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-D Dynamic knowledge-based model of urban sludge continuous-flow settling process. Comparison with experimental results

Separating activated sludge from the liquid phase is the last operation in a wastewater treatment plant. Our goal is to present a knowledge-based dynamic model with both dynamic mass and momentum balances and that can be used for decisionmaking. The numerical scheme used for simulation is a method of lines with a spatial discretization based on a finite volume method using the Rusanov approximation. It is well-suited to such nonlinear hyperbolic systems exhibiting discontinuities or shock waves. Such a model takes into account the various behaviours of the mixture inside the clarifier and not only the nominal operation and is more general than the other models existing in the literature. The simulation results are confronted with experimental results from measurements of the sludge blanket during a dynamic event.

INTRODUCTION

A proper understanding of organic urban sludge settling in wastewater treatment plants is very important a) to ensure that the clarified water discharged into the environment meets the required quality and environmental standards and b) to help decide which closed-loop control strategies should be used in order to have lower operating costs (energy, ...) or better effluent quality. During settling operation, the solid particles of the activated sludge settle inside the suspension and three zones form: the upper clarification zone containing liquid only; the intermediate zone in which solid particles settle freely with no interaction; and the compression zone at the bottom where solid particles form a high concentration porous bed where the solid particle mass concentration exceeds a given threshold above which interaction forces between particles begin to act. These three zones appear to be separated by two mobile interfaces: the sludge blanket separating the clarification and intermediate zones and an interface defined by a concentration threshold separating the intermediate and the compression zones, [START_REF] Burger | A consistent modelling methodology for secondary settling tanks: a reliable numerical method[END_REF], [START_REF] Chauchat | Modeling sedimentationconsolidation in the framework of a one-dimensional two-phase flow model[END_REF], [START_REF] Diehl | On boundary conditions and solutions for ideal clarifier -thickener units[END_REF], [START_REF] Garrido | Settling velocities of particulate systems: 14. Unified model of sedimentation, centrifugation and filtration of flocculated suspensions[END_REF].

Two situations are mainly addressed in the literature devoted to dynamic settling modeling. The batch settler that allows investigating sludge settling properties and the continuous settler (clarifier) that is operated in urban wastewater treatment plants. To date, 1-D dynamic models represent the best compromise for capturing the complexity and significance of the studied phenomena, [START_REF] Plosz | Shall we upgrade one-dimensional secondary settler models used in WWTP simulators? An assessment of model structure uncertainty and its propagation[END_REF]. In these vertical settlers, the solid phase moves at variable velocity in the liquid phase. Therefore, the model must include a momentum balance (static or dynamic) or a constitutive equation to represent velocity variation in space and time. Four families of 1-D models are described in the literature:

1. Models based on a dynamic solid particle mass balance coupled with a constitutive equation that gives the solid particle velocity, the so-called batch or hindered settling velocity, [START_REF] Burger | A consistent modelling methodology for secondary settling tanks: a reliable numerical method[END_REF], [START_REF] David | Modeling and numerical simulation of secondary settlers: A method of Lines strategy[END_REF], [START_REF] Diehl | On boundary conditions and solutions for ideal clarifier -thickener units[END_REF], [START_REF] Queinnec | Modelling and simulation of the steady-state of secondary settlers in wastewater treatment plants[END_REF], [START_REF] Takacs | A dynamic model of the clarification thickening process[END_REF], [START_REF] Torfs | Concentration-driven models revisited: Towards a unified framework to model settling tanks in WWTPs[END_REF]. I. Takács initiated this approach; 2. Models based on a dynamic solid particle mass balance and a static momentum balance which defines the flux density function, [START_REF] Burger | Phenomenological foundation and mathematical theory of sedimentationconsolidation processes[END_REF], [START_REF] Garrido | Settling velocities of particulate systems: 14. Unified model of sedimentation, centrifugation and filtration of flocculated suspensions[END_REF]; 3. Models based on both a dynamic solid particle mass balance and a dynamic momentum balance, [START_REF] Chauchat | Modeling sedimentationconsolidation in the framework of a one-dimensional two-phase flow model[END_REF], [START_REF] Valentin | Representation of a Continuous Settling Tank by Hybrid Partial Differential Non Linear Equations for Control Design[END_REF]. This approach is more recent and is more general due to its two dynamic balances; 4. Models based on both the dynamic solid particle mass and momentum balances and the sludge blanket location as an additional variable whose variation is governed by a dynamic equation (issued from a mass balance), [START_REF] França | Study on batch sedimentation simulation -establishment of constitutives equations[END_REF], [START_REF] Valentin | Dynamic Modeling of a Batch Sludge Settling Column by Partial Differential Non-Linear Equations with a Moving Interface[END_REF]. This approach is more specific to batch settling for the moment.

A very interesting review on clarifier 1-D dynamic models of families 1. and 2. can be found in [START_REF] Li | Research advances and challenges in one-dimensional modeling of secondary settling Tanks -A critical review[END_REF]. In the last three families, constitutive equations are required in order to express the forces acting on the solid particles: pressure, effective interparticles stress, gravity and drag. The interest of models with a dynamic momentum balance as family 3. is that they do not require an additional constitutive equation to define the velocity of solid particles in the mixture. These models are more general and represent a wider range of settling processes (primary, secondary, in mines, cities, ...). Only the values of the model parameters have to be adapted to the context. The first three models are nonlinear hyperbolic partial differential equation (PDE) systems and the fourth one is an ODE-PDE system. In [START_REF] Valentin | Dynamic Modeling of a Batch Sludge Settling Column by Partial Differential Non-Linear Equations with a Moving Interface[END_REF], a two PDEs system obtained from the solid particles mass and momentum balances and an ODE representing the variation in the location of the sludge blanket mobile interface is used. Simulating this model using a centered finite difference numerical scheme gives a sludge blanket descent dynamics that is in good agreement with measurements. However, with this numerical scheme, only the change in the average concentration under the sludge blanket is obtained, because it is unable to detect spatial discontinuities or shock waves in some state variables as the solid particles velocity. Therefore, it cannot predict the change in sludge concentration at the bottom over time nor the lowest interface location between the intermediate zone and the compression zone.

In this paper is presented a 1-D dynamic model based on particles mass and momentum balances of family 3. so that it can be used for decision-making and for a further design of a closed-loop controller to regulate the water quality at the top of the clarifier. Such a model takes into account the various behaviours of the mixture inside the clarifier and not only the nominal operation. A Rusanov finite volume numerical scheme, [START_REF] Leveque | Finite volume methods for hyperbolic problems[END_REF], is implemented to take into account the specificity of this nonlinear hyperbolic system with source terms. This type of scheme naturally detects the two mobile interfaces between the three zones that form when the sludge settles. The velocity of the fastest of these two shocks needs to be calculated in order to define the time and space steps in the numerical scheme in order to ensure its stability.

This paper is organized as follows: section 2. deals with a one dimension functional description of the secondary clarifier and of a dynamic model of the behaviour of sludge based on both dynamic mass and momentum balances. It is a hyperbolic PDE system with non linear source terms associated with specific constraints, constitutive equations and boundary conditions. This model is more general than the other models presented in the literature and more simple than the model of the same family, 3. presented in [START_REF] Chauchat | Modeling sedimentationconsolidation in the framework of a one-dimensional two-phase flow model[END_REF] in the field of sedimentation in a river estuary. A numerical scheme well-suited to this nonlinear hyperbolic systems exhibiting discontinuities or shock waves is presented in section 3. In section 4., a dynamic event scenario is described and simulated results obtained with our model are compared with experimental data. Finally, section 5. gives some conclusions and perspectives of this promising work.

A 1-D dynamic physical model

Clarifier and settling description

The clarifier (settling tank) is represented schematically Fig. 1 in 1D view. The open-air settler content can be divided into 2 interfaces moving in space and time separating the three above-mentioned zones:

• The upper interface is the sludge blanket and is located at depth z v (t). It separates the clarification zone (which no longer contains any solid particles) and the intermediate zone, • The lower interface is defined by the intermediate/compression threshold and is located at depth z c (t) where a change in behavior occurs as the solid particle concentration C s (z, t) exceeds the threshold C c above which an interparticle stress comes into effect. Under z c (t), the liquid phase flows through the porous network, [START_REF] Toorman | Sedimentation and self-weight consolidation: general unifying theory[END_REF].

The clarifier is connected to the wastewater treatment process through three flows:

• one inlet where activated sludge flows inside the clarifier by gravity from the upstream biological aeration tank with volume flow rate Q f (t) and solid particles concentration C f (t). Practically, the activated sludge feeding takes place inside a skirt at depth around z = z f , • one top outlet of clarified water at z = 0, with volume flow rate Q e (t) and solid particles concentration C e (t), • one bottom outlet of compressed sludge at z = z b , with volume flow rate Q u (t) and solid particles concentration C u (t). Some of the compressed sludge is recirculated back to the aeration tank with volume flow rate Q ur (t) and some can be extracted from the clarifier with volume flow rate 

Q ue (t) such that Q u (t) = Q ur (t) + Q ue (t).

1-D dynamic mass and momentum balances

The objective of the model is to calculate the time evolution of the solid particles concentration profile in the clarifier as well as the outlet concentrations C e (t) and C u (t) and the sludge blanket position z v (t), knowing the activated sludge feeding flow rate and concentration Q f (t) and C f (t) and the compressed sludge outlet flow rate Q u (t).

The dynamic model describing the behavior of the sludge suspension in the clarifier is based on the dynamic mass and momentum balances that can be written for the two phases under the following commonly-used simplifying assumptions, [START_REF] Li | Research advances and challenges in one-dimensional modeling of secondary settling Tanks -A critical review[END_REF]:

1. The liquid and solid phases completely fill the clarifier volume that is constant. 2. There is no biological activity during the settling operation and the suspension is fully flocculated before sedimentation, [START_REF] Burger | Phenomenological foundation and mathematical theory of sedimentationconsolidation processes[END_REF]. 3. The solid particles have the same size and shape, [START_REF] David | Modeling and numerical simulation of secondary settlers: A method of Lines strategy[END_REF], [START_REF] Diehl | On boundary conditions and solutions for ideal clarifier -thickener units[END_REF], [START_REF] Garrido | Settling velocities of particulate systems: 14. Unified model of sedimentation, centrifugation and filtration of flocculated suspensions[END_REF]. 4. There is a uniform particle concentration at a given depth, [START_REF] David | Modeling and numerical simulation of secondary settlers: A method of Lines strategy[END_REF], [START_REF] Diehl | On boundary conditions and solutions for ideal clarifier -thickener units[END_REF]. 5. The vessel wall friction is negligible. 6. The solid particles are small with respect to the containing vessel and have the same density, [START_REF] Garrido | Settling velocities of particulate systems: 14. Unified model of sedimentation, centrifugation and filtration of flocculated suspensions[END_REF]. 7. The solid particle and fluid mass densities, ρ s (kg/m 3 ) and ρ l (kg/m 3 ), are constant, [START_REF] Chauchat | Modeling sedimentationconsolidation in the framework of a one-dimensional two-phase flow model[END_REF], [START_REF] Diehl | On boundary conditions and solutions for ideal clarifier -thickener units[END_REF] and there is no mass transfer between them, [START_REF] David | Modeling and numerical simulation of secondary settlers: A method of Lines strategy[END_REF], [START_REF] Garrido | Settling velocities of particulate systems: 14. Unified model of sedimentation, centrifugation and filtration of flocculated suspensions[END_REF]. [START_REF] Takacs | A dynamic model of the clarification thickening process[END_REF]. The open-air clarifier has a constant cross-sectional area.

Let ε s (z, t) denote the solid particle volume fraction with z the depth from the top of the clarifier, and t the time. ε l (z, t) denotes the liquid volume fraction. The solid particle mass concentration is then C s (z, t) = ρ s ε s (z, t) (kg/m 3 ). Let v s (z, t) (m/s) and v l (z, t) (m/s) denote the solid and liquid phase Eulerian average velocity respectively.

Remark: for sake of clarity, the notations have been simplified by omitting (z, t) from the following equations wherever the variables for all z and all t are considered. A subscript notation is used for the partial derivatives: ∂f ∂t = ∂ t f and ∂f ∂z = ∂ z f .

The feeding is located over an interval of height ∆z f and centered at z f to take into account the different types of skirts that drive the flow of sludge downwards. This area is located between z 2 = z f + ∆z f /2 and z 1 = z f -∆z f /2. The following gate (Top-Hat) function, Π(z, z f , ∆z f ), can be defined in order to represent the source terms due to the sludge feeding in the balance equations. For simplicity, it is denoted Π f (z):

∀z, z 1 , z 2 ∈ ℜ + , Π f (z) = 1 if z 1 ≤ z ≤ z 2 0 otherwise (1) 
The dynamic mass balances for the solid phase and the liquid phase are then the following:

Solid phase mass balance:

∂ t (ρ s ε s ) + ∂ z (ρ s ε s v s ) = f 1s (Q f , C f )Π f (z) (2) 
Liquid phase mass balance:

∂ t (ρ l ε l ) + ∂ z (ρ l ε l v l ) = f 1l (Q f , C f )Π f (z) (3) 
with f 1s Π f and f 1l Π f the source terms representing the activated sludge inlet feeding in the solid and liquid mass variation respectively. They both depend on Q f , the total volume flow rate of the feed and on C f , the mass concentration of solid particles at the feed and A, the cylindric clarifier section.

As well, the dynamic momentum balance equations can be written for the solid phase and the liquid phase, [START_REF] Chauchat | Modeling sedimentationconsolidation in the framework of a one-dimensional two-phase flow model[END_REF], [START_REF] Drew | Mathematical Modeling of two-phase flow[END_REF], [START_REF] Martin | Sedimentation equilibrium of suspensions of colloidal particles at finite concentrations[END_REF]: Solid phase momentum balance:

∂ t (ρ s ε s v s ) = -∂ z (ρ s ε s v 2 s ) + ε s ρ s g -ε s ∂ z P -∂ z σ e (ε s ) + r(ε s )(v l -v s ) +f 2s (Q f , C f )Π f (z) (4) 
with: ε s ρ s g volumetric gravitational force (body force)

∂ z P (z, t)
gradient of the pore pressure (hydrodynamic pressure) ∂ z σ e (ε s ) gradient of the interparticle stress between the solid particles, [START_REF] Burger | Phenomenological foundation and mathematical theory of sedimentationconsolidation processes[END_REF].

r(ε s )(v l -v s )
Stokes like drag force i.e. liquid/solid dynamic interaction force standing for viscous friction between the two phases. r(ε s ) is the resistance coefficient.

Liquid phase momentum balance:

∂ t (ρ l ε l v l ) = -∂ z (ρ l ε l v 2 l ) + ε l ρ l g -ε l ∂ z P -r(ε s )(v l -v s ) +f 2l (Q f , C f )Π f (z) (5) 
with f 2s Π f and f 2l Π f the source terms representing the activated sludge inlet feeding in the solid and liquid momentum variation respectively. They depend on Q f , C f and A.

In the next two sections, specific constraints inherent in a two-phase suspension with non-constant velocity and constitutive relations of σ e (ε s ) and r(ε s ) will be presented.

Specific constraints

As the sludge is a two-phase (liquid and solid) suspension, the sum of the solid particle volume fraction and the liquid volume fraction is:

ε l + ε s = 1 (6)
As solid particles and fluid are incompressible, the total volume flux of the suspension (or mixture average velocity), i.e. the sum of the volume flux of the two phases is denoted v m (z, t) and can be calculated by the following algebraic equation:

v m = ε l v l + ε s v s (7)
Moreover by using equation ( 6), the sum of the two mass balances ( 2) and ( 3), each divided by the respective phase density, gives:

∂ z v m = f 1s ρ s + f 1l ρ l Π f (z) (8) 
It means that v m gradient is null everywhere except in the feeding zone, thus v m is constant on both sides of the feeding zone with a linear change inside the zone and can be calculated by [START_REF] Torfs | Concentration-driven models revisited: Towards a unified framework to model settling tanks in WWTPs[END_REF].

v m (z, t) =      -Q e /A if z < z 1 1 A∆z f [(Q e + Q u )z -z 1 Q u -z 2 Q e ] if z 1 ≤ z ≤ z 2 Q u /A if z > z 2 (9) 
Therefore, ε l (z, t) can be calculated from ( 2) and ( 6), and v l (z, t) can be deduced from (2), ( 4), ( 6) and ( 9) as follows:

v l = v m -ε s v s (1 -ε s ) (10) 
Note that this equation is well defined because there is liquid everywhere in the clarifier in the interstices between the solid particles, then ε s ̸ = 1.

Constitutive equations

Some quantities, such as the interparticle stress, σ e , and some parameters, such as the drag force resistance coefficient, r, depend on the solid particle volume fraction ε s . These are characterized by constitutive expressions that are usually derived from experimental data. They are empirical in nature and depend on the characteristics of the sludge. Different constitutive equations have been proposed by various authors for a range of contexts (wastewater from cities, mines, estuary or coastal zones etc). [START_REF] Li | Research advances and challenges in one-dimensional modeling of secondary settling Tanks -A critical review[END_REF] presented most of the proposed approaches. σ e (ε s ) and r(ε s ) were chosen from those adapted to organic urban sludge. The constitutive equations presented by [START_REF] Garrido | Settling velocities of particulate systems: 14. Unified model of sedimentation, centrifugation and filtration of flocculated suspensions[END_REF] for σ e (ε s , α) and by [START_REF] Chauchat | Modeling sedimentationconsolidation in the framework of a one-dimensional two-phase flow model[END_REF] for r(ε s ) are well suited to the urban sludge:

σ e (ε s , α) = α(ε s )σ 0 ε ns s -ε ns c ε ns c (11) r(ε s ) = ρ l g K(ε s ) with K(ε s ) = A k ε 2/(3-nr) s ( 12 
)
with σ 0 , n s , A k and n r being the constant parameters that characterize the sludge which permeability is K and α(ε s ), a Boolean parameter such that:

α(ε s ) = 0 for ε s ≤ ε c 1 for ε s > ε c ( 13 
)
with ε c , the solid volume fraction intermediate/compression threshold. α(ε s ) is equal to zero in the intermediate zone where the particles are relatively distant from one another due to the low concentration, and is equal to one in the compression zone where an interparticle stress between the solid particles comes into effect due to their proximity to each other.

Thus, the constitutive equation for σ e (ε s , α) depends on the zones in the clarifier. The formulation ensures that σ e (ε s , α) is a continuous function at ε s = ε c . The need for continuous and Boolean variables in the settler dynamic model makes it hybrid, [START_REF] Valentin | A port-Hamiltonian formulation of physical switching systems with varying constraints[END_REF].

PDE 1-D sludge continuous settling dynamic model

After all these considerations, the four dynamic balance equations given in section 2.2 can be expressed only in terms of the solid particle volume fraction, ε s , and the solid particle volume velocity, v s , after having performed all the simplifications implied by the assumptions 1. to 8. and the algebraic equations specific to this system established in section 2.3.

Moreover, a simplified expression of the pore pressure gradient can be considered for this system because the settling is very slow and the suspension is at a low concentration. This involves a pressure profile identical to the static gradient due to Archimedes' buoyancy force, ∂ z P = ρ l g, and this throughout the duration of the operation, [START_REF] França | Study on batch sedimentation simulation -establishment of constitutives equations[END_REF], which is an additionnal 9th assumption:

9. ∀z ∈ [0, z b ] , ∂ z P = ρ l g.
The solid particle volume fraction ε s and the velocity variations v s can be written in conservative form, after some manipulation of the equations ( 2), ( 4) and ( 10):

∂ t ε s + ∂ z (ε s v s ) = f 1s ρ s Π f (z) ( 14 
)
∂ t v s + ∂ z ( v 2 s 2 ) = (1 - ρ l ρ s )g - 1 ρ s ε s ∂ z σ e - r(ε s )(v m -v s ) ρ s ε s (1 -ε s ) + f 21s ρ s Π f (z) (15) 
with:

f 1s (Q f , C f ) = C f Q f A∆z f (16) f 21s (Q f , C f ) = f 2s -v s f 1s ε s = C f Q f ε s A∆z f Q f S f -v s ( 17 
)
S f being the sludge feeding surface.

Equations ( 14) and ( 15) constitute a nonlinear hyperbolic system with two first order PDEs, two continuous nonlinear source terms (gradient of the interparticle stress and Stokes like drag force), two constant source terms (volumetric gravitational and Archimedes' buoyancy forces) representing the forces applied to solid particles and two discontinuous source terms representing the contributions of the activated sludge feeding. Here it is expressed in matrix form, with x the state variable vector:

x = ε s v s
And f s (x) the flux:

f s (x) = ε s v s v 2 s 2
Then, the dynamic model of the urban sludge settling is:

∂ t x + ∂ z f s (x) = S 1 (x) + S 2 (18) 
with S 1 (x) equal to the three source terms depending on x and S 2 equal to the three others not depending on x.

Boundary conditions

Two boundary conditions are required for these two first order PDEs. They come from a continuity of solid particles flow at the top and at the bottom of the clarifier, assuming a continuity/equality on the solid particles volume fraction, ε s .

At the top, at z = 0:

ε s (0, t) = ε e s ( 19 
)
ε s (0, t)v s (0, t) = -ε e s Q e (t) A ( 20 
)
with ε e s the solid particles volume fraction at the very beginning of the overflow.

At the bottom, at z = z b :

ε s (z b , t) = ε u s (21) ε s (z b , t)v s (z b , t) = ε u s Q u (t) A ( 22 
)
with ε u s the solid particles volume fraction at the entry to the outlet pipe.

During the operation of the clarifier, the activated sludge feed volume flow rate, Q f (t), and concentration, C f (t), are known as well as the withdrawal (recirculated and/or removed) volume flow rate at the bottom, Q u (t). It follows that the top overflow rate, Q e (t), is also known since

Q f (t) = Q u (t) + Q e (t)
, the volume of sludge in the clarifier being constant.

Thus, the two boundary conditions are:

v s (0, t) = - Q e (t) A (23) v s (z b , t) = Q u (t) A (24)
Then, the state-space representation of urban sludge continuous settling in a clarifier is given by the nonlinear hyperbolic system [START_REF] Martin | Sedimentation equilibrium of suspensions of colloidal particles at finite concentrations[END_REF] with σ e (ε s , α), r(ε s ) and α(ε s ) constitutive equations in [START_REF] Valentin | Representation of a Continuous Settling Tank by Hybrid Partial Differential Non Linear Equations for Control Design[END_REF], ( 12) and ( 13), v m algebraic equation in (9), contributions of sludge feeding in ( 16) and ( 17) and the boundary conditions in ( 23) and ( 24). The initial conditions are given in the simulation part.

The simulation is based on a numerical scheme that is well-suited to nonlinear hyperbolic systems exhibiting discontinuities or shock waves.

Numerical scheme

A very interesting discussion of various numerical schemes for this kind of non linear hyperbolic system is provided in the review [START_REF] Li | Research advances and challenges in one-dimensional modeling of secondary settling Tanks -A critical review[END_REF]. Our simulations are carried out using semi-discretization (also called method of lines) leading to a system of ODEs. The Finite Volume method is used for spatial discretization. The time integration is performed using ode45 of Matlab®. This method is the most efficient and simple we implemented so far for non linear hyperbolic systems with source terms. It is based on the integral form of the balance laws and is well suited for simulation of fluid mechanics, as well as heat and mass transfer. One of this main feature is that it locally preserves the local balances with respect to fluxes, [START_REF] Leveque | Finite volume methods for hyperbolic problems[END_REF].

The state space vector is spatially discretized as a uniform mesh of N z volumes of thickness ∆z and constant cross-sectional area, A. Each volume i is between an upstream frontier boundary, indexed i -1 2 , and a downstream frontier boundary, indexed i + 1 2 . Equation ( 18) can be written in integral form :

i+1/2 i-1/2 dx(z, t) dt dz = f i-1 2 (t) -f i+ 1 2 (t) + i+1/2 i-1/2 (S 1 (x) + S 2 ) dz (25)
where

f i± 1 2 (t) = f s (x(z, t))| z=(i±1/2)∆z
Considering that the state variables are uniform in each mesh and equal to some average value, xi (t):

xi (t) = 1 ∆z i+1/2 i-1/2
x(z, t)dz the previous equation can be approximated in integral form by :

dx i (t) dt = 1 ∆z f i-1 2 (t) -f i+ 1 2 (t) + S 1 (x i ) + S 2 (26) 
where we assume that S 1 (x i ) is a good approximation of

1 ∆z i+1/2 i-1/2 S 1 (x)dz. Let F i± 1 2
(t) represent an approximation of the fluxes f i± 1 2 (t) as a function of xi . We can then write:

dx i (t) dt = 1 ∆z F i-1 2 (t) -F i+ 1 2 (t) + S 1 (x i ) + S 2 (27) 
For hyperbolic systems a special care has to be taken, for the choice of these approximations, [START_REF] Leveque | Nonlinear Conservation Laws and Finite Volume Methods[END_REF], [START_REF] Leveque | Finite volume methods for hyperbolic problems[END_REF]. The Rusanov approximation is chosen since it allows capturing the shock waves of the model:

F i-1 2 = 1 2 (f s (x i-1 ) + f s (x i )) - w s 2 (x i -xi-1 ) (28) 
where w s (t) is the propagation velocity of the fastest wave in the hyperbolic system.

To ensure the stability of this method, the mesh size must respect the necessary CFL (Courant-Friedrichs-Lewy) condition i.e. |w s ∆t ∆z | < 1. ∆t is chosen as the maximum of the time discretization step used in ode45. This propagation velocity, w s , can be found as follows.

Let us express the nonlinear hyperbolic system [START_REF] Martin | Sedimentation equilibrium of suspensions of colloidal particles at finite concentrations[END_REF] with the Jacobian matrix J(x):

∂ t x + ∂ x f s (x)∂ z x = ∂ t x + J(x)∂ z x = S 1 (x) + S 2 (29) 
with:

J(x) = v s ε s 0 v s ( 30 
)
The shock velocity, w s (t), is calculated as a function of the eigenvalues, λ J , of the Jacobian matrix, J(x), [START_REF] Leveque | Nonlinear Conservation Laws and Finite Volume Methods[END_REF]. Thus, the double real eigenvalues is: λ J = v s which means that this system is not strictly hyperbolic (weakly hyperbolic) and therefore:

w s (t) = max zi | λ J |= max zi | v s (z i , t) |.
Remark: This Rusanov numerical scheme works also for the weakly hyperbolic system (29), [START_REF] Leveque | Finite volume methods for hyperbolic problems[END_REF] 4. simulation of a dynamic event A dynamic event was experimentally applied to a full-scale clarifier located at the wastewater treatment plant SYSTEPUR (Vienne, France). Inlet flow was artificially increased by a magnitude of approximately 2. Flow rates Q f (t), Q ur (t) and Q ue (t), depth of sludge blanket z v (t), and particle concentrations C f (t) and C ur (t) were continuously monitored. The sludge blanket level was measured with an ultrasound Royce device located on the rotating deck on top. In this section, simulated results obtained with our model are compared with experimental data specifically collected to test the model. First let us describe how the plant has handle the event.

Wastewater treatment plant description

The urban sludge treatment plant, [START_REF] Systepur | Station Vienne Sud: Présentation de la Station de Traitement des Eaux Usées[END_REF] includes a primary settling tank, two biological aeration tanks in parallel and two secondary clarifiers in parallel.

Each secondary clarifier is equiped with two ON/OFF pumps for the sludge recirculation and two ON/OFF pumps for sludge extraction. According to the control strategy, one or two recirculation pumps are in operation as well as zero, one or two extraction pumps.

Our experimental study consisted in investigating the dynamic evolution of the separation of liquid and sludge particles in a clarifier.

Scenario description: a dynamic event was applied by routing all activated sludge from biological aeration tanks to one clarifier during approximately 8h (beginning at t = 1.40am ; end at t = 9.45am). It has provoked a sudden increase of the flow rate of activated sludge Q f at the inlet of the secondary clarifier.

During this scenario, the sludge recirculation flow rate was Q ur = 180m 3 /h until 9.45am, which corresponds to one recirculation pump running, and Q ur = 360m 3 /h thereafter, which corresponds to two recirculation pumps running. The sludge extraction flow rate, Q ue (t) is null all the time. The experimental time profile of Q f (t) as well as Q f (t) measurement average are given in Fig. 2 with the other flow rates values.

Dynamic Simulations of the dynamic event

A uniform 28-node spatial mesh, a variable time step with a maximum of ∆t = 1 s and the parameters values given table 1, chosen to fit the measurements, are used to run the simulations. The flow rate Q f (t) and the solid particles concentration C f (t) of activated sludge at the inlet of the clarifier measurements used in the simulation are averaged (respectively red curve in Fig. 2 and value in table 1). Some parameters values come from the characteristics of the clarifier or the numerical discretization. The other parameter values are determined from the measurements and the ranges proposed in [START_REF] Garrido | Settling velocities of particulate systems: 14. Unified model of sedimentation, centrifugation and filtration of flocculated suspensions[END_REF] and [START_REF] Chauchat | Modeling sedimentationconsolidation in the framework of a one-dimensional two-phase flow model[END_REF] adapted from mineral to organic sludges. Indeed, 1.8 m feeding zone average location mineral particulate system density is about twice the density of the organic sludge density which changes the settling dynamics through the magnitude of the forces applied to the solid particles.

The initial stationary profile of the sludge concentration in the clarifier is given Fig. 4: profile indexed with t start . It corresponds to the stationary profile of our model corre-sponding to operating conditions before the dynamic event. The activated sludge feeding takes place at z = z f . Fig. 3 Seven simulated solid particle concentration spatial profiles at different levels of progress of the simulated dynamic event are shown in Fig. 4. It can be observed in Fig. 4 that, as soon as the dynamic event was applied at the inlet of the clarifier, it leaves the stationary state and the sludge blanket level, z v (t), rises (Blue curves) up to depth 0.55m at 9.48am. At this level, a second recirculation pump starts which causes the sludge blanket level to move down until the end of the measurements (cyan curves). The sludge blanket level corresponds to the spatial position of the maximum concentration gradient of solid particles. It also corresponds to the position of the shock wave (discontinuity) in solid particles concentration. As in practice, a change in behaviour appears below the lower interface when the compression threshold, C c (red dashed line) is exceeded. There is a higher concentration of solid particles in this low compression zone. Fig. 5 shows the time and space evolution of the solid particles concentration as a general overview of how the scenario progresses.

Currently, the execution time of a simulation on a workstation with Intel Xeon at 3.8GHz is 43min. It can be explained by the fact that the settling phenomenon is very slow whereas the numerical scheme must allow the detection of the sludge blanket position variation which is a concentration discontinuity. 

Conclusions and perspectives

In this paper, a 1-D dynamic knowledge-based model of urban sludge settling in a continuous secondary clarifier has been presented. Its originality is in its constitution of two dynamic mass and momentum balances, which makes it more general and representative of a wider range of settling processes (primary, secondary, in mines, cities, ...). Only the values of the model parameters have to be adapted to the context and there is no need for an additional equation to define the hindered settling velocity as in family 1. models. To the best of our knowledge, the model and the numerical scheme presented in this paper are the only ones of family 3. that are well adapted to urban sludge. They calculate everything that enables operating decisions to be made for the clarifier: the time evolution of the solid particles concentration profile in the clarifier as well as the outlet concentrations C e (t) and C u (t) and the sludge blanket position z v (t), knowing the activated sludge feeding flow rate and concentration Q f (t) and C f (t) and the compressed sludge outlet flow rate Q u (t). The dynamic model is a partial differential non linear hyperbolic system including source terms. It will also be very useful for a further design of a closed-loop controller to regulate the water quality at the top of the clarifier, through an automatic control of the sludge blanket depth by acting on recirculation and/or extraction fluxes. The simulation results were confronted with experimental results from measurements of the sludge blanket during a dynamic event. The numerical scheme used for simulation is a method of lines with a spatial discretization based on a finite volume method using the so called Rusanov approximation. This model is able to correctly simulate the behaviour of the clarifier.

It can also be noted that the estimation of the parameters of the dynamic model to match the measurements is an indirect method to determine the intermediate/compression threshold C c .

One of our perspectives is to improve the numerical scheme or the way to implement it in Matlab® in order to reduce the execution time. The method of lines was implemented in [START_REF] David | Modeling and numerical simulation of secondary settlers: A method of Lines strategy[END_REF] too without specifying how the flux were approximated and with a single hyperbolic equation corresponding to the mass balance which makes the system strongly hyperbolic and not weakly hyperbolic as in this paper. The CPU time was much shorter. If a real time exploitation of these methods is not presently possible, they can be the heart of a decision support tool to help operators in wastewater treatment plants in their decision making. 

Figure 1 .

 1 Figure 1. One-dimensional schematic view of a sludge clarifier.

Figure 2 .

 2 Figure 2. Measured activated sludge feeding flow rate and average value, Q f (t), recirculation flow rate, Qur(t) and extraction flow rate, Que(t).

  presents simulated and measured values of the sludge blanket level which are very close. It suggests that the model properly represents the main settling phenomena involved inside the clarifier.

Figure 3 .

 3 Figure 3. Comparison of simulated and measured sludge blanket level, zv(t).

Figure 4 .Figure 5 .

 45 Figure 4. Simulated solid particle concentration Cs vertical spatial profiles at different instants. (Blue curves: the sludge blanket moves up, cyan curves: the sludge blanket moves down)

  

Table 1 .

 1 Model parameters values.*G: determined from fitting measurements with[START_REF] Garrido | Settling velocities of particulate systems: 14. Unified model of sedimentation, centrifugation and filtration of flocculated suspensions[END_REF] constitutive equations *C: determined from fitting measurements with[START_REF] Chauchat | Modeling sedimentationconsolidation in the framework of a one-dimensional two-phase flow model[END_REF]constitutive equations *E: determined from fitting measurements with our model

	A	1175 m 2	clarifier section
	A k 9.81 10 -4 m/s	* C
	C c	4.18 kg/m 3	* E
	C f	2.83 kg/m 3	average feeding concentration
	∆t	1 s	numerical time discretization
	∆z	10 cm	numerical spatial discretization
	∆z f	10 cm	feeding zone height
	ε c	4.1 10 -3	* E
	n r	2	* C
	n s	11	* G
	ρ s	1030 kg/m 3	* E
	ρ l	1000 kg/m 3	liquid density
	S	1.44 m 2	sludge feeding zone surface
	σ 0	0.5 kg/ms 2	* G
	z b	2.8 m	clarifier height
	z f		

  α(ε s ) boolean intermediate / compression zone flag A cylindric clarifier section (m 2 ) A e overflow surface (m 2 ) A u outlet pipe section (m 2 ) C i (z, t) solid (liquid) phase mass concentration (kg/m 3 ) C i (z, t) = ρ i ε i (z, t) C f (t) mass concentration of solid at the activated sludge feed (kg/m 3 ) ε i (z, t) solid (liquid) phase volume fraction ε c solid volume fraction intermediate/compression zone threshold f s (z, t) system average volumetric flux (m/s) P (z, t) excess pore pressure (P a) Q f (t) volume flow rate of the activated sludge feed (m 3 /s) Q e (t) volume flow rate of clarified water released at the top of the clarifier (m 3 /s) Q u (t) volume flow rate of compressed sludge which is pumped at the bottom of the clarifier (m 3 /s) r(ε s ) resistance coefficient of the drag force proposed by Darcy and Gersevanov in a two-phase model (kg.m -3 .s -1 ) ρ i solid (liquid) phase density (kg/m 3 ) σ e (ε s ) effective solid stress function (P a) S f Sludge feeding surface v i (z, t) solid (liquid) phase average velocity (m/s) v m (z, t) volume average velocity (total volume flux of the suspension) (m/s) z b cylindric clarifier height (m) z c (t) intermediate/compression interface location (m) z f average location of the activated sludge feeding zone (m) z v (t) sludge blanket location (m)
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