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Abstract
In constraint satisfaction problems, the variable or-
dering heuristic takes a central place by select-
ing the variables to branch on during backtrack
search. As many hand-crafted branching heuris-
tics have been proposed in the literature, a key is-
sue is to identify, from a pool of candidate heuris-
tics, which one is the best for solving a given con-
straint satisfaction task. Based on the observation
that modern constraint solvers are using restart se-
quences, the best heuristic identification problem
can be cast in the context of multi-armed bandits
as a non-stochastic best arm identification problem.
Namely, during each run of some given restart se-
quence, the bandit algorithm selects a heuristic and
receives a reward for this heuristic before proceed-
ing to the next run. The goal is to identify the best
heuristic using few runs, and without any stochas-
tic assumption about the constraint solver. In this
study, we propose an adaptive variant of Succes-
sive Halving that exploits Luby’s universal restart
sequence. We analyze the convergence of this ban-
dit algorithm in the non-stochastic setting, and we
demonstrate its empirical effectiveness on various
constraint satisfaction benchmarks.

1 Introduction
Constraint satisfaction is a recurring problem that arises in
numerous computer science applications including, among
others, bio-informatics, configuration, planning, scheduling
and software validation. Given a set of decision variables and
a set of constraints, each specifying a relation holding among
some variables, the Constraint Satisfaction Problem (CSP) is
to find an assignment of all variables that satisfies all con-
straints. To cope with this NP-complete problem, constraint
solvers typically interleave backtracking search and inference
in order to efficiently explore the space of assignments.

The variable ordering heuristic plays a key role in con-
straint satisfaction by iteratively selecting the next variable
to branch on during backtrack search. Choosing the right
branching strategy for a given CSP instance can significantly
speed up the resolution, because different variable orderings
can lead to entirely different search trees [Gent et al., 1996].

Unfortunately, discovering an optimal variable ordering is
computationally infeasible, since the complexity of finding
the next variable to branch on for deriving a minimal-size
search tree is DP-hard [Liberatore, 2000]. For this reason,
most constraint satisfaction tasks are handled by using exist-
ing variable ordering heuristics, carefully designed by experts
in Constraint Programming. To this point, a wide spectrum
of hand-crafted heuristics have been proposed in the litera-
ture, ranging from static heuristics, in which variables are or-
dered before search starts, to dynamic heuristics for which
the variable to branch on is selected using information that
is collected during the search process (e.g. [Bessiere and
Régin, 1996; Smith and Grant, 1998; Boussemart et al., 2004;
Refalo, 2004; Michel and Hentenryck, 2012; Habet and Ter-
rioux, 2021; Wattez et al., 2019]). In presence of such a di-
versity, an important question arises:

Given a CSP instance and a set of candidate (variable or-
dering) heuristics available in the solver, which heuristic is
the best for solving the instance?

This question naturally calls for a “bandit” approach, as re-
cently advocated in [Xia and Yap, 2018; Wattez et al., 2020].
Informally, multi-armed bandit problems are sequential de-
cision tasks in which the learning algorithm has access to a
set of arms, and observes the reward for the chosen arm af-
ter each trial. In the context of constraint satisfaction, each
arm is a candidate heuristic and the sequence of trials can be
derived using restarts [Wattez et al., 2020]. More precisely,
modern constraint solvers use a restart scheme that generates
a sequence of “cutoffs” at which backtrack search is restarted
if unsuccessful [Gomes et al., 2000]. Based on this restart
scheme, the solver explores at each run (or trial) a search tree
using the heuristic selected by the learner. When the cutoff is
reached, the solver abandons the current search and restarts,
while the learner receives a reward for the chosen arm, which
reflects the effectiveness of the corresponding heuristic at the
current run.

Conceptually, the performance of a bandit algorithm lies in
its ability to interleave exploration by acquiring new informa-
tion about arms, and exploitation by selecting an optimal arm
based on the available information. In the standard cumula-
tive regret setting, this performance is measured by the differ-
ence of cumulative rewards between the best arm taken from
the benefit of hindsight, and the sequence of arms selected
by the learner [Bubeck and Cesa-Bianchi, 2012]. This per-



formance metric was used in [Wattez et al., 2020], together
with well-known low-regret bandit algorithms, such as UCB
[Auer et al., 2002a] and EXP3 [Auer et al., 2002b]. How-
ever, when solving a CSP instance using search-and-restart,
maximizing the cumulative reward of selected heuristics is
not necessarily the best option. Indeed, evaluating the re-
ward of a heuristic at some trial has a cost that depends on
the cutoff associated with the trial. To this point, most restart
schemes used in practice are far from uniform: the cutoff
may vary from one run to another. A prototypical example is
Luby’s universal scheme [Luby et al., 1993], whose sequence
of cutoffs (1, 1, 2, 1, 1, 2, 4, 1, . . .) grows linearly in a non-
monotonic way. Thus, by taking into account a given restart
sequence, the learner should focus on exploration at runs as-
sociated with low cutoffs, and gradually turn to exploitation
at runs with larger cutoffs.

These considerations warrant the use of an alternative ban-
dit setting, called pure exploration or best arm identification.
Here, the goal is to find an optimal arm as quickly as possi-
ble, and the performance of the learner is typically measured
by the number of exploration steps needed to converge. Al-
though most approaches to pure exploration operate in the
stochastic regime, where the rewards of each arm are drawn at
random according to a probability distribution (e.g. [Audib-
ert et al., 2010; Kaufmann et al., 2016]), recent studies have
considered the more general non-stochastic regime, where the
sequence of rewards for each arm is convergent, but nothing
is known about its rate of convergence [Jamieson and Tal-
walkar, 2016; Li et al., 2017]. The last regime is more appro-
priate for constraint satisfaction tasks, since the rewards ob-
served for some heuristic may depend on the trials at which
the heuristic has been selected.

With these notions in hand, we call best heuristic iden-
tification the problem of finding as quickly as possible a
variable ordering heuristic with optimal (asymptotic) reward,
given a CSP instance, a pool of candidate heuristics, and a
predefined restart scheme. Our main focus in this paper is
the aforementioned Luby’s universal scheme, which is regu-
larly used in practice. Based on the binary tree structure of
Luby’s sequence, we propose a best arm identification algo-
rithm inspired from Successive Halving [Karnin et al., 2013;
Jamieson and Talwalkar, 2016]. Our algorithm, called Adap-
tive Single Tournament (AST), uses single-elimination tour-
naments for successively eliminating half of all currently re-
maining heuristics, before proceeding to trials with larger
cutoffs. We examine the convergence of this algorithm in
the non-stochastic setting, and we demonstrate its effective-
ness on various constraint satisfaction benchmarks. Notably,
by selecting the best heuristic on large cutoffs of Luby’s se-
quence, AST outperforms the standard bandit methods UCB
and EXP3 advocated in [Wattez et al., 2020].

The rest of paper is organized as follows. The background
about non-stochastic best arm identification is introduced in
Section 2, and the best heuristic identification problem is pre-
sented in Section 3, together with an analysis of our algo-
rithm. Comparative experiments are reported in Section 4.
Finally, we conclude with some perspectives of research in
Section 5. The proofs of theoretical results and further exper-
imental results are left in the Supplementary Material.

2 Best Arm Identification
For ease of reference, we use [n] to denote the set {1, · · · , n}.
Multi-armed bandit problems can be formulated as infinitely
repeated games between a learning algorithm and its environ-
ment. During each trial t ∈ N, the learner plays an arm i
taken from a predefined set [K] of arms, and the environment
responds with a reward ri(t) for this arm. In this study, we
assume that for each trial t ∈ N and each arm i ∈ [K], the
feedback ri(t) is generated from a predefined reward function
ri(·) : N→ [0, 1] for which the limit limt→∞ ri(t) exists and
is equal to νi. Since reward functions do not change over
time, the environment is “oblivious” to the learner’s actions.

This non-stochastic setting introduced in [Jamieson and
Talwalkar, 2016; Li et al., 2017] lies between two extreme
cases: the stochastic regime where each reward ri(t) is an
i.i.d. sample from a fixed probability distribution supported,
and the adversarial regime where each reward ri(t) is an arbi-
trary value that can be chosen adaptively by the environment,
based on all the arms that the learner has played so far. As
observed in [Jamieson and Talwalkar, 2016], the stochastic
regime is a special case of the non-stochastic setting, which
in turn is a special case of the adversarial regime.

In the (non-stochastic) best arm identification problem,
the learning algorithm is given an exploration period during
which it is allowed to gather information about reward func-
tions. The goal of the learner is to minimize the number of
trials required to explore before committing to an optimal arm
on all subsequent trials. More formally, suppose without loss
of generality that ν1 > ν2 ≥ · · · ≥ νK Then, the perfor-
mance of the learner is given by the smallest integer τ ∈ N
such that for any trial t ≥ τ , the learner is playing 1. Now, let

∆min = min
i=2,··· ,K

∆i where ∆i = ν1 − νi

are the gaps of suboptimal arms. In the stochastic best
arm identification setting, these gaps are sufficient to derive
bounds on the probability that the learner is selecting the right
arm at horizon τ (e.g. [Kaufmann et al., 2016]). However, in
the non-stochastic setting, we also need to approximate the
convergence rate of reward functions ri(·). To this end, let

ρmax(t) = max
i∈[K]

ρi(t) where ρi(t) = sup
t′≥t
|νi − ri(t′)|

Each “envelope” ρi(·) is the point-wise smallest non-
increasing function from N to [0, 1] satisfying |νi − ri(t)| ≤
ρi(t) for all t. The quasi-inverse of ρmax(·) is given by

ρ−1
max(v) = min{t ∈ N : ρ(t) ≤ v}

By coupling the smallest gap ∆min with the function ρ−1
max(·),

which together capture the intrinsic difficulty of the learning
problem, we can derive a simple upper bound on the length
of the exploration phase required by the learner to converge
towards an optimal arm. Namely,
Proposition 1. There exists a learning algorithm such that,
given as input [K], ρ−1

max(·) and ∆min, after an exploration
period of length

τ = K + ρ−1
max

(
∆min

2

)
the algorithm always returns the best arm.



Algorithm 1: Adaptive Successive Halving (ASH)
Input: A set of arms [K]

Set T0 = Kdlog2Ke
for p = 0, 1, . . . do

Set S0 = [K]
for q = 0, 1, · · · , dlog2(K)e − 1 do

Play each arm in Sq for sq times, where

sq =

⌊
Tp

|Sq|dlog2(K)e

⌋
Set Sq+1 as the bSq/2c best arms in Sq

measured according to their sqth reward
Play the unique arm in Sdlog2(K)e
Set Tp+1 = 2Tp

Of course, in multi-armed bandit problems, the reward
functions ri(·) are hidden, and hence, nothing is a priori
known about the envelopes ρi(·) and the gaps ∆i. So, the
learner has to deal with this issue by devising an exploration
strategy whose performance is reasonably close to τ . A com-
mon strategy for the best arm identification task is the Suc-
cessive Halving algorithm which was analyzed in both the
stochastic setting [Karnin et al., 2013] and the non-stochastic
setting [Jamieson and Talwalkar, 2016].

In Algorithm 1, we present an adaptive, parameter-free
version of Successive Halving (called ASH) that uses the so-
called “doubling trick” for circumscribing the right amount
of exploration. More precisely, each iteration of the outer
loop consists of an exploration period, specified by the inner
loop, followed by an exploitation period during which ASH
is playing the unique remaining arm in its pool Sdlog2(K)e.
The doubling trick is then performed at the end of the outer
loop. Based on a simple extension of the analysis given in
[Jamieson and Talwalkar, 2016], we get the following result.
Proposition 2. ASH is playing an optimal arm at the end of
any iteration p of the outer loop, whenever

p ≥ 2 + log2

[
Kdlog2Ke

(
1 + ρ−1

max

(∆min

2

))]
3 Best Heuristic Identification
How can we adapt the paradigm of Successive Halving to
constraint satisfaction tasks? This is the purpose of this sec-
tion; after introducing some technical background about con-
straint satisfaction, we present a family of algorithms inspired
from ASH that identify an optimal variable ordering heuristic.

3.1 Constraint Satisfaction
Recall that any instance P of the Constraint Satisfaction
Problem (CSP) consists of a finite set of decision variables
vars(P ), and a finite set of constraints ctrs(P ). Each vari-
able x takes values from a finite domain, denoted dom(x).
Each constraint c is specified by a relation rel(c) over a set
of variables, called the scope of c, and denoted scp(c). The
arity of a constraint c is the size of its scope, and the degree

of a variable x is the number of constraints in ctrs(P ) in-
volving x in its scope. A solution to P is the assignment of
a value to each variable in vars(P ) such that all constraints
in ctrs(P ) are satisfied. The instance P is satisfiable if it
admits at least one solution, and it is unsatisfiable otherwise.

A standard approach for solving CSP instances is to per-
form a backtracking search on the space of partial solutions,
and to enforce a property called generalized arc consistency
[Mackworth, 1977] on each decision. The resulting MAC
(Maintaining Arc Consistency) algorithm [Sabin and Freuder,
1994] partitions the search space using a binary search tree T .
For each internal node of T , a pair (x, v) is selected where x
is an unfixed decision variable and v is a value in dom(x).
Based on this pair, two branches are generated: the assign-
ment x = v and the refutation x 6= v. The choice of x is
decided by a variable ordering heuristic, and the choice of
v is determined by some value ordering heuristic, which is
usually the lexicographic order over dom(x) by default.

In modern constraint solvers, the above approach is com-
bined with a restart scheme that terminates and restarts search
at regular intervals. The effect of such restarts is to early
abort long runs, which thus saves on the cost of branching
mistakes and resulting “heavy-tailed” phenomena [Gomes
et al., 2000]. Formally, any restart scheme is a mapping
σ : N → N+, where σ(t) denotes the cutoff at which the
backtracking search is terminated during the tth run. In prac-
tice, σ(t) is rescaled to capture a relevant cutoff unit such
as, for example, the total number of backtracks [Gomes et
al., 2000] or the total number of wrong decisions [Bessiere et
al., 2004]. In this study, we concentrate on Luby’s universal
scheme σluby(·) which uses powers of two: when the cutoff
2i is used twice, the next cutoff is 2i+1. More formally:

σluby(t) =

{
2i−1 if t = 2i − 1

σluby

(
t− 2i−1 + 1

)
if 2i−1 ≤ t < 2i − 1

Based on the MAC algorithm and Luby’s restart scheme, the
solver builds a sequence of search trees 〈T1, T2, . . .〉, where Tt
is the search tree explored by MAC until it reaches the (possi-
bly rescaled) cutoff σluby(t). Importantly, the behavior of the
constraint solver is generally non-stochastic. Indeed, even if
it restarts from the beginning, the solver can memorize some
relevant information about previous explorations. For exam-
ple, the solver may keep in a table the number of constraint
checks in the past runs, or it can maintain in a cache the no-
goods which have frequently occurred in the search trees ex-
plored so far [Lecoutre et al., 2007].

3.2 Learning to Branch
As mentioned in the introduction, various heuristics have
been proposed for ordering decision variables during tree
search. Examples of such variable ordering heuristics com-
monly used in constraint solvers include dom/ddeg [Bessiere
and Régin, 1996], dom/wdeg [Boussemart et al., 2004],
impact [Refalo, 2004], activity [Michel and Hentenryck,
2012], chs [Habet and Terrioux, 2021] and cacd [Wattez et
al., 2019]. For instance, dom/ddeg branches on the variables
with the smallest ratio between the size of their current do-
main and the current degree formed by counting only unfixed
neighboring variables.
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Figure 1: Tree-structured view of Luby’s sequence for the first 15
runs. The cutoff sequence is derived by following the blue path,
while the behavior of AST is captured by the red paths.

Given a pool H = {h1, · · · , hK} of candidate variable or-
dering heuristics, the problem of identifying the best heuristic
for some CSP instance P can be cast as a “best arm identifica-
tion” task, in which the environment is played by the solver.
During each run t of the restart sequence, the learner starts
by selecting an index i ∈ [K]. Then, the solver calls the MAC
algorithm with the heuristic hi for building a search tree Tt,
which is used to infer a reward rt(i) ∈ [0, 1] supplied to the
learner. As suggested in [Wattez et al., 2020], this reward can
be measured using the (normalized) pruned tree size, which
captures the ability of the solver to quickly prune large por-
tions of its search space. More formally, let rft(Tt) be the
set of internal nodes where each child is a refutation leaf, and
for each such node n, let fut(n) be the set of variables that
are left unfixed at n. Then,

rt(i) =
log2

(∑
n∈rft(Tt)

∏
x∈fut(n) |dom(x)|

)
log2

(∏
x∈vars(P ) |dom(x)|

)
Computing such rewards takes linear space by exploiting

the depth-first traversal of the search space performed by the
MAC algorithm. However, observing rt(i) at the end of each
run t has a cost, which corresponds to the time spent by
the constraint solver in exploring the search tree Tt with the
branching heuristic hi. Because this runtime depends on the
tth cutoff in the restart sequence, the learner should take into
consideration the solver’s restart scheme when trading explo-
ration periods with exploitation phases.

From this perspective, the sequence of cutoffs in Luby’s
universal scheme σluby(·) can be viewed as an infinite binary
tree organized into layers. This is illustrated in Figure 1 for
the first 15 runs. For each layer l = 0, 1, · · · , let tl be the
first run in the sequence with cutoff 2l. Since by construc-
tion tl is the root of a complete binary tree of size 2l+1 − 1,
this suggests using a variant of Successive Halving that starts
by exploring 2l candidate heuristics at the leaves, and suc-
cessively eliminates half of all currently remaining heuristics
until only one heuristic is left at the root tl. Furthermore,
since tl+1 = 2tl + 1, this strategy can rely on the doubling
trick for reaching the layer l where the best heuristic in H is
identified with certainty at tl.

Algorithm 2: Adaptive Single Tournament (AST)
Input: A set of arms [K], a positive integer m ≥ 1

Set S = [K]
for each run t = 1, 2, . . . do

if σluby(t) = 1 then
Select an arbitrary arm i ∈ S
Set S = S \ {i} and if S = ∅ then set S = [K]

else
Let ileft be the arm played at run t− σluby(t)
Let iright be the arm played at run t− 1
Choose i ∈ {ileft, iright} with best reward ri

Play i for m times and set ri to the mth observed
reward at run t

With these notions in hand, we present the Adaptive Single
Tournament (AST) algorithm that is based on Luby’s restart
scheme for identifying the best heuristic on some CSP in-
stance. Of course, AST is intended to be used alongside a
constraint solver with H = {h1, · · · , hK} available branch-
ing heuristics. As specified in Algorithm 2, the learner fo-
cuses on exploration at cutoff 1, and progressively exploits at
larger cutoffs using single tournaments. Based on the tree-
structured view of Luby’s sequence (Figure 1), the learner
explores with equal frequency each arm in [K] at the leaves
of the tree. When it reaches an internal node of the tree, the
learner selects the best arm among those played at the chil-
dren of that node. Finally, AST uses a parameter m for testing
the behavior of the constraint solver on candidate heuristics.
For each run t of the restart sequence, the learner plays m
times the arm i selected at t. Correspondingly, the solver per-
forms m backtracking searches with cutoff σluby(t), and the
learner stores the last observed reward.1

Proposition 3. AST is playing an optimal arm at any root
node tl of Luby’s sequence, whenever the layer l satisfies:

l ≥ 1 +
dlog2Ke2

2

{
2 + log2

⌊
1

m

(
1 + ρ−1

max

(∆min

2

))⌋}
4 Experiments
After an excursion into the theoretical aspects of our frame-
work, we now turn to experiments. Given a set P of CSP
instances and a pool H of variable ordering heuristics, the
learning objective is to identify for each instance P ∈ P an
optimal heuristic h ∈ H , using the MAC algorithm for back-
tracking search and Luby’s sequence for the restart scheme.

For the set P , we have considered all CSP instances se-
lected for the XCSP3 competitions from 2017 to 2019.2 This
amounts to 810 CSP instances classified into 83 families. For
the pool H , we have considered 8 heuristics, namely:

H = {lex, dom, dom/ddeg, abs, ibs, dom/wdeg, chs, cacd}
1Interestingly, AST shares common features with the top-K rank

aggregation algorithm proposed by [Mohajer et al., 2017]. But their
algorithm operates in the stochastic dueling bandit setting, which is
different from the non-stochastic best arm identification setting.

2http://www.xcsp.org/competitions/

http://www.xcsp.org/competitions/


#SOLV. TIME (S)

VBS 574 52, 175
AST8 557 93, 922
AST16 556 94, 844
AST1 555 97, 506
AST2 555 99, 044
AST4 553 100, 387
UCB 550 115, 210
UNI 547 115, 608
cacd 543 140, 289

#SOLV. TIME (S)

chs 528 157, 484
dom/wdeg 520 179, 228
EXP3 480 269, 192
abs 420 426, 498
dom/ddeg 406 442, 194
dom 404 467, 824
ibs 383 495, 997
lex 382 509, 658

Table 1: Ranking of the branching strategies according to the num-
ber of solved instances and the cumulative runtime.

The best arm identification algorithm AST was compared
with the state-of-the-art bandit algorithms UCB [Auer et al.,
2002a] and EXP3 [Auer et al., 2002b], together with the base-
lines UNI and VBS. Here, UNI is the “uniform” strategy which
draws uniformly at random a heuristic from H on each run
of the restart sequence. VBS is the Virtual Best Solver that
selects the best variable ordering heuristic in hindsight. This
baseline can be derived by first playing each candidate heuris-
tic h ∈ H on all runs of the restart sequence, and then by
selecting the heuristic for which P was solved with the least
amount of time. For UCB and EXP3, we have considered the
versions used in [Wattez et al., 2020], and for AST, we have
evaluated the algorithm using m ∈ {1, 2, 4, 8, 16}.

Our experiments have been performed with the constraint
solver ACE3, by keeping the default option for most parame-
ters. Notably, the solver was allowed to record nogoods af-
ter each restart [Lecoutre et al., 2007] in order to improve
its performance during the sequence of runs. Actually, the
unique exception to the default setting was to discard the last
conflict policy [Lecoutre et al., 2009], which would intro-
duce a bias in the behavior of variable ordering heuristics.
For all bandit algorithms UCB, EXP3, and AST, the reward of
each selected heuristic was measured using the (normalized)
pruned tree size, as specified in Section 3. Finally, each cut-
off σluby(t) of Luby’s sequence was rescaled to u · σluby(t),
where u = 150, corresponding to u wrong decisions (con-
flicts) per cutoff unit. All experiments have been conducted
on a 3.3 GHz Intel XEON E5-2643 CPU, with 32 GB RAM,
with a timeout set to 2, 400 seconds.

4.1 Main Results
In Table 1 are reported the results comparing the bandit al-
gorithms UCB, EXP3 and AST (for different values of m), and
the baselines UNI and VBS, together with the variable order-
ing heuristics in H . Here, we have discarded instances which
could not be solved by any strategy. The competitors, referred
to as branching strategies, are ranked according to the num-
ber of solved instances and, in case of tie, according to the
cumulative runtime.

At the bottom of the ranking lie the heuristics with the
worst performance: using lex, ibs, dom, dom/ddeg, or abs,
the constraint solver ACE can solve at most 420 instances, tak-
ing more than 118 hours to handle them. The bandit algo-
rithm EXP3 is just above, with a resolution of 480 instances

3https://github.com/xcsp3team/ace
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Figure 2: Cactus plots of the best branching strategies.

in approximately 75 hours. We mention in passing that EXP3
operates in the adversarial bandit setting. Such a bad perfor-
mance indicates that even if the solver can be non-stochastic,
its behavior is not necessarily competitive with respect to
the learner. For the next three heuristics dom/wdeg, chs
and cacd, at least 520 instances could be solved within less
than 50 hours. The simple uniform strategy UNI for selecting
heuristics achieves a decent performance with 550 solved in-
stances within 32 hours. To this point, we can observe that
the bandit algorithm UCB, which operates in the stochastic
regime is not much better: only 3 additional instances could
be solved using almost the same amount of time. Unsurpris-
ingly, VBS lies at the top of the ranking, with 574 instances
solved in less than 15 hours. Interestingly, all configurations
of AST are just below by solving, on average, 555 instances
in less than 27 hours.

These results are corroborated by the cactus plots of the
best strategies, as reported in Figure 2. Each plot indicates
the number of solved instances (x-axis) at any time (y-axis).
The dotted-line plots correspond to the performances of the
three best heuristics in H , while the dashed-line plots capture
the performances of the baselines UNI and VBS, and the ban-
dit algorithm UCB.4 Finally, the cactus plots of the different
configurations of AST are indicated using solid lines. Again,
we can observe that UCB and UNI have similar performances,
when considering the number of solved instances per amount
of time. We can also see that the behavior of ASH is remark-
ably stable when varying m.

4.2 Pairwise Comparisons
Although our bandit algorithm AST can solve more instances
in P than any single heuristic in H , we would like to deter-
mine whether it is capable of solving any instance P that can
be solved by some heuristic in H . More generally, the goal
here is to compare bandit approaches with respect to each
h ∈ H , on any CSP instance P for which we know that P
can be solved by h before reaching the timeout.

To this end, Figure 3 provides a heatmap of the different
branching strategies, by reporting cacd, UNI, UCB, AST (for
m ∈ {1, 8}) and VBS on the rows, and all variable ordering
heuristics in H on the columns. In this heatmap, each entry

4As EXP3 could not solve at least 500 instances, its cactus plot is
not reported here.

https://github.com/xcsp3team/ace
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Figure 3: Heatmap of the branching strategies.

with row i and column j is a pair a/b, where a is the num-
ber of instances in P that could be solved by i but not by j,
and conversely, b is the number of instances in P that could
be solved by j but not by i. For example, the learning al-
gorithm AST with m = 8 (second row) was able to solve 41
instances which could not be solved using the single heuris-
tic dom/wdeg (third column), but the last one could solve 4
instances upon which AST failed. For the sake of readability,
the colors of the entries are specified using the ratio b/a+b; a
value close to 1 corresponds to a light color, which in turn
indicates that the branching strategy at row i often fails in
handling instances solved by the heuristic at column j.

Obviously, VBS never fails since it is selecting the best
heuristic in hindsight. More interestingly, we can observe on
the last row that cacd is not systematically better than other
heuristics. The row comparisons between UNI, UCB and AST
reveal important differences, when focusing on the first three
columns of the heatmap, which correspond to the heuristics
cacd, chs and dom/wdeg. Notably, the uniform strategy UNI
is often dominated by these heuristics when they prove to be
efficient on solving some CSP instances. For example, UNI
was unable to deal with 16 instances which could be solved
by cacd. On the other hand, UCB and AST (m = 8) are more
robust by respectively solving 5 and 8 additional instances.
Similar observations hold for chs and dom/wdeg. Finally,
it turns out that UCB is always dominated by AST (for both
m = 1 and m = 8), when they are compared with respect to
the most efficient heuristics cacd, chs and dom/wdeg.

4.3 Finer-Grained Analysis
We conclude these experiments by comparing UCB and AST
on some specific instances. Recall that UCB aims at maximiz-
ing the cumulative reward of selected heuristics, whatever be-
ing the sequence of cutoffs. Contrastingly, the goal of AST is
to identify the best heuristic on the runs with large cutoffs.
Figure 4 illustrates the resulting behaviors on two CSP in-
stances (from families Primes and Rlfap). For both UCB and
AST, each cutoff κ ranging from 1 to 1024 is associated with a
bar-plot indicating the proportion of heuristics selected at the
runs {t : σluby(t) = κ}. In light of these graphics, the diver-
gence between UCB and AST is remarkable: while UCB fails
at identifying a unique heuristic at large cutoffs, AST quickly
converges through successive halving, which is easily recog-
nizable from one bar-plot to the next.
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Figure 4: Proportions of heuristics selected by UCB (left) and AST
(right) at each cutoff of Luby’s sequence, for the CSP instances
Primes-15-60-3-5 and Rlfap-scen-11-f01 c18.

5 Conclusion
In this paper, we have focused on the best heuristic identi-
fication problem, which is to learn an optimal variable or-
dering heuristic for a CSP instance, given a set of candidate
heuristics. By formulating this problem as a non-stochastic
best-arm identification task, we have presented a bandit algo-
rithm (AST) inspired from Successive Halving that takes into
account the structure of Luby’s universal sequence. For this
algorithm, we have provided a convergence analysis, together
with comparative results on various CSP instances.

A natural perspective of research that emerges from this
study is to design best-heuristic identification algorithms for
other universal restart schemes such as, for example, the ge-
ometric sequence examined in [Wu and van Beek, 2007]. An
alternative and arguably more challenging perspective is to
learn both branching heuristics and propagation techniques,
for solving constraint satisfaction tasks. Thus, each arm is
here a pair formed by a candidate heuristic and a candidate
propagator. Yet, since the choice of the right propagation
technique depends on the depth at which backtracking search
is performed [Balafrej et al., 2015], the corresponding best-
arm identification problem should be examined in a contex-
tual bandit setting, for which many questions remain open.
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Bubeck, and Rémi Munos. Best arm identification in
multi-armed bandits. In Proc. of COLT’10, pages 41–53,
2010.

[Auer et al., 2002a] Peter Auer, Nicolò Cesa-Bianchi, and
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A1. Proofs
Proof of Proposition 1. Suppose that the learner starts by playing any arm in an arbitrary way until t0 = ρ−1

max(∆min/2). Next,
the learner plays each arm i ∈ [K] at trial ti = i + t0, and stores the observed reward ri(ti). Then, at each trial t > tK ,
the learner plays any arm i∗ for which the stored value ri∗(ti∗) is maximum. Again, suppose without loss of generality that
ν1 > ν2 ≥ · · · ≥ νK . Since tK = τ , we must prove that i∗ = 1. To this end, we only need to show that r1(t1) > ri(ti) for
i = 2, · · · ,K. This can be established as follows:

r1(t1)− ri(ti) = r1(t1)− ν1 + νi − ri(ti) + ∆i

≥ −ρ1(t1)− ρi(ti) + ∆i

≥ −ρmax(t1)− ρmax(ti) + ∆i > 0

where the first inequality uses the definitions of ρ1(·) and ρi(·), the second inequality follows from ρ1(t1) ≤ ρmax(t1) and
ρi(ti) ≤ ρmax(ti), and the last inequality follows from the fact that max{ρmax(t1), ρmax(ti)} < ∆min/2 ≤ ∆i/2.

Proof of Proposition 2. Based on the analysis of the non-adaptive version of ASH in [Jamieson and Talwalkar, 2016], if the
value of Tp in the inner loop is set to

B = 2Kdlog2Ke
(

1 + ρ−1
max

(∆min

2

))
(1)

then learner is guaranteed to play an optimal arm at the end of the pth iteration of the outer loop. Furthermore, since the value
of Tp is doubled at each iteration of the outer loop, we only need an exploration phase of length 2B in the worst case to return
the best arm at all subsequent exploitation phases. By taking logarithms, the result follows.

Proof of Proposition 3. Based on the proof of Theorem 1 in [Jamieson and Talwalkar, 2016], suppose that the inner loop of
ASH is run with T = B, as set in (1), and consider any iteration q = 0, 1, · · · , dlog2Ke − 1 of this loop. If the best arm is a
member of Sq , then must be a member of Sq+1 whenever it has been played

sq =

⌊
Tp

|Sq|dlog2(K)e

⌋
times. Now, by extending this invariant property to AST, suppose that the learner has reached a root tl of Luby’s sequence,
where l is the number of layers of the corresponding binary tree. Consider any layer q = 0, 1, · · · , dlog2Ke − 1 and suppose
that the best arm was selected on

s′q =

⌊
2lTp

mKdlog2(K)e

⌋
nodes of the tree at layer q. Then, using sq = ms′q , we know that the best arm will be selected on at least one node of the tree
at layer q + 1. Furthermore, we also know that at layer q + 1 at least half of distinct arms have been eliminated from layer
q. Combining both properties, it follows that the best arm will be selected on all nodes of the tree at layers dlog2Ke, · · · , l,
whenever it has been selected

dlog2 Ke−1∏
q=0

2q ·
⌊

Tp
mKdlog2(K)e

⌋
(2)

times at the leaves of the tree. Thus, by taking the logarithm of (2), the learner if guaranteed to select the best arm at any root
tl of Luby’s sequence, whenever

l ≥ 1 +

dlog2 Ke−1∑
q=0

(
q + log2

⌊
Tp

mKdlog2(K)e

⌋)
(3)

The result follows by reporting (1) in (3) and rearranging.

A2. Additional Experiments
In Table 2, we provide a detailed comparison of the different strategies according to the CSP families of the set P . Namely, for
each family and each strategy, we give the number of instances of the family solved by the strategy, followed the cumulative
runtime for solving these instances. For example, AST (m = 8) solves the 6 instances of the AllInterval family, using a
cumulative runtime of 12s.



VBS AST8 AST1 UCB UNI cacd chs dom/wdeg

aim #03 (6s) #03 (6s) #03 (6s) #03 (7s) #03 (7s) #03 (6s) #03 (6s) #03 (6s)
AllInterval #06 (12s) #06 (12s) #06 (12s) #06 (12s) #06 (12s) #06 (12s) #06 (12s) #06 (12s)
bdd #04 (32s) #04 (46s) #04 (37s) #04 (38s) #04 (40s) #04 (46s) #04 (49s) #04 (48s)
Bibd #15 (22,337s) #14 (24,559s) #14 (24,435s) #13 (27,513s) #13 (26,651s) #10 (33,820s) #10 (34,385s) #10 (33,842s)
Blackhole #08 (9,618s) #08 (9,620s) #08 (9,620s) #08 (9,621s) #08 (9,620s) #08 (9,619s) #08 (9,653s) #08 (9,618s)
bmc #04 (4,844s) #04 (4,846s) #04 (4,847s) #04 (4,846s) #04 (4,847s) #04 (4,848s) #04 (4,847s) #04 (4,845s)
bqwh #05 (9s) #05 (16s) #05 (20s) #05 (9s) #05 (9s) #05 (16s) #05 (9s) #05 (9s)
Cabinet #04 (12s) #04 (20s) #04 (18s) #04 (16s) #04 (15s) #04 (17s) #04 (22s) #04 (23s)
CarSequencing #19 (13,351s) #19 (14,572s) #18 (14,132s) #18 (15,665s) #18 (14,318s) #19 (15,533s) #15 (21,006s) #15 (23,150s)
color X2 #01 (8s) #01 (10s) #01 (9s) #01 (11s) #01 (11s) #01 (8s) #01 (10s) #01 (8s)
ColouredQueens #04 (33,607s) #04 (33,607s) #04 (33,611s) #04 (33,608s) #04 (33,608s) #04 (33,607s) #04 (33,607s) #04 (33,608s)
composed #04 (10s) #04 (10s) #04 (10s) #04 (11s) #04 (11s) #04 (10s) #04 (10s) #04 (10s)
ConsecutiveSquarePacking #02 (28,901s) #02 (29,101s) #01 (31,210s) #02 (30,527s) #01 (31,221s) #02 (30,403s) #02 (30,866s) #02 (28,901s)
CostasArray #06 (100s) #06 (190s) #06 (181s) #06 (299s) #06 (299s) #06 (207s) #06 (1,475s) #06 (2,377s)
CoveringArray #06 (101s) #06 (68s) #06 (383s) #06 (791s) #06 (982s) #03 (7,207s) #06 (102s) #02 (9,603s)
cril #04 (20s) #04 (26s) #04 (24s) #04 (31s) #04 (31s) #03 (2,643s) #04 (201s) #04 (53s)
Crossword #11 (21,921s) #09 (25,264s) #10 (22,681s) #10 (24,230s) #10 (23,601s) #10 (24,951s) #10 (23,092s) #10 (23,087s)
CryptoPuzzle #06 (11s) #06 (11s) #06 (21s) #06 (11s) #06 (11s) #06 (11s) #06 (11s) #06 (14s)
DeBruijnSequence #06 (66s) #06 (137s) #06 (76s) #06 (138s) #06 (76s) #06 (76s) #06 (75s) #06 (75s)
DiamondFree #06 (59s) #06 (62s) #06 (64s) #06 (62s) #06 (64s) #06 (60s) #06 (86s) #06 (69s)
Domino #06 (12s) #06 (13s) #06 (13s) #06 (13s) #06 (13s) #06 (12s) #06 (12s) #06 (12s)
driverlogw #06 (32s) #06 (47s) #06 (49s) #06 (62s) #06 (43s) #06 (33s) #06 (34s) #06 (33s)
Dubois #13 (14,781s) #11 (18,449s) #11 (20,796s) #11 (18,791s) #10 (20,681s) #10 (21,115s) #13 (14,784s) #10 (20,480s)
ehi #04 (14s) #04 (15s) #04 (15s) #04 (15s) #04 (15s) #04 (14s) #04 (15s) #04 (15s)
Eternity #07 (19,866s) #06 (21,857s) #07 (20,404s) #07 (19,567s) #07 (20,744s) #07 (19,991s) #06 (21,692s) #07 (20,933s)
Fischer #02 (9,628s) #02 (9,629s) #02 (9,652s) #02 (9,628s) #02 (9,629s) #02 (9,628s) #02 (9,629s) #02 (9,676s)
frb #07 (24,898s) #04 (30,355s) #05 (28,713s) #04 (30,653s) #05 (29,081s) #03 (31,223s) #05 (27,517s) #06 (25,685s)
geometric #04 (23s) #04 (30s) #04 (28s) #04 (31s) #04 (35s) #04 (64s) #04 (34s) #04 (24s)
gp10 #00 (2,400s) #00 (2,400s) #00 (2,400s) #00 (2,400s) #00 (2,400s) #00 (2,400s) #00 (2,400s) #00 (2,400s)
GracefulGraph #08 (21,890s) #08 (22,580s) #08 (22,623s) #07 (24,191s) #07 (24,210s) #08 (24,075s) #08 (21,939s) #07 (24,116s)
graph #07 (11,965s) #04 (17,104s) #04 (17,054s) #03 (18,676s) #02 (19,335s) #06 (14,877s) #02 (19,330s) #04 (15,775s)
Hanoi #06 (79s) #06 (80s) #06 (81s) #06 (81s) #06 (80s) #06 (80s) #06 (79s) #06 (81s)
Haystacks #03 (31,223s) #03 (31,207s) #03 (31,207s) #03 (31,211s) #04 (28,904s) #02 (33,612s) #03 (31,292s) #02 (33,605s)
jnh #03 (8s) #03 (9s) #03 (9s) #03 (9s) #03 (9s) #03 (8s) #03 (8s) #03 (8s)
Kakuro #12 (107s) #12 (97s) #12 (162s) #12 (90s) #12 (464s) #11 (2,428s) #12 (108s) #11 (2,429s)
Knights #05 (3,055s) #05 (3,331s) #05 (3,219s) #05 (3,335s) #05 (3,231s) #05 (4,275s) #05 (3,951s) #05 (3,370s)
KnightTour #11 (3,556s) #10 (5,331s) #10 (5,530s) #09 (7,733s) #10 (6,109s) #11 (3,564s) #05 (16,822s) #06 (14,420s)
la03x2 #00 (2,400s) #00 (2,400s) #00 (2,400s) #00 (2,400s) #00 (2,400s) #00 (2,400s) #00 (2,400s) #00 (2,400s)
LangfordBin #12 (12,370s) #12 (13,658s) #12 (13,011s) #11 (14,431s) #11 (14,439s) #10 (18,184s) #04 (31,796s) #03 (33,655s)
Langford #03 (7,205s) #03 (7,205s) #03 (7,205s) #03 (7,205s) #03 (7,205s) #03 (7,205s) #03 (7,211s) #03 (7,205s)
lard #04 (89s) #04 (90s) #04 (89s) #04 (89s) #04 (89s) #04 (90s) #04 (132s) #04 (91s)
MagicHexagon #08 (22,618s) #06 (27,228s) #08 (22,870s) #07 (24,356s) #06 (26,749s) #07 (26,103s) #07 (24,585s) #08 (22,926s)
MagicSequence #12 (47s) #12 (65s) #12 (64s) #12 (64s) #12 (48s) #12 (64s) #12 (89s) #12 (47s)
MagicSquare #22 (32,145s) #21 (34,709s) #21 (35,127s) #21 (35,882s) #21 (33,898s) #20 (36,736s) #20 (36,160s) #22 (33,128s)
MarketSplit #06 (38s) #06 (135s) #06 (217s) #06 (201s) #06 (210s) #06 (420s) #06 (150s) #06 (1,329s)
mdd #04 (260s) #04 (663s) #04 (492s) #04 (892s) #04 (1,099s) #04 (1,397s) #04 (278s) #04 (1,586s)
MisteryShopper #10 (38s) #10 (39s) #10 (39s) #10 (39s) #10 (39s) #10 (38s) #10 (61s) #10 (39s)
MultiKnapsack #08 (23s) #08 (35s) #08 (32s) #08 (36s) #08 (44s) #08 (33s) #08 (35s) #08 (497s)
Nonogram #12 (40s) #12 (63s) #12 (42s) #12 (42s) #12 (43s) #12 (41s) #12 (41s) #12 (40s)
NumberPartitioning #06 (220s) #06 (2,940s) #04 (4,907s) #06 (1,512s) #06 (1,951s) #06 (580s) #04 (5,238s) #02 (9,608s)
Ortholatin #01 (12,003s) #01 (12,003s) #01 (12,003s) #01 (12,003s) #01 (12,003s) #01 (12,003s) #01 (12,003s) #01 (12,003s)
Pb #07 (30,372s) #06 (31,362s) #06 (31,769s) #06 (31,560s) #06 (31,619s) #06 (31,325s) #07 (30,411s) #06 (31,567s)
pigeonsPlus #06 (85s) #06 (178s) #06 (144s) #06 (165s) #06 (230s) #06 (166s) #06 (193s) #06 (140s)
Primes #06 (39s) #06 (36s) #06 (119s) #06 (140s) #06 (197s) #06 (65s) #06 (42s) #06 (373s)
PropStress #05 (2,487s) #05 (2,491s) #05 (2,492s) #05 (2,491s) #05 (2,490s) #05 (2,491s) #05 (2,490s) #05 (2,491s)
QuasiGroup #17 (50,665s) #17 (51,431s) #17 (51,472s) #17 (51,150s) #17 (51,120s) #15 (56,089s) #16 (53,897s) #16 (53,988s)
QueenAttacking #02 (9,612s) #02 (9,700s) #02 (9,626s) #02 (9,686s) #02 (9,641s) #02 (9,612s) #02 (9,635s) #02 (9,667s)
QueensKnights #06 (387s) #06 (553s) #06 (626s) #06 (1,947s) #06 (1,345s) #06 (543s) #06 (389s) #06 (645s)
Queens #06 (33s) #06 (39s) #06 (37s) #06 (38s) #06 (42s) #06 (37s) #06 (51s) #06 (38s)
qwh #07 (118s) #07 (792s) #07 (2,051s) #07 (617s) #07 (1,324s) #07 (892s) #07 (2,488s) #07 (1,401s)
RadarSurveillance #06 (17s) #06 (18s) #06 (18s) #06 (18s) #06 (18s) #06 (18s) #06 (18s) #06 (18s)
rand #16 (561s) #16 (1,234s) #16 (1,069s) #16 (2,683s) #15 (2,983s) #16 (2,011s) #16 (726s) #16 (599s)
RectPacking #00 (14,400s) #00 (14,400s) #00 (14,400s) #00 (14,400s) #00 (14,400s) #00 (14,400s) #00 (14,400s) #00 (14,400s)
reg #04 (18s) #04 (22s) #04 (21s) #04 (36s) #04 (27s) #04 (24s) #04 (31s) #04 (19s)
RenaultMod #06 (21s) #06 (22s) #06 (22s) #06 (66s) #06 (23s) #06 (22s) #06 (22s) #06 (22s)
Renault #06 (15s) #06 (16s) #06 (16s) #06 (16s) #06 (16s) #06 (16s) #06 (16s) #06 (16s)
Rlfap #29 (1,621s) #29 (2,316s) #29 (2,574s) #29 (3,749s) #27 (6,975s) #29 (1,814s) #29 (4,140s) #29 (1,623s)
RoomMate #05 (2,435s) #05 (2,440s) #05 (2,491s) #05 (2,478s) #05 (2,436s) #05 (2,435s) #05 (2,438s) #05 (2,437s)
Sadeh #06 (16s) #06 (16s) #06 (17s) #06 (18s) #06 (18s) #06 (16s) #06 (16s) #06 (16s)
Sat #12 (69s) #12 (78s) #12 (88s) #12 (96s) #12 (88s) #12 (95s) #12 (88s) #12 (75s)
SchurrLemma #09 (2,879s) #09 (3,247s) #09 (4,024s) #09 (3,184s) #09 (3,022s) #08 (5,566s) #08 (5,604s) #08 (5,356s)
SocialGolfers #15 (21,758s) #15 (22,113s) #15 (21,913s) #15 (22,361s) #15 (23,090s) #15 (22,553s) #14 (24,211s) #14 (24,365s)
SportsScheduling #06 (26,471s) #05 (26,736s) #05 (26,490s) #05 (26,464s) #05 (26,586s) #06 (26,481s) #05 (27,094s) #05 (26,903s)
Steiner3 #02 (9,606s) #02 (9,606s) #02 (9,607s) #02 (9,612s) #02 (9,608s) #02 (9,606s) #02 (9,606s) #02 (9,606s)
StripPacking #05 (33,756s) #03 (36,652s) #03 (36,186s) #04 (35,729s) #04 (35,912s) #05 (33,933s) #03 (36,122s) #02 (39,375s)
Subisomorphism #15 (6,510s) #15 (8,209s) #15 (7,011s) #14 (9,736s) #14 (8,978s) #14 (10,115s) #14 (8,863s) #13 (11,997s)
sudoku368 X2 #01 (2s) #01 (2s) #01 (2s) #01 (2s) #01 (2s) #01 (2s) #01 (2s) #01 (2s)
Sudoku #12 (47s) #12 (76s) #12 (48s) #12 (48s) #12 (48s) #12 (47s) #12 (47s) #12 (47s)
SuperQueens #02 (9,812s) #02 (9,972s) #02 (9,941s) #02 (10,081s) #02 (10,220s) #02 (10,245s) #02 (10,003s) #02 (9,812s)
SuperSadeh #06 (61s) #06 (78s) #06 (499s) #05 (2,439s) #06 (2,074s) #05 (2,724s) #05 (2,476s) #04 (4,888s)
SuperTaillard #02 (9,752s) #03 (9,183s) #02 (10,055s) #02 (10,137s) #02 (9,912s) #02 (10,653s) #01 (12,002s) #02 (9,752s)
TravellingSalesman #06 (25s) #06 (31s) #06 (29s) #06 (32s) #06 (32s) #06 (34s) #06 (30s) #06 (28s)
Wwtpp #05 (2,425s) #05 (2,636s) #05 (2,761s) #05 (2,907s) #05 (2,457s) #05 (2,426s) #05 (2,541s) #05 (2,548s)

Table 2: Comparison by family of the different strategies
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