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Abstract

Training virtual agents to play a game using reinforce-
ment learning (RL) has gained a lot of traction in
recent years. Indeed, RL has delivered agents with
super-human performances on multiple gameplays. Yet,
from a human-machine interaction standpoint, raw per-
formance is not the only dimension of a “good” game
AI. Exhibiting diversified behaviours is key to generate
novelty, one of the core components of player engage-
ment. In the RL framework, teaching agents to discover
multiple strategies to achieve the same task is often
framed as skill discovery. However, we observe that
the current RL literature defines diversity as the explo-
ration of different states, i.e. the incentive of the agent
to “see” new observations. In this work, we argue that
this definition does not make sense from a gameplay
point of view. Instead, diversity should be defined as
a distance on observations from an observer, external
to the agent. We illustrate how DIAYN/SMERL, state
of the art RL algorithms for skill discovery, fail to dis-
cover meaningful behaviours in a simple tag game. We
propose an easy fix by introducing the notion of diver-
sity spaces, defined as the observations gathered by a
third-party external to the agent.

Keywords: reinforcement learning, video games, di-
versity.

1 Introduction and related work

1.1 Diversity for games

Novelty and difficulty are often considered as major com-
ponents of the inherent appeal of video games [Mal81;
KW04]. Novelty is the pleasure of discovering and
trying to understand a new universe, an uncharted ter-
ritory that is yet to explore, with its own rules and its
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own fantasy. Difficulty comes from the challenge posed
by the game [Lev11], that requires motor as well as
adaptation and problem-solving skills from the player
who needs to develop one or several winning strate-
gies. Designing AI that are able to use a diverse set of
strategies while achieving human-like performances in
the game tackles these components of fun at the same
time: they both provide new strategies for the player to
discover, while simultaneously helping to maintain the
level of cognitive challenge. However, few works have
investigated game AI from this point of view.

These last years, the community has focused on
achieving super-human performance in various games,
such as Go [Sil+16], Atari games [Bad+20], DotA
2 [Ber+19] or StarCraft 2 [Vin+19]. Reinforcement
learning strives to find optimal solutions that reach
human-like performances [Mni+15], yet these “perfect”
agents are probably not the most useful to serve as
actual opponents. For example, Lee Se-dol, the world
Go champion, retired from all competitions because
“AI can’t be defeated” [BBC19]. In addition, optimal
opponents that know a single strategy tend to feel pre-
dictable, which is neither exciting nor rewarding for the
player. Diversity using AI in games have mostly put
great effort on Procedural Content Generation (PCG)
[Kha+20; Liu+20] to automate content generation of
assets such as levels, music, textures and environments,
leaving behind the idea of creating a single agent capa-
ble of multiple behaviours.

1.2 Diversity in reinforcement learning

One of the main challenges in RL is the trade-off be-
tween exploration and exploitation. Exploration is often
offloaded to naive approaches, such as ε-greedy poli-
cies [SB18] or addition of gaussian noise [Lil+15]. This
leads to curiosity, an elusive concept in RL, loosely
defined as the incentive for exploration. It is generally
implemented as intrinsic motivation, a reward inter-
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nal to the agent maximized when learning the policy.
At its core, curiosity is a way to encourage the agent
to reach diversified states by crafting ad hoc rewards,
e.g. by using count-based (or pseudo-count based) re-
wards [KS02; BT02] that encourage the agent to visit
states “far” from those previously visited.

Intrinsic motivation is frequently applied to skill dis-
covery. This approach stems from goal-conditioned al-
gorithms, that learn a policy π(a|s, g) conditioned over
a goal g. Often, the goal is a state that we want the
agent to attain, and the agent is rewarded by the inverse
distance between the goal and its current state, e.g. in
Reinforcement Learning with Imaginary Goals [Nai+18],
or by maximizing mutual information between a goal
and the trajectory of the agent in Variational Intrin-
sic Control (VIC) [GRW17]. Maximization of mutual
information between a latent variable and the state
is a popular skill discovery method. In [Cam+20], it
is shown that two views of the mutual information
lead to different algorithms such as VIC, Diversity is
All You Need (DIAYN) [Eys+18] or Dynamics Aware
Unsupervised Discovery of Skill [Sha+20].

2 RL and skill discovery

We aim to train an agent by reinforcement to discover
diverse meaningful strategies in a game environment.
We leverage existing algorithms on skill discovery and
define a strategy (or a “behaviour”) as the application
of a skill in a given setting. We describe below DIAYN
– and its extension SMERL –, the skill discovery algo-
rithm that will serve as the basis for our experiments.

2.1 DIAYN

Diversity is All You Need (DIAYN) [Eys+18] is an
unsupervised skill discovery algorithm for RL. If Z is
the random variable that represents a latent skill with
distribution p(z), DIAYN learns a policy conditioned
to the skill, i.e. π(a|s, z) where a ∈ A is an action and
s ∈ S is a state. The goal is to discover both meaningful
and diverse skills, based on three assumptions:

• skills should encode information about state and
thus maximize mutual information I(Z;S);

• skills are independent from actions in a given state
and thus minimize I(Z;A|S);

• skills should cover the state space, i.e. they should
be different and with high entropy.

Overall, this results in maximizing the objective:

F = I(Z;S)− I(Z;S|A) +H(A|S)

= H(A|S,Z)−H(Z|S) +H(Z)
(1)

As the posterior p(z|s) is intractable, DIAYN approx-
imates it with a learned discriminator qφ(z|s). In other
words, DIAYN trains a neural network parametrized
by its weights φ to predict the skill that conditions the
policy based on the current state.

The DIAYN algorithm builds on top of Soft Actor
Critic (SAC) [Haa+18]. SAC’s objective already in-
cludes the maximization of the entropy of the policy,
i.e. it already takes care of maximizing H(A|S,Z). DI-
AYN therefore only needs to define the intrinsic reward
that maximizes mutual information between states and
skills. It is defined as the predictability of a skill z by
the neural network qφ, knowing the state s:

rdiversityt = log(qφ(z|st+1))− log(p(z)) (2)

By maximizing this reward, the algorithm encourages
the states reached by different skills to be discriminable.
Diverse behaviours should emerge since different skills
explore different regions of the state space S.

2.2 SMERL

[Kum+20] introduced Structured Maximum Entropy
Reinforcement Learning (SMERL). It extends DIAYN
to the supervised setting, i.e. where a task-oriented
reward is available. Consider a task defined by its true
reward rtrue. Let Jπθ denote the cumulative reward of
the policy πθ. The idea of SMERL is to seek diversity
when the cumulative reward is close to the optimal
reward Jπ∗ , i.e. to look for slightly sub-optimal but
diverse solutions. Intuitively, SMERL starts by learn-
ing the optimal SAC policy and then starts diversifying
around the optimal solution , by introducing the follow-
ing pseudo-reward:

rt = rtruet + β1{Jπθ≥Jπ∗−ε}r
diversity
t (3)

In practice, the algorithm consists in sampling a
skill z ∼ p(z), generating a trajectory according to
πzθ and storing the transitions (rt, st, stp,at, z) in a
buffer. At the end of the episode, we estimate Jπθ =∑
t r

true
t and compute the diversity pseudo-rewards from

batches sampled from the buffer, update the actor and
the critic towards this reward and finally update the
discriminator to classify the skills based on states. Note
that the diversity reward is only added if

∑
t r

true
t ≥

Jπ∗ − ε, where the “optimal” cumulative reward Jπ∗

is estimated as the mean reward of the policy learnt
by SAC alone. ε is an hyperparameter controlling how
much the diversified solutions from SMERL can deviate
from the SAC baseline.
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Figure 1: Learning 5 SMERL skills on Nav2D (Static)
shows that adaptive β has better learning curve while
being less sensitive to hyperparameter variations.

Adaptive diversity trade-off As shown in Eq. (3),
β is a hyperparameter from SMERL controlling the
weight of the diversity reward. When SAC has con-
verged, a high β is desirable to start the diversification
of skills. But afterwards, a high β is likely to destabilize
the reward. This complicates the practical tuning of β.
To alleviate this difficulty, we propose an adaptive beta
as a function of the per-skill diversity reward. We de-
note the expected diversity reward of the z-conditioned
policy as J̃πzθ . The desired behaviour is that β is high

when J̃πzθ is low and conversely. We automatically bal-

ance β using βz = β0

1+J̃πz
θ

where β0 is our replacement

hyperparameter. Note that β is defined per-skill z since
J̃πzθ depends on z. If J̃πzθ = 0, then βz = β0 which
bootstraps skill-discovery. Conversely, when the diver-
sity reward J̃πzθ increases, β decreases. This heuristic
implicitly constrains the expected diversity: while β is
high, the diversity reward masks the true reward. The
true reward gains more weight when the skills are al-
ready diversified. Empirically, we observed significantly
better convergence and robustness to the initial value
of β0 using our heuristic, as illustrated in Fig. 1.

2.3 State space or diversity space?

DIAYN and SMERL implicitly define diversity as a
distance function over state space. This has two draw-
backs. First, since the number of observations in the
state is large, the task of the discriminator qφ : s→ z in
DIAYN and SMERL becomes easy. More observations
means more directions alongside which to partition the
state space. As a workaround, Eysenbach et al. suggest
feeding the discriminator some observations, but not

(a) Trajectories of a Nav2D
agent trained with SMERL
on absolute coordinates
{(x, y)agent; (x, y)target}.

(b) Trajectories of a Nav2D
agent trained with SMERL on
relative coordinates {xagent −
xtarget, yagent − ytarget}.

Figure 2: Nav2D: absolute position vs. relative position

all, i.e. a “diversity” subset D ⊂ S of the state.

However, this is not enough since observations are
ego-centered, i.e. relevant to the internal state of the
agent. This is the second drawback.To illustrate this
point, let us consider a simple 2D navigation environ-
ment, shown in Fig. 2 (Nav2D). The agent (in blue) can
freely move in the (x, y) plane at a fixed speed. It re-
ceives a small negative reward for each time step and a
large positive reward when it reaches the target (in pur-
ple). The target is randomly placed somewhere in the
environment at the beginning of an episode, and then
stays immobile during the episode. We use SMERL to
train the agent to learn five different skills. We consider
two cases. In Fig. 2a, the agent has an observation
space S = {xagent, yagent, xtarget, ytarget}. The coordi-
nates are expressed in the absolute referential of the 2D
plane. Since the target does not move, xtarget or ytarget
are constant and cannot be used to discriminate skills.
Therefore the discriminator can only map the position
xagent, yagent to the skills. However the target position
is reset between episodes. SMERL therefore learns a
meaningless partitioning of the 2D space: the diversity
reward can only be increased through skills that result
in very slight variations in trajectory.

But consider Fig. 2b, where the observations are the
agent’s relative position w.r.t. the target, i.e. xagent −
xtarget and yagent − ytarget. The diversification of skills
now partition the relative position of the agent. The
five skills now describe more meaningful behaviours:
changing the skill changes the angle of approach of the
argent w.r.t. the target. This naive example shows
that the origin of the observations must be taken into
account to induce distinguishability relevant to third-
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party observers.1

In addition, we argue that finding diverse high-level
strategies require high-level variables. Raw observations
such as position in the 2D plane is mostly irrelevant
from a gameplay standpoint. If we want human-relevant
skills, we should give the discriminator human-relevant
observations. We argue that the best discrimination
space D to learn diverse behaviours is generally not
the same as the state space S. We want to make
the job of the discriminator hard, otherwise it will
use meaningless features to fit a low-margin decision
function. We believe that this is better achieved by
using a low-dimensional discrimination space, such as a
collection of discrete or even binary variables. We also
want these variables to be relevant to an observer and
encode high-level information.

3 Learning diverse strategies

Let us devise an experiment to illustrate how the choice
of the “diversity” space impacts the agent’s behaviours.

3.1 Experimental setup

We design a “tag” game where the agent must touch
the moving target (red cube). The blue agent (blue
cube) can move freely around the environment defined
by a square outer wall and one or more inner walls.

Reward The agent receives a reward of +100 when it
reaches the target and −0.1 for each timestep.

Observation space The agent knows its absolute 2D
position (x, y) in the world and the target’s position
(x′, y′). It has a Lidar-like vision of its surroundings,
i.e. the agent sends 12 rays that are one hot-encoded
into a vector v where element vi is set to 1 if the ray
intersects an obstacle (e.g. a wall) and 0 if the ray does
not intersect anything.

Diversity space The target also has a Lidar-like cone
of vision. Contrary to the agent, this vision covers only
a specific solid angle and not its complete surroundings.
This vision cone controls the “hiddenness” of the agent:
if any ray intersects with the agent, then the “observed”
variable h is set 1, otherwise it is set to 0. The hid-
den/seen variable is clearly relevant from a perceptual
point of view, because for a player, seeing or not the
opponent is a crucial gameplay element. As such, it

1Amusingly, [Eys+18] had identified the notion of perceived
diversity from observers but only for actions, and not for states:
“we want to use states, not actions, to distinguish skills, because
actions that do not affect the environment are not visible to an
outside observer”.

defines an interesting strategy decomposition that be
extended to more complex settings.

Environment We consider five variants of the “tag”
environment, illustrated in Fig. 3:

• static: the target does not move and stays at an
arbitrary position and angle;

• alternate: the target does not move but looks to
the left or to the right randomly at the beginning;

• scan: the target rotates on itsef to “scan” the area,
therefore changing the cone of vision at a slow pace;

• patrol: the target patrols in a straight line without
moving its cone of vision;

• shortcut: same as static but the wall now has an
“L”-shape, making one path significantly shorter.

static is the simplest declination. Since the wall
layout is fixed and symetrical, there are two equiva-
lent optimal solutions to reach the target: take the
right path (the one where the target looks at), or take
the left path (the one the target does not watch). In
shortcut, the longer path is the unguarded one. But
since it is longer, it is also sub-optimal. As we will see,
even in these cases, SMERL learns skills that do not
significantly differ in a meaningful way.

Discrimination spaces Our experiment consists in
comparing the skills learnt by SMERL depending on
the state space that is used to compute the diversity
reward, i.e. the intput space of the discriminator.

Our first baseline is the vanilla SMERL that takes
all the state as input for the discriminator. The second
baseline is SMERL but with relevant selected discrim-
ination variables, including the hidden/seen variable.
The considered discrimination spaces are:

• Full state: all 16 state variables are passed to the
discriminator;

• Selected state: only 5 observation variables
({xagent, yagent, xtarget, ytarget,dist}) are considered
and the hide/seen variable from the target;

• Observer state: only the hide/seen variable is
passed to the discriminator.

Training The agent is trained using SMERL on top
of SAC. The discriminator is a fully connected neural
network fed observations depending on the setting (full
state, selected state or observer state). It is trained
with a batch size 512 and a replay buffer of 1× 106

steps. We use our adaptive beta with β0 = 20.

3.2 Experimental results

We want to show that enforcing discrimination on the
binary variable hidden/seen leads to the discovery of
the relevant corresponding hide/show skills.
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(a) Static/Alternate (b) Shortcut (c) Scan (d) Patrol

Figure 3: Variants of our “tag” game environment.

Static Alternate Shortcut Scan Patrol

Show Hide Mean Show Hide Mean Show Hide Mean Show Hide Mean Show Hide Mean

Full state 3.18 26.72 14.94 14.88 18.95 16.91 5.72 39.20 22.46 16.89 21.01 18.95 15.26 17.84 16.55
Selected state 3.39 26.94 15.16 17.85 14.88 16.37 3.87 39.47 21.67 20.78 16.68 18.73 15.54 17.94 16.74

Observer state 2.84 5.65 4.25 4.14 4.34 4.24 3.71 6.58 5.14 3.32 4.54 3.93 3.31 5.82 4.56

Table 1: DTW error between trajectories of hide/show explicit policies and skill-learned policies generated
automatically. The results are averaged over 10 random seeds.

Reference behaviours As a reference, we train two
agents using SAC that explicitly capture hide/show skill
by hand-crafting the reward. The hide agent receives
an additionnal reward of −2 when it is not hidden (i.e.
it interesects the target’s vision cone). The show agent
receives the opposite reward. We then compare our
skills implicitly learnt using SMERL with those two
explicit SAC reference policies.

Metrics We aim to measure the distance between the
enforced hide/show policies and the skill-learned poli-
cies. To do so, a convenient way is to sample trajecto-
ries and compute distance over the sampled trajectories.
The chosen metric to compare the explicit hide/show
policies and the skills-learned policies is the Dynamic
Time Warping (DTW) measure. DTW allows to easily
compute the similarity of two time series, even if they
have not the same length. This distance will be com-
puted between the (x, y)t trajectories of each skill of
our agents, against the reference agents trained with
SAC with an explicit hide or show reward.The lower
the DTW between a trajectory and the reference hide
skill trajectory, the more similar the policies are.

Results Our results from Table 1 show that our
method learns the two skills (i.e. two conditioned
policies) that are the closest to the explicit hide/show
policies for all five variants of the “tag” environment,
as illustrated in Fig. 4. This demonstrates the ability
of the perceptual discrimination method to generate
strategies based on high-level observer-based variables.
Conversely, the other SMERL methods are able to learn
the show skill on the static and shortcut environment

for instance, since this skill and the optimal trajectory
(without diversity, i.e. shortest path to the red target)
are nearly identical. For the other environments, the
skills are uncorrelated with hiddenness since obtaining
the diversity reward is easy: changing the trajectory a
little bit in (x, y) is enough to separate states.

4 Discussion and perspectives

Skill discovery algorithms from the RL literature try
to learn diverse strategies by encouraging the agent
to visit “different” states. However, state of the art
approaches such as DIAYN and SMERL assume that
the internal state of the agent, i.e. ego-centered ob-
servations, are enough to learn meaningful behaviours.
In this work, we show that this is far from true. The
state space S is generally of high dimensionality and
filled with low-level attributes that do not meaningfully
describe the behaviour of an agent from a human ob-
server point of view. Instead, we believe that high-level
observer-based variables are key to enable meaningful
strategy discovery: they relate to high-level perception
of human players while not being too easy for the dis-
criminator that defines the implicit distances of states.
Our experiments on the tag game shows that a sin-
gle well-crafted variable is enough to make meaningful
behaviours emerge.

There are two directions to go further. First, DI-
AYN and its successors discriminate on a single state st.
This makes the discrimination imperfect in cases where
skills are bound to overlap (e.g. at the beginning of
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Figure 4: Examples of trajectories obtained by the policy conditioned on skills 0 and 1 on the patrol and shortcut
environments using our approach (discriminator trained on the observer state).

a level). Instead, one could investigate discriminating
trajectories, i.e. defining a skill as the latent variable
conditioning a sequence of states. Discrimination would
then be done on the series (s0, . . . , st), e.g. with recur-
rent neural network by defining a new diversity reward
rzt = log(qφ(z|st+1, ht))− log(p(z)), with ht the hidden
activation of the RNN. Another direction is the percep-
tual route. If what matters is the diversity perceived
by a player, we could feed to the discriminator images
of the agent as captured by a virtual camera inside the
environment. The discriminator could then be replaced
by a CNN, taking these “photos” as an input. Only
variations in behaviours that result in visible changes
would increase the diversity. However, this should be
done carefully, since the high dimensionality of images
could incent “near-adversarial” changes that are visible
for the CNN, but not meaningful for humans.
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