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Abstract: We address the problem of scalable content-based search in large collections of music
documents. Music content is highly complex and versatile and presents multiple facets that can be
considered independently or in combination. Moreover, music documents can be digitally encoded
in many ways. We propose a general framework for building a scalable search engine, based on (i) a
music description language that represents music content independently from a specific encoding, (ii)
an extendible list of feature-extraction functions, and (iii) indexing, searching, and ranking procedures
designed to be integrated into the standard architecture of a text-oriented search engine. As a proof of
concept, we also detail an actual implementation of the framework for searching in large collections
of XML-encoded music scores, based on the popular ElasticSearch system. It is released as open-
source in GitHub, and available as a ready-to-use Docker image for communities that manage large
collections of digitized music documents.

Keywords: music collections; digital music encoding; music information retrieval; scalable and
content-based search

1. Introduction

Search engines have become essential components of the digital space. They help to
explore large and complex collections by retrieving ranked lists of relevant documents
related to a query pattern. They rely on scalable indexing structures and algorithms that
allow instant response to queries for web-scale collections [1]. Notable successes have been
obtained for text-based documents, and extended to multimedia collections [2–4].

Compared to other media (text, image or even video), the research on content-based
music information retrieval presents some specific challenges. Musical content is intricate,
and hard to describe in natural and intuitive terms. Temporal aspects (tempo, metric,
synchronization) are a major source of complexity that complicate attempts to provide a
synthetic representation. Moreover, musical contents are extremely versatile: from impro-
visation to highly constrained forms, from a single performer to a whole orchestra, from
classical to popular music, there exists a wide range of facets that yield a boundless number
of genres, styles, and forms. Last but not least, periods and locations (of composition or
interpretation) are other important aspects that increase the variability of the material.

Finally, when it comes to digital representations, one is confronted with highly diverse
encoding paradigms. The audio format is the most common. It usually contains recordings
of studio or live performances and constitutes the basis of digital music markets, particularly
with the advent of streaming distribution. On the other hand, symbolic representations aim
at a structured description of musical pieces. The MIDI format encodes information related
to the production of sound by a MIDI device [5]. Music notation is the most elaborate way
of describing music at this symbolic level [6]. It has been traditionally used for engraving
musical scores [7], but, since the advent of digital encodings such as the **kern format [8]
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or XML-based variants (MusicXML [9], its next-generation MNX [10], or MEI [11,12]),
music notation can also be seen as a support for music information processing. **kern
is for instance explicitly designed as a digital encoding of scores that feeds the music
analysis modules of the Humdrum toolkit [13]. Large collections of digitally codified
music scores are now available, either as results of long-running academic efforts [14,15],
or as a side-effect of the generalized production of music scores with editing software that
encode their documents in one of the above-mentioned formats (e.g., MuseScore [16]). Such
collections are examples of datasets where the music content is described in a structured
and well-organized way, apt at supporting sophisticated computer-based operations.

To the best of our knowledge, however, most existing search tools for large music
collections highly rely on metadata. This is the case for search engines incorporated in music
streaming services like Deezer or Spotify [17], and for renowned digital music databases like
Discogs [18] and AllMusic [19]. Musixmatch [20] allows lyrics search with access to libraries
of major music streaming platforms. Shazam [21] allows searching audio recordings by
indexing the fingerprints of files, and its result are therefore highly dependent on the
specificities of audio music encoding. SoundHound [22] offers a Query by Humming [23]
functionality that relies on the measurement of melodic similarity, thus it cannot search
other aspects of music. The few approaches that address search operations applied to
symbolic representation propose an exhaustive scan of the digital encoding, such as, for
instance, the Humdrum tools based on Unix file inspections [13] or the search methods
incorporated in the Music21 toolkit [24]. They do not scale to very large music datasets.

We expose in the present paper the design of a general framework for scalable content-
based search in large digital collections of music documents. Here, scalable means a sub-
linear search complexity, delivering very fast response time even in the presence of very
large collections; search operations are content-based because they rely on a structured
representation of music inspired by music notation principles, and can thus refer to specific
aspects of a music document (e.g., a melodic pattern in the violin part of a symphony);
finally our design addresses digital music documents, independently from a specific music
representation, thanks to an intermediate step that extracts the structured content upon
which all index/search/rank operations are based.

The proposed design is summarized in Figure 1. Initially, we deal with a large
collection of digital music documents in audio, symbolic or other formats. A first step
processes these documents by extractors, in order to obtain a structured representation,
called music content descriptor, complying with a Music Content Model (MCM). We enter
then in a more classical information retrieval workflow. First, features are produced from
each descriptor. This step is akin to the pre-processing operations in standard text-based
information retrieval (e.g., tokenization, lemmatization, etc.) adapted to the characteristics
of music representation. Those features must be encoded in a way that is compatible with
functionalities of the core information retrieval modules: indexing, searching and ranking.
Given a query pattern, they cooperate to deliver a ranked list of matching documents. The
last step of this IR workflow identifies all the fragments of the retrieved document that
match the query pattern, called pattern occurrences. This step is necessary for highlighting
the matching patterns in the user interface.

We further position our work with respect to the state of the art in Section 2, and
expose then our main contributions:

• A Music Content Model, or MCM (Section 3). It borrows from the principles of music
notation, reduced to the aspects that are independent from presentation purposes
(i.e., ignoring staves, clefs, or other elements that relate to the layout of music scores).
Although strongly influenced by the Western music tradition, we believe that this
model is general enough to represent a large part of the currently digitized music. We
call a Music Content Descriptor (MCD) a description of a music document according to
this model. The model supports some major functionalities of a search engine, namely
transformations corresponding to the classical linguistic operations in text-based search
engines and ranking.
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• A set of features that can be obtained from an MCD thanks to the above-mentioned
transformations. The features set presented in the current work (Section 4) is by
no way intended to constitute a final list, and the framework design is open to the
addition of other features like harmony, texture, or timbre.

• The design of the core modules of a search engine, based on these features and
dedicated to music retrieval (Section 5). They consist in indexing, searching, ranking,
and on-line identification of fragments that match the query pattern.

• An actual implementation (Section 6), dedicated to XML-encoded musical score col-
lections shows how to integrate these modules in a standard information retrieval
system, with two main benefits: reduction of implementation efforts and horizontal
scalability.

Music Content 
Extractors

mc1
mc2

mcn
…

Collections 
of

music 
documents

md1
md2

mdn
…

Digital music 
documents

Collections of
music content

descriptors

Production 
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features
Indexing

structures

Search & rank
algorithms

idi idj idk…

Occurrences
highlighting

mdi mdj
mdk

…

Core
information

retrieval
modules

Ranked list
of matching
documents 

Ranked list
of documents 

with highlighted
patterns

Figure 1. Overview of the architecture of our music search framework. Digital music documents
(bottom left) undergo a series of transformations and are finally ranked according to a search pattern.

Finally, Section 7 concludes the paper and lists some future extensions.

2. Related Work

Our approach relies on an abstract music content model. It consists of a tree-based
decomposition of a music score that reflects its temporal organization. This draws heavily
from [25–27], which introduced into the music information retrieval literature some ideas
and tools from the fields of databases systems and computer linguistics (e.g., hierarchical
decomposition of musical content and context-free grammars). Recently, the authors of [28]
used a similar graph-based representation to study music similarity.

The process that extracts instances of our model from digital music documents depends
on their specific representation. Automatic Music Transcription (AMT) applies to audio files
(e.g., either pulse-code modulation representation, or (un)quantized-MIDI) and produces
symbolic data (generally quantized MIDI). Most AMT methods nowadays use machine
learning approaches [29,30], and deliver satisfying results in limited cases (mostly, monodic
inputs). Research currently focuses on the difficult problem of polyphonic transcription.
Optical Music Recognition (OMR) is an active field of research that studies tools and methods
to extract music notation from an image (e.g., a scan of a musical score) [31–33]). The
quality of the results is highly dependent on that of the input image, but significant success
has been obtained recently [34], event for degraded inputs (e.g., manuscripts). Finally,
the simplest content extraction situation comes when the digital document is itself in a
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structured format (whether **kern, MusicXML, or MEI), in which case a standard parsing
followed by convenient filtering and structuring steps is sufficient.

Textual encoding of symbolic music representation is an attractive idea in order
to use text algorithms. The HumDrum toolkit [35] relies on a specialized text format
and adapts Unix file inspection tools for music analysis. Exact and approximate string
matching algorithms for melody matching have also been used in ThemeFinder [36,37] or
Musipedia [38]. Text-based operations raise the problem of independence with respect to
the physical content encoding: it is a widely admitted principle, in the community that
the result of the text of a query should not be tied to a specific representation, but rather
defined with respect to a “logical” data model. We proposed such a model in [39–41], and
the design presented in the present paper relies on such a high-level representation.

Ranking musical pieces according to their relevance with respect to a query pattern is an
essential part of an information retrieval system. In the MIR community, extensive studies
have been devoted to music similarity over the last decades, with the goal of obtaining
robust computational methods for evaluating the likeness of two musical sequences [42]. A
major problem is that similarity judgments are highly dependent on both the particular
aspects being compared and on the user’s taste, culture, and experience [43,44]. A recent
survey [45] summarizes the recent trends observed in the SMS track of the MIREX competi-
tion. Our work proposes well-established similarity measures, based on edit distances, to
support the ranking process. They could easily be replaced in the framework design by
other ranking functions, as long as they can be evaluated on our music content descriptors.
We believe, in addition, that using a hierarchical representation gives rise to a wider range
of possibilities for evaluating similarities, such as for instance, adding strong/weak beats
as input parameters.

Developing search engines dedicated to musical content is a rather emerging topic
because it is only during the last decade that large collections of digital music have been
produced and made widely available. Ref. [46] is a survey on pioneering works on music
information retrieval systems, followed a few years later by a contribution detailing the
“specifications and challenges” for music search engines [47]. The Peachnote Music Ngram
Viewer [48] was then developed, relying like our approach on n-grams and a symbolic input
(with a piano keyboard interface), though the description of their method is not detailed.
Note that the idea of splitting musical sequences in n-grams has been experimented with
in several earlier proposals [49–52], although not in the context of indexing. Other projects,
like Probado or Vocalsearch, seem to have shared some features with our framework, but
most of their details are no longer available. Modulo7 [53] is a promising search engine
(currently under development), also offering an abstract representation of the music content.
An index structure based on n-grams is described in [54] and extended in [55] with ranking
procedures. The present paper further extends [55] with a full study that addresses all
the aspects of the envisioned framework, along with a complete and publicly available
implementation.

3. The Music Content Model

We now present the Music Content Model (MDM) which relies heavily on principles
taken from music notation, seen as an expressive formal language that provides a powerful
basis for modeling music content. The MDM gives an abstract vision of digital music docu-
ments as structured objects, and supports indexing and search functionalities developed in
the forthcoming sections.

To state it in a nutshell, we model music information as a mapping from a structured
temporal domain to a set of value domains, and call music descriptor a representation of this
mapping as a structured object. The temporal domain is a hierarchical structure, called
rhythmic tree, that partitions a finite time range in non-overlapping intervals. Each interval
corresponding to a leaf of the rhythmic tree is associated to an atomic music event. The
mapping therefore associates to each such interval the event value, taken from a domain
which can be the domain of sounds, of syllables, or actually any domain that makes sense
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with respect to music description concerns: intensity, timbre, texture, or high-level concepts
obtained from music analysis.

We start with the main domain of interest, the domain of sounds, and continue
with the definition of music descriptors, along with the main operations. The model is
illustrated with a first example: the German anthem, Das Lied der Deutschen, whose music
was composed by Joseph Haydn in 1797 [56]. The notation of this example is shown in
Figure 2. Note that in the presentation that follows, we introduce the basic material from
music theory, necessary and sufficient to understand the rationale of our design. References
to authoritative sources are given for the interested reader.

� � ��� �� � � �� � � ��� � � � ��
Figure 2. First notes of the German anthem, Das Lied der Deutschen by Joseph Haydn (1797).

3.1. The Domain of Sounds: Pitches and Intervals

The main domain to consider is that of sounds. A sound can be characterized by
many properties, including intensity, timbre, and frequency [57]. We only consider the
characterization of sounds by their frequency in the modeling of our domain.

In the language of music notation, the frequency ranges approximately from 20 to
20,000 Hz. In Western music, a finite set of frequencies, or pitches [58], is used to refer
to the sounds usable in a musical piece. We follow the designation of the International
Standards Organization (ISO) for enumerating the pitches. In this the designation, each
pitch is referred to by a pitch class P (a letter A, B, C, D, E, F, or G) [59], an index I in [1, 7],
and an optional accidental a in {], [}. One obtains a set of pitch symbols of the form P[a]I.

Graphically (i.e., in music scores), frequency levels are materialized by groups of
horizontal lines (called staves) and pitches are represented by black or white heads vertically
positioned on staves. The first pitch in the score of Figure 2 is a C4, followed by a D4, an E4,
etc. Music is also made of silences (or rests), and we thus add the rest symbol r to the domain.
The German anthem starts with a rest, graphically represented by a small rectangle.

Finally, a sound can be represented by one or several consecutive pitches, representing
the same frequency level, which is then “tied” (graphically represented as curves over the
heads, such as in the first measure of Figure 2), we add the continuation symbol _ to our
domain. We obtain the domain of musical symbols.

Definition 1 (Domain of musical symbols). The domain Mus of musical symbols consists of:

1. The set of pitch symbols P[a]I, P ∈ {A, B, C, D, E, F, G}, a ∈ {], [}, I ∈ [1, 7],
2. The rest symbol, noted r,
3. The continuation symbol, noted _.

We will need some derived notions in our model. An interval is a distance between
two pitches [60], physically characterized by the ratio of their respective frequencies. A
ratio of 1 denotes a unison, a ratio of 2 an octave. The octave is the fundamental interval
that structures symbolic music representation. Indeed, a pitch class contains all the pitches
that are one or several octaves apart from one another: A4 is one octave above A3, and
one octave below A5. The second component of a pitch designation, the index I, refers to
a specific octave in the whole frequency range. The ISO standard assumes seven octave
ranges numbered from 1 to 7.

In Western music notation, an octave range is divided in 12 semi-tones. This defines
a scale, called chromatic, with 12 steps, corresponding each to exactly one semi-tone. The
definition of chromatic intervals is therefore based on the number of semi-tones between the
two pitches.

Another scale, called diatonic relies on the identification of seven “natural” pitches [61]
within and octave. Octave 4, for instance, contains the (natural) pitches {A4, B4, C4, D4, E4,
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F4, G4}. In the diatonic perspective, the twelve chromatic pitches are obtained by altering
the natural ones. An alteration either adds (symbol ]) of subtracts (symbol [) a semi-tone.
Therefore A]4 is one semi-tone above A4 and B[4 one semi-tone below B4.

In the diatonic perspective, the distance between two pitches is nominal and based on
the number of steps between the pitches in the diatonic scale, regardless of possible alterations.
One obtains unisons (0 steps), seconds (1 step), thirds (2 steps), etc. The list of interval names
(lower than an octave) is {unison, second, third, f ourth, f i f th, sixth, seventh, octave}.

To summarize, we can (and will) consider two definitions of intervals:

• A chromatic interval is the number of steps, negative (descending) or positive (ascend-
ing), in the chromatic scale, between two pitches.

• A diatonic interval is a nominal distance measuring the number of steps, descending or
ascending, in the diatonic scale, between two pitches.

Diatonic and chromatic intervals are partially independent from one another: if we
take two pairs of pitches, they might coincide in terms of their respective diatonic intervals,
and differ on the chromatic ones, and conversely. Searches interpreted with respect to
either of those two concepts give distinct results.

3.2. Music Content Descriptors

We model music as a temporal organization of sounds inside a bounded time range.
Notes cannot be assigned to any timestamp but fall on a set of positions that defines a discrete
partitioning of this range. More precisely, this partition results from a recursive decomposition
of temporal intervals, yielding a rhythmic organization that is inherently hierarchical.

In Western music notation, a music piece is divided in measures (graphically repre-
sented as vertical bars on Figure 2), and a measure contains one or more beats. Beats can
in turn be divided into equal units (i.e., sub-beats) [62,63]. Further recursive divisions
often occur, generating a hierarchy of pulses called metrical structure. The time signature,
a rational number (in our example, 4/4) determines the preferred decomposition. A 4/4
measure consists of four beats, and each beat is one quarter (graphically, a black note ˇ “ )
long. Still in the context of a 4/4 time signature, the preferred decomposition of a measure,
is into four sub-intervals (some other partitions are possible, although less likely), beats are
preferably partitioned in two quavers (graphically, a ˇ “( ), themselves (generally) partitioned
in semi-quavers ( ˇ “) ), etc.

For other meters (e.g., 3/4, 6/8), temporal decomposition follows different patterns.
In all cases, the rhythmic decomposition rules can be expressed in a well-known formal
language, namely Context-Free Grammars (CFG). In order to express decomposition prefer-
ences, they can be extended to Weighted Context-Free Grammars [26]. As an illustration, the
following grammar G = (V, Mus, R, S) is sufficient to model the rhythmic organization of
our example, with time signature 4/4. The set of non-terminal symbols is V = {S, m, b, q},
where S (the initial symbol) denotes a whole music piece, m a measure, b a beat and q a
quaver. The terminal symbols belong to Mus, the set of music symbols (Definition 1), and
R is the following set of rules:

1. R0 : S→ m|m, S (a piece of music is a sequence of measures),
2. r1 : m→ b, b, b, b (a measure is decomposed in four quarter notes/beats),
3. r2 : b→ q, q (a beat is decomposed in two quavers/eighth note),
4. A setRm of rules Rv

e : v→ e where e ∈Mus is a musical symbol.

Rule R0 and the set Rm together determine the temporal structure of music: (i) a
time range in divided in equal-sized measures, and (ii) events only occur at timestamps
determined by a parse tree of the grammar. Unambiguous grammars that feature R0 and
Rm are called music content grammars in the following. Given a music content grammar, we
can use its rules to build a hierarchical structure (a parse tree) that models the rhythmic
organization of a sequence of musical events.
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Definition 2 (Monodic content descriptor). Let G = (V, Mus, R, S) be a music content gram-
mar. A (monodic) content descriptor is a parse tree of G. The inner nodes constitute the rhythm
tree, and the leaves are the (musical) events.

Figure 3 shows the content descriptor of the initial measures of the German anthem.
From a content descriptor, it is easy to infer the following properties that will serve as a
basis for the indexing process: pitch sequence, temporal partition, and event sequence.

s

m m m

b b b b b b b b b

q q

…

R0 R0

!!!!!! !!"# $ !!
C5_ _ D5 E5 D5 F5 E5 D5 B5 C5

q q

r1

b

r

The rhythmic tree R

Events 

r2

Figure 3. The content descriptor for the German anthem, with its events and the rhythmic tree.

Definition 3 (Pitch sequence). Let D be a content descriptor. The sequence of leaf nodes values
in D is a string in Mus∗ called the pitch sequence of D and noted PSeq(D).

Given a time range I, a content descriptor D defines a partitioning of I as a set of
non-overlapping temporal intervals defined as follows.

Definition 4 (Temporal partition). Let I = [α, β] be a time range and D a content descriptor.
The temporal partitioning P(I, D) of I with respect to D is defined as follows. Let N be a node in
the rhythmic tree of D (recall that the rhythmic tree is D without the leaves level).

1. If N has no children, P(I, N) = {I}
2. If N is of the form N(N1, · · · , Ni), I is partitioned in n sub-intervals of equal size s = β−α

n
each: P(I, N) = {I1, · · · , In} with Ii = [α + (i− 1)× s, α + i× s]

This partitioning associates to each internal node N of a content descriptor a non-
empty interval denoted itv(I, N) in the following and a duration denoted dur(I, N). Each
event (leaf node) covers the time interval of its parent in the rhythmic tree.

We will adopt the following convention to represent temporal values: the duration of
a measure is 1, and the music piece range is n, the number of measures. Both the duration
and interval of a node result from the recursive division defined by the rules. The duration
of a half note for instance is 1

2 , the duration of a quaver is 1
4 , etc. The duration of a leaf node

(event) is that of its parent in the rhythmic tree.
One can finally obtain the event sequence by combining both pieces of information.

Definition 5 (Event sequence). Let D be a content descriptor and [L1, · · · , Ln] be the pitch
sequence of D. Then the sequence [(L1, dur(L1)), · · · , (Ln, dur(Ln))] where we associate to each
leave its duration is the event sequence of D, denoted ESeq(D).

Each element in ESeq(D) associates a symbol from Mus and a duration. One obtains
the sequential representation commonly found in music notation. An explicit representation
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of the hierarchical structure is, however, much more powerful than the sequential one. We
can use the tree structure for various simplifications, compute similarity measures (see
below), or infer strong or weak timestamps from their corresponding branch in the tree.
More generally, this general framework allows deriving features from content descriptors
by extracting, transforming, normalizing specific aspects pertaining to rhythm, domain
values, or both.

3.3. Non-Musical Domains

This modeling perspective can be extended to other value domains beyond the class
of music symbols. Consider the example shown in Figure 4, the same German anthem
enriched with lyrics. We can model this mixed content with two content descriptors over
distinct values domains (i.e., terminal symbols sets). The first is derived from a grammar
where terminal symbols taken from Mus, as before, and the second one taken from syllables.

� �
Welt

��
les

�
in

�
der

� �
landDeutsch

�
Deutsch

�
ü

�
ber

�
al
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land

�
Ü

�
ber

�
al

� �
les

Figure 4. The German anthem, with lyrics associated with the music.

The content descriptor for the lyrics part might be different from that of the melodic
part (Figure 5). Indeed, the same syllable may extend over several notes (a feature called
melism, see “al–les” Figure 5). Less commonly, but also possible, several syllables may be
sung on a single note.

s

m m m

b b b bb b b b b

…

r1 r1

Deu_ _ land berDeutsch land ü al les

q q

r2

b

r

! !
les

!
al

!
land

!!
Deutsch Deutsch

!"# $
ber

!
ü

!
land

!

Figure 5. The content descriptor of the syllabic part of the German anthem.

This generalized model, therefore, covers any mapping of a time range structured by
a CFG to a value domain: we illustrated it so far with pitches and syllables, but chords,
textures, or other types of annotation can fit in this framework.

3.4. Polyphonic Music

So far we only considered monodic music (a single flow of events). The representation
of polyphonic music simply consists of a set of monodic content descriptors sharing a
same grammar.

Definition 6 (Polyphonic content descriptor). Given a music content grammar G, a (polyphonic)
content descriptor is a set of parse trees of G such that the number of derivations of rule R0 (in other
words, the number of measures) is constant.
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Figure 6 gives an illustration (the same theme, with a bass part added). In terms of
music content, it can be represented by two content descriptors derived from the same
grammar, and with the same number of measures. Synchronization properties (the fact
for instance that the time range of two events overlaps) can easily be inferred. Harmonic
features (e.g., chord names) could therefore be obtained from the content descriptors, and
added to the framework. The same holds for musical properties such as, e.g., timbre [64] or
texture [65], as long as they can be modeled and derived computationally.
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Figure 6. German anthem, with two voices.

From now on, we will assume that a polyphonic descriptor can be obtained from
every music document (we refer to Section 6 that describes our implementation, and to
the state-of-the-art in Section 2). Content descriptors constitute the input for the feature
production described in the next section. A generalization to polyphonic descriptors as sets
of features is immediate.

4. Offline Operations: Features and Text-Based Indexing

We now present a list of features that can be produced from a music content descriptor:
a Chromatic Interval Feature (CIF), a Diatonic Interval Feature (DIF), a Rhythm Feature (RF),
and a Lyric Feature (LF). This list is not closed. As explained above, features pertaining to
other aspects of music representation (e.g., harmonic) or features obtained from an analytic
process may be added, as long as they can be derived from our description model.

The features presented below are designed to be integrated into a text-based search
engine. This requirement is motivated by the ease of implementation. Should a multimedia
search engine be available off-the-shelf with metric-based access methods (for instance
multidimensional search trees [2]), this constraint could be relaxed. Each feature type must
therefore fulfill the following requirements:

• There exists an analyzer that takes a content descriptor as input and produces a feature
as output.

• There must exist a serialization of a feature as a character string, which makes possible
the transposition of queries to standard text-based search supported by the engine.

• Finally, each feature type must be equipped with a scoring function that can be incorpo-
rated into the search engine for ranking purposes.

We will use the famous song My way [66] as an example to illustrate our features (see
Figure 7). The song is the English version of the French song Comme d’habitude [67], written
by Claude François and Jacques Revaux (1967). The English lyrics are by Paul Anka (1969).

Figure 7. Main example (My way, first phrase).

The content descriptor of this fragment is illustrated by Figure 8.
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Figure 8. Content descriptor of My way.

4.1. Chromatic Interval Feature

The feature analyzer ACIF relies on the following simplification of a pitch sequence:

1. All repeated values from PSeq(D) are merged in a single one.
2. Rest and continuation symbols are removed.

One obtains a simplified descriptor that essentially keeps the sequence of non-null
intervals. Figure 9 shows such a sequence, resulting from the analysis of My way. Note that
the two consecutive A4s near the end have been merged, and all rests removed.

� �� ��� ��� � �� � ��� �
Figure 9. My way, after the feature extraction by the appropriate analyzer.

Definition 7 (Chromatic Interval Feature). Given a content descriptor D, the Chromatic Interval
Feature (CIF) ACIF(D) is the sequence of the chromatic intervals values (number of chromatic steps)
between two consecutive pitches in the simplification of PSeq(D).

When the CIF analyzer ACIF is applied to the sequence of Figure 9, one obtains the
following feature.

< 9,−9, 9,−2, 2,−9, 9,−2, 2,−2, 2,−2,−1 >

It is worth mentioning that we obtain the same CIF from initially distinct music
descriptors. Figure 10 shows a transposed version of My way, more suitable to a female
voice (say, Céline Dion rather than Franck Sinatra). The CIF is invariant. The feature is also
robust with respect to rhythmic variants. Figure 11 shows the initial—French—version of
the tune, sung by Claude François. The lyrics in French imply a slightly distinct rhythmic
structure. However, the sequence of intervals remains identical, and so does the CIF.

Figure 10. My way, transposed.
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Figure 11. French version of My way (Comme d’habitude, first phrase).
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We can therefore conclude that the descriptors shown in Figures 7, 10 and 11 match
with respect to their respective chromatic features. The matching of two descriptors is
highly dependent on the analyzer. Among other possible features, we could have taken the
sequence of pitch names, in which case transposed scores would not match. The precision
would likely be higher but we would miss results that seem intuitive.

Another feature would accept unisons (i.e., repeated notes yielding intervals with
0 semi-tones). Then, in our example, the French version (Figure 11) would no longer match
with the English version of My way.

Each analyzer determines a balance between precision and recall. Figure 12 shows
another example of descriptor that matches with the previous ones with respect to the CIF
feature. It seems clear that it is quite rhythmically far from the standard tune and that, at the
very least, it should not be given the same score in the result set as the previous ones. The
ranking function should yield a low similarity factor for such descriptors that match at the
value (melodic) level but highly differ at the rhythmic level. We propose such a ranking
function in Section 5.3.

�� � � � �� � � �� � � � � � � ���� � � � � �� �
Figure 12. My way, rhythmically distorted.

4.2. Diatonic Interval Feature

Let us continue with our favorite tune, My Way. We keep the same simplification phase
already used for ACIF. Figure 13 shows the second phrase, which slightly differs from the
first one. If we compute the chromatic interval feature, one obtains the following sequence:

< 8,−8, 8,−1, 1,−8, 8,−1, 1, 4,−2,−5, 3,−1 >

which is distinct from that of the first phrase (see above).

�
friend
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��� � �
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��
of

�
which

�
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�

Figure 13. My way, second phrase.

If we adopt the diatonic perspective, we observe that the second phrase starts with a
5-step diatonic interval (from E4 to C5), continues with a descending one-step (from C5 to
B4), etc. Therefore, the first interval of the first phrase and of the second phrase do match
in a diatonic interpretation context: they are both sixths, major in the first case, minor in
the second one. So does the second interval (a second, minor in the first case, major the
second case). We can conclude that both phrases, in the diatonic perspective, are similar,
and we introduce the Diatonic Interval Feature to capture this interpretation.

Definition 8 (Diatonic Interval Feature). Given a content descriptor D, the Diatonic Interval
Feature (DIF) ADIF(D) is the sequence of diatonic interval names between two consecutive pitches
in the simplification of PSeq(D).

Assuming that the set of interval names is {U(nison), S(e)c(ond), T(hird), Fo(urth),
Fi(fth), Si(xth), Se(venth) and O(ctave)} and that an ascending interval is coded with a +, a
descending one with a −, one may apply this definition to the descriptor of Figure 9. The
following sequence is obtained:

< Si+, Si−, Si+, Sc−, Sc+, Si−, Si+, Sc−, Sc+, Si−, Si+, Si−, Si− >
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The first and second phrases of My way match with respect to this feature, and continue
to match with any transposition (Figure 10) or rhythmic variants (Figure 11).

4.3. Rhythmic Feature

So far we have built the features on the event values associated with the leaves of
content descriptors. We now focus on the rhythmic information provided by the rhythmic
tree in a music content descriptor.

An immediate thought would be to serialize the rhythmic tree using some nested
word representation. There are at least two downsides in doing so:

1. Rhythmic perception is essentially invariant to homomorphic transformations: dou-
bling both the note durations and the tempo results in the same music being played.

2. The rhythmic tree provides a very elaborated representation of the rhythmic organiza-
tion: putting all this information in a feature would favor a very high precision but a
very low recall.

As in the case of melodic description, we therefore adopt a simplified rhythmic
representation, and resort to the ranking step to favor the result items that are closer to the
query pattern.

Given a content descriptor R, its temporal partition (see Definition 4) gives the respective
durations of the events. Consider once again the first phrase of My way (Figure 7), ignoring
the initial rest. It starts with a quarter note, followed by a half-note: the ratio (i.e., the
multiplication to obtain the second duration value from the first one) is 2. Then comes a
1-eighth duration, hence a ratio equal to 1

8 , followed by three eight-notes, hence three times
a neutral ratio of 1, etc. We adopt the sequence of these ratios as the description of rhythm.

Definition 9 (Rhythmic Feature). Given a content descriptor D and its leaves [L1, L2, · · · , Ln],
the Rhythmic Feature (RF) ARF(D) is a sequence [r1, · · · , rn−1] such that ri =

dur(Li+1)
dur(Li)

, ∀i ∈
[1, n− 1].

The Rhythmic Feature of the first phrase of My way (ignoring the initial rest) is

< 2,
1
8

, 1, 1, 8,
1
8

, 1, 1, 8,
1
8

, 1, 1, 8,
1
2
>

4.4. Lyrics Feature

The Lyrics Feature (LF) is the simplest one: it consists of the text of the tune (if any
exists). Since the feature contains purely textual information, it is subject to the traditional
transformations (tokenization, lemmatization, etc.) operated by search engines.

4.5. Text-Based Indexing

Each of the previous feature is a (potentially long) sequence of values [v1, v2, · · · , vk].
In order to adapt this representation to the encoding expected by a search engine, we
compute the list of n-grams {< vi, · · · , vi+n−1 >, i ∈ [1, k − n + 1]}, where n, the n-
gram size, is an index configuration parameter (we use n = 3 in our implementation).
If, for instance, the sequence of values is < 6,−3,−3, 1, 2,−2 >, the list of 3-grams is
[< 6,−3,−3 >,< −3,−3, 1 >,< −3, 1, 2 >,< 1, 2,−2 >].

Each n-gram is then encoded as a character string which constitutes a token. These
tokens are finally concatenated in a text, separated by white spaces. Some additional
encoding might be necessary, depending on the specific restrictions of the search engine, to
avoid misinterpretation of unusual characters (for instance, the minus sign can be encoded
as m), and value separators in n-grams must be chosen with care.

For instance, assuming that (i) the character m is substituted to the minus sign, and (ii)
X is used as a separator, one would submit the following text to the engine:

6Xm3Xm3 m3Xm3X1 m3X1X2 1X2Xm2
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One obtains a standard textual representation that can be right away submitted to the
indexing module of the search engine.

4.6. A Short Discussion

So far, we presented a set of features that all relate to the monodic aspect of music
content. Some are mathematically founded (chromatic, rhythm), others are application-
dependent (diatonic). They illustrate the design of our search framework as a producer of
features derived from a normalized, high-level music content description. They all result in
a linear representation, akin to being assimilated to textual data in a standard search engine.

Another design choice is to simplify the feature representation so that it favors recall
over precision. Since a feature captures only one aspect of the content (either rhythmic,
or melodic-based), two descriptions that are close with respect to this aspect, but highly
different with respect to another, might match in spite of important differences. The
matching-based retrieval is designed as a first step operated to filter out a large part of
the collection, and completed with a scoring function (to be described next) that top-ranks
relevant music documents.

5. Online Operations: (Scalable) Searching, Ranking, Highlighting

We now turn to the operations that occur during the query processing phase. Searching
operates by applying to the query pattern the same analyzer as those used for the targeted
feature. The matching is then computed thanks to the scalable text-search mechanisms
supplied by standard text search engines.

The difficult part of the process is the ranking of the query result. The default ranking
functions of a text-based information retrieval system would yield meaningless results if
applied to our features. We therefore define and plug our own set of ranking functions, the
description of which constitutes the major part of the present section.

5.1. Searching

A query pattern q (or pattern in short) is a pair (P, FT) where P is either a content
descriptor or a set of keywords, and FT is the feature type (CIF, DIF, RF, or LF—the latter
being required when P consists of keywords). In the following, we focus on musical
patterns since lyrics can be treated as standard text.

Definition 10 (Matching). Let q = (P, FT) be a query pattern, with FT ∈ {CIF, DIF, RF},
AFT be the analyser associated to FT, and D be a content descriptor. Then q matches D if and only if
there exists at least one substring F of AFT(D) (called fragment thereafter) such that AFT(P) = F.

Assume for instance that the user searches for My way and submits the search pattern
P of Figure 14 with the feature type CIF. The sequence ACIF(P) is:

< 9,−2, 2,−2 >

which (after n-gram encoding) is a sub-string of the CIF for the descriptors of Figures 7, 11,
and 12.

� � � ��� �
Figure 14. A pattern, matching a fragment of My way.

Definition 10 extends naturally to polyphonic music: a polyphonic descriptor M
matches a query pattern (P, FT) if and only if, for at least a content descriptor D in M, and at
least a substring F of AFT(D), AFT(P) = F. The matching fragments are called the matching
occurrences of M.
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5.2. Scalability

It follows from the previous definition that the matching operation is natively supported
by text-based search engines. Furthermore, carrying out this operation is scalable because it
can be processed in parallel over the participating server nodes in a distributed setting.

We illustrate the distributed processing with the example of Figure 15, assuming a dis-
tributed setting with three servers. The figure shows four musical document {mc1, mc2, mc3,
mc4}. Each document except mc3 is polyphonic, with two monophonic descriptors. Docu-
ments are spread on the three servers: mc1 on server 1, mc2 on server 2, and {mc3, mc4} on
server 3.
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Figure 15. Data organization in a distributed search index and query processing.

On each server, for each type of descriptor, there is a list Lng for each indexed n-gram
ng: on Figure 15 we show rectangles for CIF, circles for DIF, triangles for RF, and stars
for LF. Each list Lng stores, in order, the position of ng in each descriptor of the local
documents. For document mc1 for instance, n-gram 5+; 3−; 2+ appears four times for the
first descriptor, and three times for the second one.

At search time, the pattern is n-gram encoded as described above, and this encoding
is submitted as phrase queries to the search engine. A so-called “phrase query” retrieves
the documents that contain a list of tokens (n-grams) appearing in a specific order. The
query is sent to each server, and the servers carry out in parallel the following operations:
(1) scan the list for each n-gram of the query and retrieve the matching descriptors (here
[mc1, 1), (mc1, 2), (mc3, 1), (mc4, 1)]), (2) check that the positions correspond to the n-gram
order in the pattern, (3) apply the ranking function locally, and (4) group descriptors by
documents to keep the best score.

All these steps, except the last one, operate at the document level and can therefore
be processed in parallel on each participating server. The final ranked list is obtained by
merging (in time linear in the size of the global result) the local results.

5.3. Ranking for Interval-Based Search

We first describe the ranking for interval-based features (i.e., Chromatic Interval
Feature and Diatonic Interval Feature). Given a set of descriptors that match a pattern
P, we now want to sort them according to a score and rank first the ones that are closest
to P. Since matching occurs on the melodic part, we want to rank on the rhythmic one.
Referring to the pattern of Figure 14, fragments from Figures 7 and 11 should be ranked
first, whereas that of Figure 12 should be ranked last because it greatly differs from the
formers rhythmically.
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We therefore compute a score based on the rhythmic similarity between the query
pattern P and the matching subtree(s) in each descriptor of the result set. We base the
computation on the following important observation: since the pattern and the descriptor
share a common part of their melodic features, they have a similar structure that can be
exploited. To state it more formally, since AFT(P) = F, F being a fragment of AFT(D),
there exists a sequence of identical non-null intervals in both P and D. Each interval is
represented in D or P by a list of events that we call a block. More precisely:

Definition 11 (Block). Let F =< I1, · · · , In > be a fragment of AFT(D) for some descriptor D.
By definition of the analyzer AFT , each interval Ii, i ∈ [1, n] in F corresponds to a sub-sequence
< pi

1, ei
2, · · · , ei

k−1, pi
k > of ESeq(D) such that:

• pi
1 and pi

k are two distinct non-rest values, and interval(pi
1, pi

k) = Ii

• each ei
l , l ∈ [2, k− 1] is either a rest, or a pitch such that ei

l = pi
1

We call Bi =< pi
1, ei

2, · · · , ei
k−1 > the block of I1 in D.

The concept of block is illustrated by Figure 16 for the descriptors of Figures 7, 11
and 12 matching the pattern of Figure 14.
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Figure 16. Blocks, in several fragments matching the pattern displayed in Figure 14.

If a descriptor D matches a pattern P with respect to a feature type FT ∈ {CIF, DIF},
we can constitute a sequence of pairs (BP

i , BD
i ), i ∈ [1, n] of blocks representing the same

part of the melodic query. We can therefore reduce the scoring problem to the evaluation of
the rhythmic similarity internal to each pair.

Rhythmic similarity is a specific area of computational musicology which have been
the subject of many studies [68–70]. A prominent trend is to rely on edit distances [71]
applied to rhythms represented as sequences. Since we represent rhythm as trees, we rather
use a tree-edit distance that operates on the rhythmic tree part of a music descriptor.

A tree-edit distance between two trees T1 and T2 is based on a set of transformations
(called “edit operations”), each associated with a cost. The distance is defined as the
sequence of transformations from T1 and T2 that minimizes the overall cost. Standard
operations are insert (a node), delete (a node), or replace.

In our case, we are restricted to the parse trees of the music content grammar G. Any
transformation applied to a parse tree must yield a parse tree. We therefore accept the
following list of edit operations.

1. For children of the root: insert/delete/replace a measure.
2. For all other nodes N: either insert a subtree by applying a rule from G to the non-

terminal symbol N, or delete the subtree rooted at N.

The cost of each operation is the duration of the modified node. The cost of replac-
ing/inserting/deleting a measure is 1, the cost of inserting/deleting a subtree rooted at a
node labeled h (half note) is 1

2 , etc. Intuitively, the cost of an operation, if the duration of the
interval is modified by the operation, is, the smaller the modification, the smaller the cost.



Big Data Cogn. Comput. 2022, 6, 23 16 of 27

Definition 12 (Rhythmic similarity). Given two descriptors D1 and D2, the rhythmic similarity
Rsim(D1, D2) between D1 and D2 is the tree-edit distance is the minimal cost sequence of parse-tree
edit operations that transforms the rhythmic tree of D1 to the rhythmic tree of D2.

The rhythmic distance between D1 and D2 is Rdist(D1, D2) = 1− Rsim(D1, D2).

Computing the tree-edit distance is usually achieved with a dynamic programming
algorithm. The two best-known algorithms [72,73] run in quadratic time based on the
input size.

Figure 17 shows the rhythmic trees for the pattern and the first block of the three
matching fragments. The edit operations to obtain the rhythmic tree of the descriptors
consist of one node insertion (My way), two insertions (one beat and two quavers, Comme
d’habitude), and finally five insertions for My way distorted.

b
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Figure 17. The rhythmic trees for the first block of each descriptor.

The ranking function takes as input a pair of descriptors and outputs a score as detailed
in Algorithm 1. It computes the alignment of blocks and sums up the distance between
their rhythmic trees, obtained by the rhythmic distance Rdist (Definition 12).

Algorithm 1 Rhythmic Ranking

1: procedure RHYTHMRANKING(D1, D2)
2: Input: D1, D2, such that AFT(D1)=AFT(D2)
3: Output: a score s ∈ [0, 1]
4: s← 0; < (B1

0 , B2
0), · · · , (B1

n, B2
n) >← getBlocks(D1, D2)

5: for i := 0 to n do . Loop on the pairs of blocks
6: s← s + Rdist(B1

i , B2
i )

7: return s/n

The cost of the getBlocks part is linear in the size of D1 and D2, but computing
the tree-edit distance is quadratic. There exists a simplified function that we use in our
implementation as given is Algorithm 2: it simply cumulates the delta of the block duration
within a pair. This simplified version reflects the insertion or deletion of nodes; however,
it ignores the internal structural changes. Applied to the trees of the pattern and My way
distorted for instance, the simplified version does not measure the difference in the first beat
(1 quaver versus 4 repeated 16th-notes).
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Algorithm 2 Simplified Rhythmic Ranking

1: procedure SIMPLERHYTHMRANKING(D1, D2)
2: Input: D1, D2, such that AFT(D1)=AFT(D2)
3: Output: a score s
4: s← 0; < (B1

0 , B2
0), · · · , (B1

n, B2
n) >← getBlocks(D1, D2)

5: for i := 0 to n do . Loop on the pairs of blocks
6: s← s + |dur((B1

i )− dur(B2
i )|

7: return s

The running time of the approximate ranking function is linear in the size of the descriptors.

5.4. Ranking for Rhythmic-Based Search

Let (P,′ RT′) be a query on rhythmic features. A set of descriptors matching with P are
retrieved. Since matching occurs on the rhythmic part, we want to sort the result set on their
melodic similarity. Our implementation relies on the classical Levenshtein distance [74], as
it is one of the most commonly used metrics to measure melody similarity in state-of-the-art
approaches [75]. Note that edit distance is our current choice for this paper, yet the ranking
in Algorithm 3 could be substituted in another version of the implementation.

Let F1 be the CIF extracted from the query pattern P, and F2 be the CIF extracted from
matching parts in the descriptor, and F1

i represents for the ith element in F1, while F2
j refers

to the jth element in F2. Thus, the score represents the cost of converting F2 into F1, with
three types of operations: deletion, insertion, and replacement. Since each operation edits
only one element in a CIF sequence, the alignment costs are all considered as 1.

The alignment cost of converting the sequence of first i elements of F1 into the sequence
of first j elements of F2 is:

aligncost(F1
i , 0) = i if 1 ≤ i ≤ n

aligncost(0, F2
j ) = j if 1 ≤ j ≤ m

aligncost(F1
i−1, F2

j−1) if F1
i = F2

j

aligncost(F1
i , F2

j ) = min


aligncost(F1

i−1, F2
j ) + 1

aligncost(F1
i , F2

j−1) + 1

aligncost(F1
i−1, F2

j−1) + 1

if F1
i 6= F2

j (1)

If there are n elements in F1 and m elements in F2, the score is align(F1
n , F2

m). The final
score is divided by n to normalize to the range [0, 1].

Algorithm 3 Interval-Based Ranking

1: procedure ITVRANKING(F1, F2)
2: Input: F1, F2 . A pair of CIF
3: Output: a score s ∈ [0, 1]
4: for i := 0 to n do . Loop on the elements of F1
5: for j := 0 to m do . Loop on the elements of F2
6: if i = 0 then
7: cost[i, j]← j;
8: else if j = 0 then
9: cost[i, j]← i;

10: else if F1[i− 1] = F2[j− 1] then
11: cost[i, j]← cost[i− 1, j− 1];
12: else
13: cost[i, j]← 1 + min(cost[i− 1, j], cost[i, j− 1], cost[i− 1, j− 1]);
14: return cost[n, m]/n
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5.5. Finding Matching Occurrences

Once matching descriptors have been extracted from the repository, it is necessary
to identify the sequences of events that match the pattern. Since both the pattern P and
the feature are encoded as n-grams, the matching operator is able to return the sequence
of n-grams in the feature that match P. This functionality is actually natively supplied by
search engines and is commonly called highlighting.

Assuming that we get the sequence of matching n-grams, the problem is therefore
reduced to identifying the events that yielded each n-gram during the analysis phase.
Since we generally cannot inverse the analyzer, we must keep a correspondence table that
associates to each n-gram the sequence of events it originates from.

Definition 13 (Reverse Analysis Table). Let D be a descriptor and FT a feature type. The
Reverse Analysis Table (RAT) of D is a 2d table which gives for each n-gram (ngr) the list of events
ei ∈ [1, n] in D for which AFT(e1, · · · , en) = ngr.

The RAT must be stored in the system and used on the result set. Given the sequence
of matching n-grams [g1, · · · , gk] obtained from the search engine, we compute the union
RAT[g1] ∪ RAT[g2] · · · ∪ RAT[gk] and get the sequence of events matching the patterns.

6. Implementation

In this section, we detail an implementation of our proposed framework for symbolic
music collections, i.e., music in a notation-based format such as MIDI, XML, and MEI.
Since the core musical elements such as structure, melody, and rhythm are represented in
symbolic music, it is straightforward to develop an extraction of music content descriptors.

We offer a publicly available Docker image at https://hub.docker.com/repository/docker/
traversn/scoresim (accessed on 17 January 2022), for the community to experience the proposed
search engine. The code is in open access on Github (components implementation: https:
//github.com/cedric-cnam/scoresim (accessed on 17 January 2022)) under the GNU General
Public License v3.0.

In the remainder of the section, we first present the global architecture, before delving
into some specific components: descriptor extraction and feature production, integration
into a standard text-based information retrieval system (centered around ElasticSearch)
with several search modes available, customized highlighting, and ranking procedures. We
also showcase some functionalities of our system, taking advantage of the existing Neuma
platform [76] (e.g., graphical user interface, and large corpora).

6.1. Global Architecture

The architecture of our Docker server is illustrated in Figure 18. The main components
are: (i) an ETL (Extract/Transform/Load) process that receives music documents and
produces their musical features, (ii) an Elasticsearch server that indexes music features,
supports searches, and ranks results, and (iii) implementation of several utility functions,
including the matching occurrence identification. All these modules are written in Python.
Once instantiated, the server communicates via a REST API which supplies insertion and
search services. An external application (such as Neuma) can rely on this API to integrate a
search module.

Elasticsearch [77] is a tunable search engine that provides several interesting features
fitting our needs. It supports scalable data management based on a multi-server architecture
with collections sharding, a rich query language, and the capability to tune the scoring
function. Note that these features are shared with other search engines such as, for instance,
Solr [78] or Sphinx [79]. The design of our framework relies on its ability to exploit these
standard functionalities. Any of the above search engines would be a suitable candidate
for supporting our solution and supplying a scalable search operation without any further
implementation. The main difficulty lies in the integration of an ad hoc scoring function.

https://hub.docker.com/repository/docker/traversn/scoresim
https://hub.docker.com/repository/docker/traversn/scoresim
https://github.com/cedric-cnam/scoresim
https://github.com/cedric-cnam/scoresim
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Figure 18. A global view of our music search architecture, for symbolic music.

The server receives music documents via its REST API. Each document is then submit-
ted to a pre-processing phase composed of three steps: Extract, Transform, and Load. The
Extract phase produces the music content descriptors (see Section 3). A specific extractor is
required for each input format. In the case of XML-encoded scores, there exists ready-to-use
toolkits such as Music21 [80] for parsing the input, accessing relevant data, and structuring
this data according to our model. A content descriptor itself is an implementation of our
tree-based representation, along with the production of derived representations (pitch
sequences, distance operators, etc.). In general, the music document is polyphonic, and we
obtain a set of monodic content descriptors.

The Transformation step produces features from each monodic content descriptor.
We implemented all the features described in Section 4. Finally, the Loading step sends the
n-gram encoded features to Elasticsearch. For scalability reasons, we create one individually
indexed document for every single monodic descriptor. This favors parallelism, but requires
an aggregation at the document level at the end of the search process.

An example of an indexed document is given below. It is identified by the pair
(doc_id, descr_id), the latter being typically the voice ID found in an XML encoding
for such pieces. All features are encoded as 3-grams in our implementation. With each
feature comes a RAT field that keeps the correspondence between each n-gram and the list
of elements in the original document.

{
"_id" : "doc_id:descr_id",
"chromatic" : "7+;3-;2+; 3-;2+;1+; 2+;1+;1-; 1+;1-;5+;...",
"RAT_chromatic" : {[...]},
"diatonic" : "Fi+;T-;Se+ T-;Se+;Se+ Se+;Se+;Se- Se+;Se-;Fo+...",
"RAT_diatonic" : {
"Fi+;T-;Se+": [1, ...],
"T-;Se+;Se+": [2, ...],
... },
"rhythmic" : "(1)(1/2)(1) (1/2)(1)(2) (1)(2)(1/2) (2)(1/2)(1)...",
"RAT_rhythmic" : {[...]},
"lyrics" : "And now, ....",
"RAT_lyrics" : {[...]}
}

Indexed documents are sent to Elasticsearch which builds the full-text indexes on
features, and supplies text-based search operations. New feature extractors could easily be
integrated into the system by adding new fields for each indexed document.

6.2. Query Processing

A query is submitted to the server as a pattern P along with the feature type T.
We accept the Plaine and Easie coding formats for P. From this encoding a content de-
scriptor D = extract(P) is built using a dedicated extractor, and a feature of type T
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is obtained through the standard feature production function. This feature is n-gram
encoded and submitted to ElasticSearch as part of a “match_phrase” query. This is illus-
trated by the following query from the ElasticSearch Domain-Specific Language (https:
//www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html (accessed on
17 January 2022)), showing a match_phrase query with a chromatic feature with two 3-grams
encoding the following chromatic fragment: two ascending semitones, two descending,
one ascending, and five descending.

{
"query": {
"match_phrase": {"chromatic": "2+;2-;1+ 2-;1+;5-"}
},
"highlight": {"fields" : {"chromatic" : {}}}
}

ElasticSearch carries out the search operation, and at this point, we benefit from all the
capacities of a top-level indexing system: a set of all the matching documents is retrieved.

The non-standard part then occurs: we must rank this set according to the relevant dis-
tance (which is not the default one supplied by ElasticSearch for textual data). Elasticsearch
is a tunable search engine that can be extended with a specific ranking algorithm. We imple-
mented our own SearchScript (https://www.elastic.co/guide/en/elasticsearch/reference/
current/modules-scripting.html (accessed on 17 January 2022)), as a Java implementation
of the proposed ranking procedures (Sections 5.3 and 5.4).

The following example shows how to use our custom ScoreSim ranking function,
for a diatonic search that requires a ranking on the rhythmic part. SearchScript requires
specifying the custom plugin name (here “lang:ScoreSim”), and input parameters (here
“params”) that will be used in the procedure. Here two parameters are given, the first one
gives the searched pattern “query” and the type of similarity that is applied “similarity”.

{
"query": {
"function_score": {
"functions":[
{"script_score": {"script": {
"lang": "ScoreSim",
"params": {
"query": "(0|1/2)(1|1)(2|1)",
"similarity":"rhythmic"
}
}}}
]}}
}

6.3. Distribution and Aggregation

A major feature of Elasticsearch is its ability to scale up by distributing indexes in
a cluster. The fact that we split polyphonic music descriptors as individual monodic
documents in the system allows to homogeneously distribute the computation of ScoreSim
all over the repository. One obtains a matching score for each monodic descriptor in a
distributed context.

However, it requires to recompose the global score. This is done by applying an
aggregate function (the “grouping” phase on Figure 15). The following example applies
three aggregate functions on grouped documents on “doc_id” and the final result is sorted
according to the maximum score (“max_scoresim”) over all descriptors.

https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-scripting.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-scripting.html
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{
"query": {},
"aggs":{"group_score":{
"terms":{
"field":"doc_id",
"order" : { "max_scoresim" : "desc" }
},
"aggs":{
"max_scoresim": {"max" : {"script":"_score"}},
"min_scoresim": {"min" : {"script":"_score"}},
"avg_scoresim": {"avg" : {"script":"_score"}}
}}}
}

6.4. Highlighting

Alongside documents identifiers, Elasticsearch provides some information about the
matching parts in the selected documents. The following example shows an ElasticSearch
JSON result document, featuring the highlight field with two matching occurrences,
enclosed in windows delimited by <em> tags.

{
"_id" : "doc_id:descr_id",
"_score" : 0.8301817,
"highlight" : {
"chromatic": ["7+;3-;2+; <em>3-;2+;1+; 2+;1+;1-;</em> 1+;1-;5+;...",
"2+;3-;2+; <em>3-;2+;1+; 2+;1+;1-;</em> 1+;1-;7+;"
]
}
}

From each window, one obtains the n-grams positions and then uses the RAT table
(see Section 5.5) to determine the position of each occurrence in the original document.

6.5. Interacting with the Server

We briefly illustrate how the search server can be integrated into an application
managing large collections of scores with the Neuma digital library. Neuma [76] maintains
corpora of music scores, encoded in MusicXML and MEI. It features a Graphical User
Interface (GUI) to communicate with the search server. Patterns and search mode can be
entered with an interactive virtual keyboard (Figure 19). Search modes correspond to the
feature types presented in Section 4.

6.6. Data and Performance Evaluation

In order to study the performances of our approach, we compare our architecture
implemented with Elasticsearch to a traditional pattern search, based on regular expressions.
We have imported in the Neuma platform [76] a corpus of 14,637 scores from various
sources, including Kern@HumDrum (https://kern.humdrum.org/ (accessed on 17 January
2022)). We then apply different queries on the whole corpora and report the computation
times. We especially focus on applying various patterns, from infrequent to more frequent
ones, based on the popularity of the indexed n-grams.

We sampled 40 patterns from each of the three chromatic, diatonic and rhythmic fea-
ture domains, with different distributions of pattern occurrences. The patterns exhibit
different lengths, from 3-grams to 11-grams (which are rather infrequent). In the rhyth-
mic domain, for instance, (1)(1)(1) appears 469,222 times in the whole corpus, while
(1/2)(2)(1/2)(1)(1)(2)(3/4)(1/3)(2) is found only once. The goal of this test set is to
evaluate the scalability of our system and its robustness to various pattern sizes and selectivity.

https://kern.humdrum.org/
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Figure 19. Interactive piano keyboard, for query inputs on the Neuma platform.

Figure 20 show the execution time in log-scale of each pattern query on the whole corpus.
It gives the time spent on (1) a traditional pattern search with regular expressions [49–52]
(purple dots), (2) our implementation in a single server of Elasticsearch (blue dots), and (3) on
a cluster of three servers (red dots).
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Figure 20. Execution time per query wrt. pattern occurrence for the chromatic, diatonic, and rhythmic
features. Regular-expressions searches are consistently orders of magnitude more costly than our
ElasticSearch-based implementation. (a) Chromatic, (b) Diatonic, and (c) Rhythmic.

The evaluation of regular expressions (regex), without index, must process the whole
corpus and scan each extracted feature to find matching occurrences. Consequently, the
time is dependent on the size of the corpus. Thus, in all experiments (see Table 1) we obtain
a mean time of 246 ms (with a standard deviation of 41 ms) for chromatic features, 250 ms
(resp. 21 ms) for diatonic, and 219 ms (resp. 10 ms) for rhythmic.

As presented in Section 5.2, a scalable search engine relies on inverted lists. Execution
times are much lower since indexes help to find the proper n-gram and are less dependent
on the sizes of the corpora. We can see for the three indexed features that the execution
time is around 1 ms to process queries. This is more than 200 times faster compared to
regular expressions.

On a single server, the execution time increases with the number of occurrences (see the
rhythmic feature on Figure 20c for instance, at around 0.8 ms). This is explained by the fact that
inverted lists are longer. This effect can be seen also in a cluster of servers with an execution
time of 0.3 ms for chromatic and 0.7 ms for rhythmic features. The gain from a central to a
distributed environment is dependent on the distribution of n-grams over the servers. The
rhythmic domain has more highly frequent patterns, which explains why execution time does
not vary much between one and three servers (Figure 20c). Conversely, the gain is higher
when the patterns are more distributed, which is the case for chromatic and diatonic features.
We obtain as much as a 3.5 times speed improvement (three servers vs. one).
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Table 1. Global execution time.

Feature Mean Time Standard Deviation

Regex-based search
Chromatic 246 ms 41 ms
Diatonic 250 ms 21 ms
Rhythmic 219 ms 10 ms

1 server
Chromatic 0.869 ms 0.269 ms
Diatonic 0.583 ms 0.194 ms
Rhythmic 0.804 ms 0.136 ms

3 servers
Chromatic 0.312 ms 0.110 ms
Diatonic 0.166 ms 0.064 ms
Rhythmic 0.700 ms 0.216 ms

7. Conclusions and Future Work

We presented in this paper a practical approach to the problem of indexing a large
library of music documents. Our solution fulfills three major requirements for an infor-
mation retrieval system: (i) it supports search with a significant part of flexibility, (ii) it
proposes a ranking method consistent with the matching definition, and (iii) it brings
scalability thanks to its compatibility with the features of state-of-the-art search engines. We
believe that our design is complete, robust, and covers most of the functionalities expected
from a scalable search system tailored to the specifics of music information.

We fully implemented our solution for the specific situation of XML-encoded music
scores, and supply a packaged Docker image for any institution wishing to use a ready-
to-use music-oriented search engine. Our solution is also available as a component of
the Neuma platform [76], with a user-friendly interface (patterns are input with a piano
keyboard) and a large collection of scores to illustrate the operation of the framework.

There exist many directions of research to extend the current work: integration to
other music representations, an extension of the features set, and refinement of the core
information retrieval modules (searching and ranking).

If we turn to alternative representation, the most important seem to be audio and
digitized score sheets (massively found in patrimonial archives). In both cases, the focus
is on the development of a specific extractor for the considered format, the rest of the
framework being unchanged. For audio documents, extracting a music content descriptor
is akin to Automatic Music Transcription (AMT) [81]. As detailed in Section 2, this is an
active area of research. Satisfying results are obtained (in research labs) for monophonic
music, whereas polyphonic music transcription is still a challenging problem. Regarding
digitized score sheets, the tool of choice is Optical Music Recognition (OMR). OMR modules
are proposed as part of commercial music notation editors. The result depends on the
quality of the image supplied to the system. In general, it is still difficult to avoid a manual
post-correction.

Our team is active in both directions, and in both cases, we target a goal that is less
ambitious and more specific than full-fledged AMT or OMR. Indeed, both aim at producing a
complete music score, featuring an adequate placement of graphical elements (notes, staves,
clefs). In our approach, we would satisfy ourselves with the mere extraction of a core info-set
sufficient to build our content descriptor, avoiding therefore the burden of dealing with
complex graphic representation issues. This simplifies the target but does not keep from
addressing the other important issues regarding in particular the quality of the result.

The search engine could also be extended with a faceting capability, to enhance filtering
the search result page and organize relevant documents. Another future direction is to add
new features. Some could be extracted from symbolic music data, such as harmony and
tonality. Some may require data in audio format, like timbre, since certain types of features
are only available for extraction in audio. The major challenge of this task is to rank the
search result of queries targeted at such features.



Big Data Cogn. Comput. 2022, 6, 23 24 of 27

Finally, the ranking part of the search engine could be more versatile. In the future,
ranking with geometric measures [82], transposition distance [83], or dynamic time warping
based approaches [84,85] could be integrated into the system.
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