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ABSTRACT
Separating activated sludge from the liquid phase is the last operation in a wastew-
ater treatment plant. Our goal is to present a knowledge-based dynamic model with
both dynamic mass and momentum balances and that can be used for decision-
making. The numerical scheme used for simulation is a method of lines with a spatial
discretization based on a finite volume method using the Rusanov approximation.
It is well-suited to such nonlinear hyperbolic systems exhibiting discontinuities or
shock waves. Such a model takes into account the various behaviours of the mixture
inside the clarifier and not only the nominal operation and is more general than the
other models existing in the literature. The simulation results are confronted with
experimental results from measurements of the sludge blanket during a dynamic
event.

KEYWORDS
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1. INTRODUCTION

A proper understanding of organic urban sludge settling in wastewater treatment plants
is very important a) to ensure that the clarified water discharged into the environment
meets the required quality and environmental standards and b) to help decide which
closed-loop control strategies should be used in order to have lower operating costs (en-
ergy, ...) or better effluent quality. During settling operation, the solid particles of the
activated sludge settle inside the suspension and three zones form: the upper clarifica-
tion zone containing liquid only; the intermediate zone in which solid particles settle
freely with no interaction; and the compression zone at the bottom where solid parti-
cles form a high concentration porous bed where the solid particle mass concentration
exceeds a given threshold above which interaction forces between particles begin to act.
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Auvergne-Rhone-Alpes region’s Pack Ambition International 2020 program, along with the C-StaRRE 4.0
project for their financial support (Grant number 20PACKR-CVALENTIN-6887).



These three zones appear to be separated by two mobile interfaces: the sludge blanket
separating the clarification and intermediate zones and an interface defined by a con-
centration threshold separating the intermediate and the compression zones, [1], [2], [3],
[4].

Two situations are mainly addressed in the literature devoted to dynamic settling
modeling. The batch settler that allows investigating sludge settling properties and the
continuous settler (clarifier) that is operated in urban wastewater treatment plants. To
date, 1-D dynamic models represent the best compromise for capturing the complexity
and significance of the studied phenomena, [5]. In these vertical settlers, the solid phase
moves at variable velocity in the liquid phase. Therefore, the model must include a
momentum balance (static or dynamic) or a constitutive equation to represent velocity
variation in space and time. Four families of 1-D models are described in the literature:

1. Models based on a dynamic solid particle mass balance coupled with a constitutive
equation that gives the solid particle velocity, the so-called batch or hindered
settling velocity, [1], [6], [3], [7], [8], [9]. I. Takács initiated this approach;

2. Models based on a dynamic solid particle mass balance and a static momentum
balance which defines the flux density function, [10], [4];

3. Models based on both a dynamic solid particle mass balance and a dynamic
momentum balance, [2], [11]. This approach is more recent and is more general
due to its two dynamic balances;

4. Models based on both the dynamic solid particle mass and momentum balances
and the sludge blanket location as an additional variable whose variation is gov-
erned by a dynamic equation (issued from a mass balance), [12], [13]. This ap-
proach is more specific to batch settling for the moment.

A very interesting review on clarifier 1-D dynamic models of families 1. and 2. can be
found in [14]. In the last three families, constitutive equations are required in order to
express the forces acting on the solid particles: pressure, effective interparticles stress,
gravity and drag. The interest of models with a dynamic momentum balance as family
3. is that they do not require an additional constitutive equation to define the velocity
of solid particles in the mixture. These models are more general and represent a wider
range of settling processes (primary, secondary, in mines, cities, ...). Only the values of
the model parameters have to be adapted to the context. The first three models are
nonlinear hyperbolic partial differential equation (PDE) systems and the fourth one is
an ODE-PDE system.

In [13], a two PDEs system obtained from the solid particles mass and momentum
balances and an ODE representing the variation in the location of the sludge blanket
mobile interface is used. Simulating this model using a centered finite difference numer-
ical scheme gives a sludge blanket descent dynamics that is in good agreement with
measurements. However, with this numerical scheme, only the change in the average
concentration under the sludge blanket is obtained, because it is unable to detect spa-
tial discontinuities or shock waves in some state variables as the solid particles velocity.
Therefore, it cannot predict the change in sludge concentration at the bottom over time
nor the lowest interface location between the intermediate zone and the compression
zone.

In this paper is presented a 1-D dynamic model based on particles mass and momen-
tum balances of family 3. so that it can be used for decision-making and for a further
design of a closed-loop controller to regulate the water quality at the top of the clarifier.
Such a model takes into account the various behaviours of the mixture inside the clar-
ifier and not only the nominal operation. A Rusanov finite volume numerical scheme,

2



[15], is implemented to take into account the specificity of this nonlinear hyperbolic sys-
tem with source terms. This type of scheme naturally detects the two mobile interfaces
between the three zones that form when the sludge settles. The velocity of the fastest
of these two shocks needs to be calculated in order to define the time and space steps
in the numerical scheme in order to ensure its stability.

This paper is organized as follows: section 2. deals with a one dimension functional
description of the secondary clarifier and of a dynamic model of the behaviour of sludge
based on both dynamic mass and momentum balances. It is a hyperbolic PDE system
with non linear source terms associated with specific constraints, constitutive equations
and boundary conditions. This model is more general than the other models presented
in the literature and more simple than the model of the same family, 3. presented in
[2] in the field of sedimentation in a river estuary. A numerical scheme well-suited to
this nonlinear hyperbolic systems exhibiting discontinuities or shock waves is presented
in section 3. In section 4., a dynamic event scenario is described and simulated results
obtained with our model are compared with experimental data. Finally, section 5. gives
some conclusions and perspectives of this promising work.

2. A 1-D dynamic physical model

2.1. Clarifier and settling description

The clarifier (settling tank) is represented schematically Fig. 1 in 1D view. The open-air
settler content can be divided into 2 interfaces moving in space and time separating the
three above-mentioned zones:

• The upper interface is the sludge blanket and is located at depth zv(t). It sepa-
rates the clarification zone (which no longer contains any solid particles) and the
intermediate zone,

• The lower interface is defined by the intermediate/compression threshold and
is located at depth zc(t) where a change in behavior occurs as the solid particle
concentration Cs(z, t) exceeds the threshold Cc above which an interparticle stress
comes into effect. Under zc(t), the liquid phase flows through the porous network,
[16].

The clarifier is connected to the wastewater treatment process through three flows:
• one inlet where activated sludge flows inside the clarifier by gravity from the

upstream biological aeration tank with volume flow rate Qf (t) and solid particles
concentration Cf (t). Practically, the activated sludge feeding takes place inside a
skirt at depth around z = zf ,

• one top outlet of clarified water at z = 0, with volume flow rate Qe(t) and solid
particles concentration Ce(t),

• one bottom outlet of compressed sludge at z = zb, with volume flow rate Qu(t) and
solid particles concentration Cu(t). Some of the compressed sludge is recirculated
back to the aeration tank with volume flow rate Qur(t) and some can be extracted
from the clarifier with volume flow rate Que(t) such that Qu(t) = Qur(t) + Que(t).
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Figure 1. One-dimensional schematic view of a sludge clarifier.

2.2. 1-D dynamic mass and momentum balances

The objective of the model is to calculate the time evolution of the solid particles
concentration profile in the clarifier as well as the outlet concentrations Ce(t) and Cu(t)
and the sludge blanket position zv(t), knowing the activated sludge feeding flow rate
and concentration Qf (t) and Cf (t) and the compressed sludge outlet flow rate Qu(t).
The dynamic model describing the behavior of the sludge suspension in the clarifier is
based on the dynamic mass and momentum balances that can be written for the two
phases under the following commonly-used simplifying assumptions, [14]:

1. The liquid and solid phases completely fill the clarifier volume that is constant.
2. There is no biological activity during the settling operation and the suspension is

fully flocculated before sedimentation, [10].
3. The solid particles have the same size and shape, [6], [3], [4].
4. There is a uniform particle concentration at a given depth, [6], [3].
5. The vessel wall friction is negligible.
6. The solid particles are small with respect to the containing vessel and have the

same density, [4].
7. The solid particle and fluid mass densities, ρs (kg/m3) and ρl (kg/m3), are con-

stant, [2], [3] and there is no mass transfer between them, [6], [4].
8. The open-air clarifier has a constant cross-sectional area.

Let εs(z, t) denote the solid particle volume fraction with z the depth from the top
of the clarifier, and t the time. εl(z, t) denotes the liquid volume fraction. The solid
particle mass concentration is then Cs(z, t) = ρsεs(z, t) (kg/m3). Let vs(z, t) (m/s) and
vl(z, t) (m/s) denote the solid and liquid phase Eulerian average velocity respectively.

Remark: for sake of clarity, the notations have been simplified by omitting (z, t)
from the following equations wherever the variables for all z and all t are considered.
A subscript notation is used for the partial derivatives: ∂f

∂t = ∂tf and ∂f
∂z = ∂zf .
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The feeding is located over an interval of height ∆zf and centered at zf to take into
account the different types of skirts that drive the flow of sludge downwards. This area
is located between z2 = zf + ∆zf /2 and z1 = zf − ∆zf /2. The following gate (Top-Hat)
function, Π(z, zf , ∆zf ), can be defined in order to represent the source terms due to the
sludge feeding in the balance equations. For simplicity, it is denoted Πf (z):

∀z, z1, z2 ∈ ℜ+, Πf (z) =
{ 1 if z1 ≤ z ≤ z2

0 otherwise (1)

The dynamic mass balances for the solid phase and the liquid phase are then the
following:

Solid phase mass balance:

∂t(ρsεs) + ∂z(ρsεsvs) = f1s(Qf , Cf )Πf (z) (2)

Liquid phase mass balance:

∂t(ρlεl) + ∂z(ρlεlvl) = f1l(Qf , Cf )Πf (z) (3)

with f1sΠf and f1lΠf the source terms representing the activated sludge inlet feeding
in the solid and liquid mass variation respectively. They both depend on Qf , the total
volume flow rate of the feed and on Cf , the mass concentration of solid particles at the
feed and A, the cylindric clarifier section.

As well, the dynamic momentum balance equations can be written for the solid
phase and the liquid phase, [2], [17], [18]:

Solid phase momentum balance:

∂t(ρsεsvs) = −∂z(ρsεsv
2
s) + εsρsg − εs∂zP − ∂zσe(εs) + r(εs)(vl − vs)

+f2s(Qf , Cf )Πf (z) (4)

with:
εsρsg volumetric gravitational force (body force)
∂zP (z, t) gradient of the pore pressure (hydrodynamic pressure)
∂zσe(εs) gradient of the interparticle stress between the solid particles, [10].
r(εs)(vl − vs) Stokes like drag force i.e. liquid/solid dynamic interaction force stand-

ing for viscous friction between the two phases. r(εs) is the resistance
coefficient.

Liquid phase momentum balance:

∂t(ρlεlvl) = −∂z(ρlεlv
2
l ) + εlρlg − εl∂zP − r(εs)(vl − vs)

+f2l(Qf , Cf )Πf (z) (5)

with f2sΠf and f2lΠf the source terms representing the activated sludge inlet feeding
in the solid and liquid momentum variation respectively. They depend on Qf , Cf and A.

In the next two sections, specific constraints inherent in a two-phase suspension with
non-constant velocity and constitutive relations of σe(εs) and r(εs) will be presented.
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2.3. Specific constraints

As the sludge is a two-phase (liquid and solid) suspension, the sum of the solid particle
volume fraction and the liquid volume fraction is:

εl + εs = 1 (6)

As solid particles and fluid are incompressible, the total volume flux of the suspension
(or mixture average velocity), i.e. the sum of the volume flux of the two phases is denoted
vm(z, t) and can be calculated by the following algebraic equation:

vm = εlvl + εsvs (7)

Moreover by using equation (6), the sum of the two mass balances (2) and (3), each
divided by the respective phase density, gives:

∂zvm =
[

f1s

ρs
+ f1l

ρl

]
Πf (z) (8)

It means that vm gradient is null everywhere except in the feeding zone, thus vm is
constant on both sides of the feeding zone with a linear change inside the zone and can
be calculated by (9).

vm(z, t) =
−Qe/A if z < z1

1
A∆zf

[(Qe + Qu)z − z1Qu − z2Qe] if z1 ≤ z ≤ z2

Qu/A if z > z2

(9)

Therefore, εl(z, t) can be calculated from (2) and (6), and vl(z, t) can be deduced
from (2), (4), (6) and (9) as follows:

vl = vm − εsvs

(1 − εs)
(10)

Note that this equation is well defined because there is liquid everywhere in the clarifier
in the interstices between the solid particles, then εs ̸= 1.

2.4. Constitutive equations

Some quantities, such as the interparticle stress, σe, and some parameters, such as the
drag force resistance coefficient, r, depend on the solid particle volume fraction εs. These
are characterized by constitutive expressions that are usually derived from experimental
data. They are empirical in nature and depend on the characteristics of the sludge.
Different constitutive equations have been proposed by various authors for a range of
contexts (wastewater from cities, mines, estuary or coastal zones etc). [14] presented
most of the proposed approaches. σe(εs) and r(εs) were chosen from those adapted to
organic urban sludge. The constitutive equations presented by [4] for σe(εs, α) and by
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[2] for r(εs) are well suited to the urban sludge:

σe(εs, α) = α(εs)σ0
εns

s − εns
c

εns
c

(11)

r(εs) = ρlg

K(εs)
with K(εs) = Ak

ε
2/(3−nr)
s

(12)

with σ0, ns, Ak and nr being the constant parameters that characterize the sludge
which permeability is K and α(εs), a Boolean parameter such that:

α(εs) =
{ 0 for εs ≤ εc

1 for εs > εc
(13)

with εc, the solid volume fraction intermediate/compression threshold. α(εs) is equal
to zero in the intermediate zone where the particles are relatively distant from one
another due to the low concentration, and is equal to one in the compression zone
where an interparticle stress between the solid particles comes into effect due to their
proximity to each other.

Thus, the constitutive equation for σe(εs, α) depends on the zones in the clarifier.
The formulation ensures that σe(εs, α) is a continuous function at εs = εc. The need for
continuous and Boolean variables in the settler dynamic model makes it hybrid, [19].

2.5. PDE 1-D sludge continuous settling dynamic model

After all these considerations, the four dynamic balance equations given in section 2.2
can be expressed only in terms of the solid particle volume fraction, εs, and the solid
particle volume velocity, vs, after having performed all the simplifications implied by
the assumptions 1. to 8. and the algebraic equations specific to this system established
in section 2.3.

Moreover, a simplified expression of the pore pressure gradient can be considered for
this system because the settling is very slow and the suspension is at a low concentration.
This involves a pressure profile identical to the static gradient due to Archimedes’
buoyancy force, ∂zP = ρlg, and this throughout the duration of the operation, [12],
which is an additionnal 9th assumption:

9. ∀z ∈ [0, zb] , ∂zP = ρlg.
The solid particle volume fraction εs and the velocity variations vs can be written in
conservative form, after some manipulation of the equations (2), (4) and (10):

∂tεs + ∂z(εsvs) = f1s

ρs
Πf (z) (14)

∂tvs + ∂z(v2
s

2 ) = (1 − ρl

ρs
)g − 1

ρsεs
∂zσe − r(εs)(vm − vs)

ρsεs(1 − εs)

+f21s

ρs
Πf (z) (15)
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with:

f1s(Qf , Cf ) = Cf Qf

A∆zf
(16)

f21s(Qf , Cf ) = f2s − vsf1s

εs
= Cf Qf

εsA∆zf

[
Qf

Sf
− vs

]
(17)

Sf being the sludge feeding surface.

Equations (14) and (15) constitute a nonlinear hyperbolic system with two first
order PDEs, two continuous nonlinear source terms (gradient of the interparticle stress
and Stokes like drag force), two constant source terms (volumetric gravitational and
Archimedes’ buoyancy forces) representing the forces applied to solid particles and
two discontinuous source terms representing the contributions of the activated sludge
feeding. Here it is expressed in matrix form, with x the state variable vector:

x =
(

εs

vs

)

And fs(x) the flux:

fs(x) =
(

εsvs
v2

s

2

)

Then, the dynamic model of the urban sludge settling is:

∂tx + ∂zfs(x) = S1(x) + S2 (18)

with S1(x) equal to the three source terms depending on x and S2 equal to the three
others not depending on x.

2.6. Boundary conditions

Two boundary conditions are required for these two first order PDEs. They come
from a continuity of solid particles flow at the top and at the bottom of the clarifier,
assuming a continuity/equality on the solid particles volume fraction, εs.

At the top, at z = 0:

εs(0, t) = εe
s (19)

εs(0, t)vs(0, t) = −εe
s

Qe(t)
A

(20)

with εe
s the solid particles volume fraction at the very beginning of the overflow.
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At the bottom, at z = zb:

εs(zb, t) = εu
s (21)

εs(zb, t)vs(zb, t) = εu
s

Qu(t)
A

(22)

with εu
s the solid particles volume fraction at the entry to the outlet pipe.

During the operation of the clarifier, the activated sludge feed volume flow rate,
Qf (t), and concentration, Cf (t), are known as well as the withdrawal (recirculated
and/or removed) volume flow rate at the bottom, Qu(t). It follows that the top overflow
rate, Qe(t), is also known since Qf (t) = Qu(t) + Qe(t), the volume of sludge in the
clarifier being constant.

Thus, the two boundary conditions are:

vs(0, t) = −Qe(t)
A

(23)

vs(zb, t) = Qu(t)
A

(24)

Then, the state-space representation of urban sludge continuous settling in a
clarifier is given by the nonlinear hyperbolic system (18) with σe(εs, α), r(εs) and α(εs)
constitutive equations in (11), (12) and (13), vm algebraic equation in (9), contributions
of sludge feeding in (16) and (17) and the boundary conditions in (23) and (24). The
initial conditions are given in the simulation part.

The simulation is based on a numerical scheme that is well-suited to nonlinear hy-
perbolic systems exhibiting discontinuities or shock waves.

3. Numerical scheme

A very interesting discussion of various numerical schemes for this kind of non linear
hyperbolic system is provided in the review [14]. Our simulations are carried out using
semi-discretization (also called method of lines) leading to a system of ODEs. The Finite
Volume method is used for spatial discretization. The time integration is performed
using ode45 of Matlab®. This method is the most efficient and simple we implemented
so far for non linear hyperbolic systems with source terms. It is based on the integral
form of the balance laws and is well suited for simulation of fluid mechanics, as well as
heat and mass transfer. One of this main feature is that it locally preserves the local
balances with respect to fluxes, [15].

The state space vector is spatially discretized as a uniform mesh of Nz volumes of
thickness ∆z and constant cross-sectional area, A. Each volume i is between an upstream
frontier boundary, indexed i − 1

2 , and a downstream frontier boundary, indexed i + 1
2 .

Equation (18) can be written in integral form :
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∫ i+1/2

i−1/2

dx(z, t)
dt

dz = fi− 1
2
(t) − fi+ 1

2
(t) +

∫ i+1/2

i−1/2
(S1(x) + S2) dz (25)

where fi± 1
2
(t) = fs(x(z, t))|z=(i±1/2)∆z

Considering that the state variables are uniform in each mesh and equal to some
average value, x̄i(t):

x̄i(t) = 1
∆z

∫ i+1/2

i−1/2
x(z, t)dz

the previous equation can be approximated in integral form by :

dx̄i(t)
dt

= 1
∆z

(
fi− 1

2
(t) − fi+ 1

2
(t)
)

+ S1(x̄i) + S2 (26)

where we assume that S1(x̄i) is a good approximation of 1
∆z

∫ i+1/2
i−1/2 S1(x)dz.

Let Fi± 1
2
(t) represent an approximation of the fluxes fi± 1

2
(t) as a function of x̄i.

We can then write:

dx̄i(t)
dt

= 1
∆z

(
Fi− 1

2
(t) − Fi+ 1

2
(t)
)

+ S1(x̄i) + S2 (27)

For hyperbolic systems a special care has to be taken, for the choice of these approx-
imations, [20], [15]. The Rusanov approximation is chosen since it allows capturing the
shock waves of the model:

Fi− 1
2

= 1
2 (fs(x̄i−1) + fs(x̄i)) − ws

2 (x̄i − x̄i−1) (28)

where ws(t) is the propagation velocity of the fastest wave in the hyperbolic system.
To ensure the stability of this method, the mesh size must respect the necessary CFL
(Courant-Friedrichs-Lewy) condition i.e. |ws

∆t
∆z | < 1. ∆t is chosen as the maximum of

the time discretization step used in ode45. This propagation velocity, ws, can be found
as follows.

Let us express the nonlinear hyperbolic system (18) with the Jacobian matrix J(x):

∂tx + ∂xfs(x)∂zx =
∂tx + J(x)∂zx = S1(x) + S2 (29)

with:

J(x) =
[
vs εs

0 vs

]
(30)

The shock velocity, ws(t), is calculated as a function of the eigenvalues, λJ , of the
Jacobian matrix, J(x), [20]. Thus, the double real eigenvalues is: λJ = vs which means
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that this system is not strictly hyperbolic (weakly hyperbolic) and therefore: ws(t) =
max

zi

| λJ |= max
zi

| vs(zi, t) |.
Remark: This Rusanov numerical scheme works also for the weakly hyperbolic system

(29), [15]

4. simulation of a dynamic event

A dynamic event was experimentally applied to a full-scale clarifier located at the
wastewater treatment plant SYSTEPUR (Vienne, France). Inlet flow was artificially
increased by a magnitude of approximately 2. Flow rates Qf (t), Qur(t) and Que(t),
depth of sludge blanket zv(t), and particle concentrations Cf (t) and Cur(t) were con-
tinuously monitored. The sludge blanket level was measured with an ultrasound Royce
device located on the rotating deck on top. In this section, simulated results obtained
with our model are compared with experimental data specifically collected to test the
model. First let us describe how the plant has handle the event.

4.1. Wastewater treatment plant description

The urban sludge treatment plant, [21] includes a primary settling tank, two biological
aeration tanks in parallel and two secondary clarifiers in parallel.

Each secondary clarifier is equiped with two ON/OFF pumps for the sludge recircu-
lation and two ON/OFF pumps for sludge extraction. According to the control strategy,
one or two recirculation pumps are in operation as well as zero, one or two extraction
pumps.

Our experimental study consisted in investigating the dynamic evolution of the sep-
aration of liquid and sludge particles in a clarifier.

Scenario description: a dynamic event was applied by routing all activated sludge
from biological aeration tanks to one clarifier during approximately 8h (beginning at
t = 1.40am ; end at t = 9.45am). It has provoked a sudden increase of the flow rate of
activated sludge Qf at the inlet of the secondary clarifier.

During this scenario, the sludge recirculation flow rate was Qur = 180m3/h until
9.45am, which corresponds to one recirculation pump running, and Qur = 360m3/h
thereafter, which corresponds to two recirculation pumps running. The sludge extraction
flow rate, Que(t) is null all the time. The experimental time profile of Qf (t) as well as
Qf (t) measurement average are given in Fig. 2 with the other flow rates values.

4.2. Dynamic Simulations of the dynamic event

A uniform 28-node spatial mesh, a variable time step with a maximum of ∆t = 1 s
and the parameters values given table 1, chosen to fit the measurements, are used to
run the simulations. The flow rate Qf (t) and the solid particles concentration Cf (t) of
activated sludge at the inlet of the clarifier measurements used in the simulation are
averaged (respectively red curve in Fig. 2 and value in table 1).

Some parameters values come from the characteristics of the clarifier or the numerical
discretization. The other parameter values are determined from the measurements and
the ranges proposed in [4] and [2] adapted from mineral to organic sludges. Indeed,
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Figure 2. Measured activated sludge feeding flow rate and average value, Qf (t), recirculation flow rate,
Qur(t) and extraction flow rate, Que(t).

Table 1. Model parameters values.
*G: determined from fitting measurements with [4] constitutive equations
*C: determined from fitting measurements with [2]constitutive equations
*E: determined from fitting measurements with our model

A 1175 m2 clarifier section
Ak 9.81 10−4 m/s ∗C
Cc 4.18 kg/m3 ∗E
Cf 2.83 kg/m3 average feeding concentration
∆t 1 s numerical time discretization
∆z 10 cm numerical spatial discretization
∆zf 10 cm feeding zone height
εc 4.1 10−3 ∗E
nr 2 ∗C
ns 11 ∗G
ρs 1030 kg/m3 ∗E
ρl 1000 kg/m3 liquid density
S 1.44 m2 sludge feeding zone surface
σ0 0.5 kg/ms2 ∗G
zb 2.8 m clarifier height
zf 1.8 m feeding zone average location

mineral particulate system density is about twice the density of the organic sludge
density which changes the settling dynamics through the magnitude of the forces applied
to the solid particles.

The initial stationary profile of the sludge concentration in the clarifier is given Fig.
4: profile indexed with tstart. It corresponds to the stationary profile of our model corre-
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sponding to operating conditions before the dynamic event. The activated sludge feeding
takes place at z = zf .
Fig. 3 presents simulated and measured values of the sludge blanket level which are
very close. It suggests that the model properly represents the main settling phenomena
involved inside the clarifier.

Figure 3. Comparison of simulated and measured sludge blanket level, zv(t).

Seven simulated solid particle concentration spatial profiles at different levels of
progress of the simulated dynamic event are shown in Fig. 4. It can be observed in
Fig. 4 that, as soon as the dynamic event was applied at the inlet of the clarifier, it
leaves the stationary state and the sludge blanket level, zv(t), rises (Blue curves) up to
depth 0.55m at 9.48am. At this level, a second recirculation pump starts which causes
the sludge blanket level to move down until the end of the measurements (cyan curves).
The sludge blanket level corresponds to the spatial position of the maximum concen-
tration gradient of solid particles. It also corresponds to the position of the shock wave
(discontinuity) in solid particles concentration. As in practice, a change in behaviour
appears below the lower interface when the compression threshold, Cc (red dashed line)
is exceeded. There is a higher concentration of solid particles in this low compression
zone.

Fig. 5 shows the time and space evolution of the solid particles concentration as a
general overview of how the scenario progresses.

Currently, the execution time of a simulation on a workstation with Intel Xeon at
3.8GHz is 43min. It can be explained by the fact that the settling phenomenon is
very slow whereas the numerical scheme must allow the detection of the sludge blanket
position variation which is a concentration discontinuity.
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Figure 4. Simulated solid particle concentration Cs vertical spatial profiles at different instants. (Blue curves:
the sludge blanket moves up, cyan curves: the sludge blanket moves down)
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Figure 5. Solid phase volume fraction over time and space.
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5. Conclusions and perspectives

In this paper, a 1-D dynamic knowledge-based model of urban sludge settling in a con-
tinuous secondary clarifier has been presented. Its originality is in its constitution of
two dynamic mass and momentum balances, which makes it more general and repre-
sentative of a wider range of settling processes (primary, secondary, in mines, cities, ...).
Only the values of the model parameters have to be adapted to the context and there is
no need for an additional equation to define the hindered settling velocity as in family
1. models. To the best of our knowledge, the model and the numerical scheme presented
in this paper are the only ones of family 3. that are well adapted to urban sludge. They
calculate everything that enables operating decisions to be made for the clarifier: the
time evolution of the solid particles concentration profile in the clarifier as well as the
outlet concentrations Ce(t) and Cu(t) and the sludge blanket position zv(t), knowing
the activated sludge feeding flow rate and concentration Qf (t) and Cf (t) and the com-
pressed sludge outlet flow rate Qu(t). The dynamic model is a partial differential non
linear hyperbolic system including source terms. It will also be very useful for a further
design of a closed-loop controller to regulate the water quality at the top of the clarifier,
through an automatic control of the sludge blanket depth by acting on recirculation
and/or extraction fluxes. The simulation results were confronted with experimental re-
sults from measurements of the sludge blanket during a dynamic event. The numerical
scheme used for simulation is a method of lines with a spatial discretization based on
a finite volume method using the so called Rusanov approximation. This model is able
to correctly simulate the behaviour of the clarifier.

It can also be noted that the estimation of the parameters of the dynamic model
to match the measurements is an indirect method to determine the intermedi-
ate/compression threshold Cc.

One of our perspectives is to improve the numerical scheme or the way to imple-
ment it in Matlab® in order to reduce the execution time. The method of lines was
implemented in [6] too without specifying how the flux were approximated and with a
single hyperbolic equation corresponding to the mass balance which makes the system
strongly hyperbolic and not weakly hyperbolic as in this paper. The CPU time was
much shorter.
If a real time exploitation of these methods is not presently possible, they can be the
heart of a decision support tool to help operators in wastewater treatment plants in
their decision making.
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7. Notations

Index i stands for liquid phase (l) or solid phase (particles) (s).
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α(εs) boolean intermediate / compression zone flag
A cylindric clarifier section (m2)
Ae overflow surface (m2)
Au outlet pipe section (m2)
Ci(z, t) solid (liquid) phase mass concentration (kg/m3) Ci(z, t) = ρiεi(z, t)
Cf (t) mass concentration of solid at the activated sludge feed (kg/m3)
εi(z, t) solid (liquid) phase volume fraction
εc solid volume fraction intermediate/compression zone threshold
fs(z, t) system average volumetric flux (m/s)
P (z, t) excess pore pressure (Pa)
Qf (t) volume flow rate of the activated sludge feed (m3/s)
Qe(t) volume flow rate of clarified water released at the top of the clarifier

(m3/s)
Qu(t) volume flow rate of compressed sludge which is pumped at the

bottom of the clarifier (m3/s)
r(εs) resistance coefficient of the drag force proposed by Darcy and Ger-

sevanov in a two-phase model (kg.m−3.s−1)
ρi solid (liquid) phase density (kg/m3)
σe(εs) effective solid stress function (Pa)
Sf Sludge feeding surface
vi(z, t) solid (liquid) phase average velocity (m/s)
vm(z, t) volume average velocity (total volume flux of the suspension) (m/s)
zb cylindric clarifier height (m)
zc(t) intermediate/compression interface location (m)
zf average location of the activated sludge feeding zone (m)
zv(t) sludge blanket location (m)
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