. In order to prove
Theorem 1.1, we need the following variant of this result, proven in a different way.
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Theorem 3.3. Let T and T ′ be two non empty basic tiles.
1) If T is an open simplex and T ′ a closed one, then sd(T ∗T ′) carries a Morse shelling

which begins with N(T, T ∗ T ′). Moreover, the latter uses a unique critical tile in N(T, T ∗
T ′), of index dim(T ), and a unique critical tile outside N(T, T ∗ T ′), of index dim(T ) + 1.

2) Otherwise, sd(T ∗T ′) carries a shelled h-tiling which begins with N(T, T ∗T ′) and uses
a critical tile if and only if T ∗T ′ is critical. Moreover, this tile is then unique, isomorphic
to T ∗ T ′ and belongs to N(T, T ∗ T ′) if T ∗ T ′ is a closed simplex while it lies outside this
neighborhood if T ∗ T ′ is an open one.

The h-tiling given by the second part of Theorem 3.3 uses only basic tiles, it thus
makes the above mentioned result of [25] more precise. By the way, the latter applies in
the case covered by the first part of Theorem 3.3 as well, providing a shelled h-tiling using
no critical tile but which does not begin with N(T, T ∗ T ′), so that the two critical tiles of
consecutive indices given by Theorem 3.3 can be cancelled.

Theorem 3.4. Let T be a non empty basic tile and T ′ a non basic Morse tile. Then,
sd(T ∗T ′) carries a Morse shelling which begins with N(T, T ∗T ′) and uses a critical tile if
and only if T ∗ T ′ is critical. Moreover, this tile is then unique, isomorphic to T ∗ T ′ and
disjoint from N(T, T ∗ T ′).

Proof of Theorem 3.3. We proceed by induction on n = dim(T ) + dim(T ′). If n = 0, both
T and T ′ are zero-dimensional and four cases have to be considered, depending on whether
they are closed or open vertices, that is vertices deprived of their empty face. One checks
the result in these cases, see Figure 3, and when T is an open simplex and T ′ a closed one,
the tiling obtained on the subdivided edge sd(T ∗ T ′) uses an open simplex together with
a closed one deprived of its empty face. The latter is not a basic tile.

Figure 3: Tilings of T ∗ T ′ in dimension one.

Let us now assume the result proven up to the rank n − 1 and prove it for dim(T ) +

dim(T ′) = n. By Proposition 2.3, T = σ∗
◦
θ and T ′ = σ′∗

◦
θ′ for some simplices σ, σ′, θ, θ′.

Let us number v0, . . . , vk the vertices of T = σ ∗ θ, beginning with those of σ and then
vk+1, . . . , vn+1 the vertices of T

′
= σ′∗θ′, beginning with those of σ′. We deduce from Corol-

lary 2.12 a filtration ∅ ⊂ L0 ⊂ L1 ⊂ · · · ⊂ Ln+1 = sd(T ∗T ′) of relative simplicial complexes,
where for every j ∈ {0, . . . , n+ 1}, Lj = N([v0, . . . , vj], T ∗ T ′) = ∪ji=0stsd(T∗T ′)(v̂i). We are
going to Morse shell Ln+1 by finite induction on j ∈ {0, . . . , n + 1}. By Corollary 2.12,
lksd(T∗T ′)(v̂0) is isomorphic to sd(lkT∗T ′(v0)) and by the induction hypothesis, the latter
carries a shelled h-tiling which uses a critical tile if and only if the basic tile lkT∗T ′(v0) is
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critical and in this case, the critical tile is unique and isomorphic to lkT∗T ′(v0). In par-
ticular, this h-tiling uses a closed simplex iff lkT∗T ′(v0) is a closed simplex. By Corollary
2.5, L0 = v̂0 ∗ lksd(T∗T ′)(v̂0) inherits a shelled h-tiling which uses a critical tile if and only if
lkT∗T ′(v0) is a closed simplex and is this case, the critical tile is unique of vanishing index.
Moreover, the latter is a closed simplex if T ∗ T ′ is a closed simplex and closed simplex
deprived of its empty face otherwise, that is, by our choice of numbering of vertices, if
T = v̇0 and T ′ is a closed simplex.

Let us now assume Lj−1 equipped with a Morse shelling and let us extend it to Lj,

j ∈ {1, . . . , n}. The tile lkT∗T ′(vj) is a join Tj ∗ T ′j , where the simplex T j (resp. T
′
j

) underlying the basic tile Tj (resp. T ′j) has vertices v0, . . . , vj−1 (resp. vj+1, . . . , vn+1).
By Corollary 2.12, stsd(T∗T ′)(v̂j) ∩ Lj−1 coincides with N(Tj, Tj ∗ T ′j) in lksd(T∗T ′)(v̂j) via
the isomorphism lksd(T∗T ′)(v̂j) ∼= sd(lkT∗T ′(vj)). By the induction hypothesis, two cases
may occur. If Tj is an open simplex and T ′j a closed simplex, sd(Tj ∗ T ′j) carries a Morse
shelling which begins with N(Tj, Tj ∗ T ′j) and uses a critical tile of index dim(Tj) in this
neighborhood and no closed simplex outside. By our choice of numbering of the vertices,
this case may occur only if T = Tj ∗ v̇j and T ′ = T ′j or if T = Tj and T ′ = vj ∗ T ′j .
The cone with apex v̂j over this Morse shelling of sd(Tj ∗ T ′j) provides a Morse shelling
on stsd(T∗T ′)(v̂j) = v̂j ∗ lksd(T∗T ′)(v̂j) and we extend the Morse shelling of Lj−1 to Lj by
concatenation of the latter, depriving however all cones with apex v̂j over the tiles of
N(Tj, Tj ∗ T ′j) of their basis. By Corollary 2.5, this extension adds exactly one critical tile,
of index dim(Tj) + 1. When T = Tj ∗ v̇j, the latter belongs to N(T, T ∗ T ′) and its index
equals dim(T ), whereas when T = Tj, the latter lies outside N(T, T ∗ T ′) and its index
equals dim(T ) + 1.

After this finite induction, we get a Morse shelling on Ln which we now have to extend to
Ln+1. By the induction hypothesis and Corollary 2.12, lksd(T∗T ′)(v̂n+1) ∼= sd(lkT∗T ′(vn+1))
carries a shelled h-tiling which uses only basic tiles among which an open simplex if and
only if lkT∗T ′(vn+1) is an open simplex. By concatenation of the cone with apex v̂n+1 over
this h-tiling and deprived of its base, we get the Morse shelling of Ln+1. By Corollary 2.5,
this extension uses only basic tiles and adds a critical one if and only if lkT∗T ′(vn+1) is an
open simplex. By our choice of numbering of the vertices, this case occurs when either
T ∗T ′ is an open simplex, or T is an open simplex and T ′ a closed simplex reduced to vn+1.
The result follows.

Proof of Theorem 3.4. The proof goes along the same lines as the one of Theorem 3.3 and
proceeds by induction on n = dim(T ) + dim(T ′). The minimal dimension for which there
exists a non basic Morse tile is one and the latter is then unique, isomorphic to a closed
simplex deprived of its empty face. If n = 1 then, there are to cases to consider, depending
on whether T is a closed vertex or an open one, that is deprived of its empty face. Set
T = v in the first case and T = v̇ in the second one, whereas T ′ = τ̇ for some closed edge τ .
By Theorem 3.3, sd(v ∗τ) carries a shelled h-tiling which begins with N(v, v∗τ) and uses a
closed simplex as unique critical tile, the latter belonging to N(v, v∗τ) and thus containing
v. By removing v, we get a Morse shelling on sd(v ∗ T ′) which begins with N(v, v ∗ T ′)
and does not use any critical tile. Likewise, Theorem 3.3 provides a Morse shelling on
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sd(v̇ ∗ τ) which begins with N(v̇, v̇ ∗ τ) and uses a unique critical tile of vanishing index in
this neighborhood and a unique critical tile of index one outside. The index zero critical
tile is a closed simplex deprived of its empty face which contains the vertex v̂ deprived of
its empty face. By removing this vertex, we get a Morse shelling on sd(v̇ ∗T ′) which begins
with N(v̇, v̇ ∗T ′) and uses a unique critical tile of index one, thus isomorphic to v̇ ∗T ′, and
located outside this derived neighborhood.

Let us now assume the result proven up to the rank n − 1 and prove it for dim(T ) +

dim(T ′) = n. By Proposition 2.3, T = σ∗
◦
θ and T ′ = σ′∗

◦
θ′ ∗τ̇ ′ for some simplices

σ, σ′, θ, θ′, τ ′. Let us number v0, . . . , vk the vertices of T = σ ∗ θ, beginning with those
of σ and then vk+1, . . . , vn+1 the vertices of T

′
= σ′ ∗ θ′ ∗ τ ′, beginning with those of σ′,

then those of θ′ and ending with those of τ ′. We deduce from Corollary 2.12 a filtration
∅ ⊂ L0 ⊂ L1 ⊂ · · · ⊂ Ln+1 = sd(T ∗ T ′) of relative simplicial complexes, where for every
j ∈ {0, . . . , n + 1}, Lj = N([v0, . . . , vj], T ∗ T ′) = ∪ji=0stsd(T∗T ′)(v̂i). We are again going to
Morse shell Ln+1 by finite induction on j ∈ {0, . . . , n+ 1}. By Corollary 2.12, lksd(T∗T ′)(v̂0)
is isomorphic to sd(lkT∗T ′(v0)) and lkT∗T ′(v0) is either a closed simplex deprived of its empty
face, or a Morse tile for which the induction hypothesis holds. In both cases, sd(lkT∗T ′(v0))
carries a Morse shelling which does not use any closed simplex and by Corollary 2.5,
L0 = v̂0 ∗ lksd(T∗T ′)(v̂0) inherits a Morse shelling which does not use any critical tile. Let
us now assume Lj−1 equipped with a Morse shelling and extend it to Lj, j ∈ {1, . . . , n}.
The tile lkT∗T ′(vj) is a join Tj ∗ T ′j , where the simplex T j (resp. T

′
j ) underlying the basic

tile Tj (resp. T ′j) has vertices v0, . . . , vj−1 (resp. vj+1, . . . , vn+1). By Lemma 2.11, the tile
Tj is basic whereas T ′j is basic if vj is a vertex of τ ′ and Morse non basic otherwise. By
Corollary 2.12, stsd(T∗T ′)(v̂j) ∩ Lj−1 coincides with N(Tj, Tj ∗ T ′j) in lksd(T∗T ′)(v̂j) via the
isomorphism lksd(T∗T ′)(v̂j) ∼= sd(lkT∗T ′(vj)). If vj is not the first vertex of τ ′ or if T ∗ T ′
is not critical, the induction hypothesis or Theorem 3.3 depending on the case provides a
Morse shelling on sd(Tj ∗ T ′j) which begins with N(Tj, Tj ∗ T ′j) and uses no critical tile in
this neighborhood except possibly a closed simplex. The cone with apex v̂j over this Morse
shelling provides a Morse shelling on stsd(T∗T ′)(v̂j) = v̂j ∗ lksd(T∗T ′)(v̂j) and we extend the
Morse shelling of Lj−1 to Lj by concatenation of the latter, depriving however all cones
with apex v̂j over the tiles of N(Tj, Tj ∗ T ′j) of their basis. By Corollary 2.5, this extension
does not add any critical tile. If vj is the first vertex of τ ′ and if T ∗ T ′ is critical, so that
T = Tj is an open simplex and T ′j a closed one, Theorem 3.3 provides a Morse shelling on
sd(Tj ∗ T ′j) which begins with N(Tj, Tj ∗ T ′j) and uses a unique critical tile of index dim(T )
in this neighborhood. The cone with apex v̂j over this Morse shelling provides a Morse
shelling on stsd(T∗T ′)(v̂j) and we extend the Morse shelling of Lj−1 to Lj by concatenation
of the latter, depriving however all cones with apex v̂j over the tiles of N(Tj, Tj ∗ T ′j) of
their basis. By Corollary 2.5, this extension adds one critical tile of index dim(T ) + 1,
so that it is isomorphic to T ∗ T ′. We have now extended the Morse shelling up to Ln
by using a critical tile if and only if T ∗ T ′ is critical and this tile is then unique, disjoint
from N(T, T ∗T ′). But we know from Theorem 3.3 that lksd(T∗T ′)(v̂n+1) ∼= sd(lkT∗T ′(vn+1))
carries a shelled h-tiling which uses only basic tiles and no open simplex since lkτ ′(vn+1) is
a non empty closed simplex. By concatenation of the cone with apex v̂n+1 over this h-tiling
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and deprived of its base, we get the Morse shelling of Ln+1 = sd(T ∗ T ′) without adding
any critical tile by Corollary 2.5. Hence the result.

3.3 Morse shellings on first barycentric subdivisions

We already proved in [32] that the first barycentric subdivision of every relative simplicial
complex carries Morse shellings. We however need the following slightly refined version.

Theorem 3.5. Let S = K \ L be a finite relative simplicial complex and let v be a vertex
of K. Then, sd(S) carries a Morse shelling which begins with stsd(S)(v̂) = N(v, S).

Proof. Let us number σ1, . . . , σN the facets of K, begining with those of stK(v), say
σ1, . . . , σk. It induces a filtration ∅ = K0 ⊂ K1 ⊂ · · · ⊂ KN = K of subcomplexes, where
for every j ∈ {1, . . . , N}, Kj denotes the complex containing σ1, . . . , σj together with their
faces. We then set Pj = Kj \ (Kj−1 ∪ L). This relative facet can be written Tj \ τj, where
Tj is a basic tile and τj a union of faces of Tj of codimension greater than one. Moreover,
by construction, for every j ∈ {1, . . . , k}, Tj = v ∗ T ′j where T ′j is the ridge of Tj opposite
to v, which is contained in lkK(v) and may be deprived of its empty face. By Theorem
3.3, sd(Tj) carries then a Morse shelling which begins with N(v, Tj) and does not use any
open simplex. We now proceed as in the proof of Proposition 3.3 of [32]. Let us denote by

T 1
j , . . . , T

(nj+1)!
j the tiles of this h-tiling following the shelling order. The closed simplex T

p

j

underlying T pj reads {σp0, . . . , σpnj
}, where for every 0 ≤ l ≤ m ≤ nj, σ

p
m is a m-dimensional

face of T
p

j containing σpl . For every p ∈ {1, . . . , (nj + 1)!}, such that T pj intersects sd(τj),
let us denote by ip the greatest element in {0, . . . , nj} such that σpip is contained in τ j.
Then, σpi is contained in τ j for every 0 ≤ i ≤ ip and moreover ip < nj − 1 by assumption.
We deduce that T pj ∩ sd(τj) coincides with the face T pj ∩ [σp0, . . . , σ

p
ip

], so that T pj \ sd(τj)
is a Morse tile. Hence, for every j ∈ {1, . . . , k}, sd(Pj) carries a Morse shelling which
begins with N(v, Pj). Likewise, by Proposition 3.3 of [32], for every j ∈ {k + 1, . . . , N},
sd(Pj) carries a Morse shelling. After concatenation of the shellings of N(v, Pj) for every
j ∈ {1, . . . , k}, we deduce a Morse shelling of N(v, S) which we extend to a Morse shelling
of sd(stS(v)) by concatenation of what remains of the shellings of sd(Pj), j ∈ {1, . . . , k}.
We finally extend the Morse shelling of sd(stS(v)) to the whole sd(S) by concatenation of
the Morse shellings of sd(Pj), j ∈ {k + 1, . . . , N}. Hence the result.

3.4 Proof of Theorem 1.1

By section 3 of [10] we know that perturbing the discrete Morse function f a bit if necessary,
we may assume that its sub level sets {σ ∈ K | f(σ) ≤ m}, m ∈ R, induce a filtration
∅ = K0 ⊂ K1 ⊂ · · · ⊂ KN = K of K such that for every i ∈ {1, . . . , N}, Ki \Ki−1 consists
either of a single simplex σi which is then critical for f , or of a pair of simplices θi, τi, regular
for f , such that θi is a ridge of τi, so that Ki collapses to Ki−1. This filtration induces a
filtration ∅ = L0 ⊂ L1 ⊂ · · · ⊂ LN = sd2(K) of sd2(K), where for every i ∈ {1, . . . , N},
Li = N(sd(Ki), sd(K)) = ∪σ∈Ki

stsd2(K)(ˆ̂σ). We are going to prove that any Morse shelling
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on Li−1 extends to Li and moreover, this extension can be chosen to use a critical tile if
and only if Ki \Ki−1 = {σi} is a critical face of f and this critical tile is then unique, of
the same index dim(σi) as σi. The result then follows by finite induction, since nothing
has to be proven for i = 1. Let thus i ∈ {1, . . . , N} and Li−1 be equipped with a Morse
shelling. Two cases have to be considered. If Ki \ Ki−1 = {σi} is a critical level of f ,
then Li = Li−1 ∪ stsd2(K)(ˆ̂σi). If dim(σi) = 0, this union is disjoint. Then, by Corollary

2.8, lksd2(K)(ˆ̂σi) is isomorphic to sd2(lkK(σi)) and by Theorem 3.5, in fact Theorem 1.3 of

[32], sd2(lkK(σi)) carries a Morse shelling which uses a unique closed simplex containing
the empty face, the other possible critical tiles of vanishing index being deprived of the
empty face. By Corollary 2.12, stsd2(K)(ˆ̂σi) = ˆ̂σi ∗ lksd2(K)(ˆ̂σi) inherits a Morse shelling
which uses a unique critical, a closed simplex. We then obtain by concatenation a Morse
shelling on Li = Li−1 t stsd2(K)(ˆ̂σi) by removing to this closed simplex its empty face if
Li−1 6= ∅. In all cases, this extension adds one critical tile, with vanishing index. Now, if
dim(σi) 6= 0, the simplex σi is maximal in Ki and by Corollary 2.8, lksd2(K)(ˆ̂σi) is isomorphic

to sd
(
sd(∂σi) ∗ sd(lkK(σi))

)
. Moreover, through this isomorphism,

stsd2(K)(ˆ̂σi) ∩ Li−1 ∼= N
(
sd(∂σi), sd(∂σi) ∗ sd(lkK(σi))

)
(1)

The complex sd(∂σi) is shellable since ∂σi is by [5] and we set sd(∂σi) = T0t· · ·tTa the
associated shelled h-tiling, where T0 is a closed simplex, Ta an open one and the remaining
tiles are basic and regular. Likewise, sd(lkK(σi)) carries a Morse shelling by Theorem 3.5,
in fact Theorem 1.3 of [32], and we set sd(lkK(σi)) = T ′0 t · · · t T ′b, where T ′0 is the unique
closed simplex of the Morse shelling, containing the empty face, the other possible critical
tiles of vanishing index being deprived of the empty face. By Theorems 3.3 and 3.4, for
every (l,m) ∈ {0, . . . , a} × {0, . . . , b}, sd(Tl ∗ T ′m) carries a Morse shelling which begins
with N(Tl, Tl ∗ T ′m). Moreover, it uses a critical tile in this neighborhood if and only if
m = 0 and l ∈ {0, a}, this critical tile being unique and isomorphic to a closed simplex
if l = 0 and a critical tile of index dim(∂σi) if l = a. By concatenation of these Morse
shellings of N(Tl, Tl ∗ T ′m), where (l,m) ∈ {0, . . . , a} × {0, . . . , b} follows the lexicographic
order, and then by concatenation of what remains of the Morse shellings of sd(Tl ∗ T ′m),
still following the lexicographic order of {0, . . . , a} × {0, . . . , b}, we get a Morse shelling
of lksd2(K)(ˆ̂σi) which begins with N

(
sd(∂σi), sd(∂σi) ∗ sd(lkK(σi))

)
under the isomorphism

(1). Moreover, the only critical tiles involved in the tiling of this derived neighborhood are
one closed simplex and one critical tile of index dim(∂σi). The cone with apex ˆ̂σi over this
Morse shelling of lksd2(K)(ˆ̂σi) provides a Morse shelling of stsd2(K)(ˆ̂σi) and we extend the
Morse shelling of Li−1 to Li by concatenation of the latter, depriving however the cones
with apex ˆ̂σi over the tiles of N

(
sd(∂σi), sd(∂σi)∗ sd(lkK(σi))

)
of their basis. By Corollary

2.5, this extension from Li−1 to Li adds a unique critical tile, of index dim(σi).
Now, if Ki \Ki−1 = {θi, τi}, where θi is a ridge of τi, we set Mi = Li−1 ∪ stsd2(K)(ˆ̂τi), so

that Li = Mi∪stsd2(K)(
ˆ̂
θi). Again, the simplex τi is maximal in Ki, lksd2(K)(ˆ̂τi) is isomorphic

to sd
(
sd(∂τi) ∗ sd(lkK(τi))

)
by Corollary 2.8 and through this isomorphism,

stsd2(K)(ˆ̂τi) ∩ Li−1 ∼= N
(
sd(∂τi \ θi), sd(∂τi) ∗ sd(lkK(τi))

)
, (2)
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where ∂τi \ θi denotes the simplicial complex ∂τi deprived of the facet θi. The complex ∂τi
carries a classical shelling which ends by the facet θi and induces a shelling on sd(∂τi) by
[5]. We set sd(∂τi) = T0 t · · · t Tc the associated shelled h-tiling and c′ ∈ {0, . . . , c} the
integer such that T0 t · · · t Tc′ provides a shelling of sd(∂τi \ θi). Thus, Tc′+1 t · · · t Tc
provides a shelled h-tiling of the first barycentric subdivision of the open simplex

◦
θi, so that

this shelling is a cone with apex θ̂i and deprived of its base over a shelling of sd(∂θi). For

every j ∈ {c′+1, . . . , c}, we set Tj =
˙̂
θi ∗T ′′j , where T ′′c′+1t· · ·tT ′′c shells sd(∂θi). Likewise,

sd(lkK(τi)) carries a Morse shelling by Theorem 3.5, in fact Theorem 1.3 of [32], and we
set sd(lkK(τi)) = T ′0t · · · tT ′d, where T ′0 is the unique closed simplex of the Morse shelling,
containing the empty face, the other possible critical tiles of vanishing index being deprived
of the empty face. By Theorems 3.3 and 3.4, for every (l,m) ∈ {0, . . . , c′} × {0, . . . , d},
sd(Tl ∗ T ′m) carries a Morse shelling which begins with N(Tl, Tl ∗ T ′m) and does not use
any critical tile in this neighborhood except a unique closed simplex when l = m = 0.
In the same way, for every (l,m) ∈ {c′ + 1, . . . , c} × {0, . . . , d}, sd(Tl ∗ T ′m) carries a
Morse shelling which begins with N(T ′′l , Tl ∗ T ′m) and does not use any critical tile in

this neighborhood, since Tl ∗ T ′m = T ′′l ∗
˙̂
θi ∗ T ′m and none of the Morse tiles

˙̂
θi ∗ T ′m are

closed simplices by Corollary 2.5. By concatenation of these Morse shellings of N(Tl, Tl ∗
T ′m), where (l,m) ∈ {0, . . . , c′} × {0, . . . , d} follows the lexicographic order, and then by
concatenation of the Morse shellings of N(T ′′l , Tl ∗ T ′m), where (l,m) ∈ {c′ + 1, . . . , c} ×
{0, . . . , d} follows the lexicographic order and finally by concatenation of what remains of
the Morse shellings of sd(Tl∗T ′m) following the lexicographic order of {0, . . . , c}×{0, . . . , d},
we get a Morse shelling of lksd2(K)(ˆ̂τi) which begins with N

(
sd(∂τi\θi), sd(∂τi)∗sd(lkK(τi))

)
under the isomorphism (2). Moreover, the only critical tile involved in the tiling of this
derived neighborhood is a closed simplex. The cone with apex ˆ̂τi over the Morse shelling
of lksd2(K)(ˆ̂τi) provides a Morse shelling of stsd2(K)(ˆ̂τi) and we extend the Morse shelling

of Li−1 to Mi by concatenation of the latter, depriving however the cones with apex ˆ̂τi
over the tiles of N

(
sd(∂τi \ θi), sd(∂τi) ∗ sd(lkK(τi))

)
of their basis. By Corollary 2.5, this

extension from Li−1 to Mi does not add any critical tile to the Morse tiling.
It remains to extend the Morse shelling we just obtained on Mi to the whole Li =

Mi∪ stsd2(K)(
ˆ̂
θi), without using any critical tile. By Corollary 2.8, lksd2(K)(

ˆ̂
θi) is isomorphic

to sd
(
sd(∂θi)∗sd(lkK(θi))

)
. The link lkK(θi) contains the vertex lkτi(θi) and we denote with

some abuse by τ̂i the associated vertex of sd(lkK(θi)). By Theorem 3.5, sd(lkK(θi)) carries a
Morse shelling which begins with stsd(lkK(θi))(τ̂i) and we set sd(lkK(θi)) = T ′0t· · ·tT ′e such a
Morse shelling and denote by e′ ∈ {0, . . . , e} the integer such that T ′0t· · ·tT ′e′ Morse shells
stsd(lkK(θi))(τ̂i). The latter is thus a cone with apex τ̂i over a tiling of lksd(lkK(θi))(τ̂i), so that
for every l ∈ {0, . . . , e′}, T ′l = τ̂i ∗T ′′′l , where T ′′′0 t · · · tT ′′′e′ Morse shells lksd(lkK(θi))(τ̂i). By
Corollary 2.8, stsd(lkK(θi))(τ̂i)∩Mi

∼= N
(
sd(∂θi) ∗ τ̂i, sd(∂θi) ∗ sd(lkK(θi))

)
, where sd(∂θi) is

equipped with the shelling T ′′c′+1t· · ·tT ′′c chosen above. By Theorems 3.3 and 3.4, for every
(l,m) ∈ {c′+ 1, . . . , c}×{0, . . . , e′}, sd(T ′′l ∗T ′m) carries a Morse shelling which begins with
N(T ′′l ∗ τ̂i, T ′′l ∗ T ′m) and does not use any critical tile in this neighborhood except a unique
closed simplex when l = c′ + 1 and m = 0. Likewise, for every (l,m) ∈ {c′ + 1, . . . , c} ×
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{e′+ 1, . . . , e}, sd(T ′′l ∗ T ′m) carries a Morse shelling which begins with N(T ′′l , T
′′
l ∗ T ′m) and

does not use any critical tile in this neighborhood, since none of the tiles T ′m, m > e′ can
be a closed simplex even though some might be closed simplices deprived of their empty
faces. By concatenation of the Morse shellings of N(T ′′l ∗ τ̂i, T ′′l ∗ T ′m), where (l,m) ∈
{c′ + 1, . . . , c} × {0, . . . , e′} follows the lexicographic order, and then by concatenation of
the Morse shellings of N(T ′′l , T

′′
l ∗T ′m), where (l,m) ∈ {c′+1, . . . , c}×{e′+1, . . . , e} follows

the lexicographic order and finally by concatenation of what remains of the Morse shellings
of sd(T ′′l ∗ T ′m) following the lexicographic order of {c′ + 1, . . . , c} × {0, . . . , e}, we get a

Morse shelling of lksd2(K)(
ˆ̂
θi) which begins with N

(
sd(∂θi) ∗ τ̂i, sd(∂θi) ∗ sd(lkK(θi))

)
under

the isomorphism given by Corollary 2.8. Moreover, the only critical tile involved in the

tiling of this derived neighborhood is a closed simplex. The cone with apex
ˆ̂
θi over the

Morse shelling of lksd2(K)(
ˆ̂
θi) provides a Morse shelling of stsd2(K)(

ˆ̂
θi) and we extend the

Morse shelling of Mi to Li by concatenation of the latter, depriving however the cones with

apex
ˆ̂
θi over the tiles of N

(
sd(∂θi) ∗ τ̂i, sd(∂θi) ∗ sd(lkK(θi))

)
of their basis. By Corollary

2.5, this extension does not add any critical tile to the Morse tiling. Hence the result.

Remark 3.6. 1) The proof of Theorem 1.1 actually provides a relative version of this
theorem as well. Namely, if f is a discrete Morse function on the relative finite simplicial
complex S = K \L, then the relative simplicial complex sd2(K)\N(sd(L), sd(K)) carries a
Morse shelling whose critical tiles are in one-to-one correspondence with the critical faces
of f , preserving the index.

2) If f is the trivial discrete Morse function on K, for which all simplices are critical,
then Theorem 1.1 provides a Morse shelling on sd2(K) whose critical tiles are in one-to-one
correspondence with the simplices of K, preserving the index. When K is a combinatorial
manifold, this result may be compared with Proposition 6.9 of [24], up to which sd2(K)
inherits in this case a PL-handle decomposition whose handles are in one-to-one corre-
spondence with the simplices of K, preserving the index.

3) The existence of Morse shellings on all barycentric subdivisions of finite simplicial
complexes has already been obtained in [32], but without control on the critical tiles used,
see also Theorem 3.5.

4) Conversely, every Morse shelling on a finite simplicial complex encodes a class of
discrete Morse functions whose critical faces are in one-to-one correspondence with the
critical tiles of the Morse shelling, preserving the index, see [26, 33].

5) Every Morse shelling on a finite simplicial complex provides two spectral sequences
which converge to the (co)homology of the complex and whose first pages are free graded
modules spanned by the critical tiles of the tiling, see [33].

6) K. Adiprasito and B. Benedetti have likewise proved that the second barycentric
subdivision of any linear triangulation of a convex polytope is shellable in the classical
sense, see [2].
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