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Abstract
We conduct a systematic study of asynchronous models of distributed computing consisting of
identical finite-state devices that cooperate in a network to decide if the network satisfies a given
graph-theoretical property. Models discussed in the literature differ in the detection capabilities of
the agents residing at the nodes of the network (detecting the set of states of their neighbors, or
counting the number of neighbors in each state), the notion of acceptance (acceptance by halting in a
particular configuration, or by stable consensus), the notion of step (synchronous move, interleaving,
or arbitrary timing), and the fairness assumptions (non-starving, or stochastic-like). We study the
expressive power of the combinations of these features, and show that the initially twenty possible
combinations fit into seven equivalence classes. The classification is the consequence of several
equi-expressivity results with a clear interpretation. In particular, we show that acceptance by
halting configuration only has non-trivial expressive power if it is combined with counting, and that
synchronous and interleaving models have the same power as those in which an arbitrary set of
nodes can move at the same time. We also identify simple graph properties that distinguish the
expressive power of the seven classes.
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1 Introduction

Distributed computing is increasingly interested in the study of networks of natural or artificial
devices, like molecules, cells, microorganisms, or nano-robots. These devices have very limited
computational and communication capabilities, and are indistinguishable. In particular, a
device cannot recognize whether its current communication partner is the same as a past
one. This stands in stark contrast to the devices of standard computer networks, which has
motivated researchers to question the suitability of traditional distributed computing models
for the study of these networks, and to propose new ones. Examples include population
protocols [3, 1], chemical reaction networks [13], networked finite state machines [6], the
weak models of distributed computing of [8], and the beeping model [5]. A survey discussing
many of them, and more, can be found in [11].
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10:2 A Classification of Weak Asynchronous Models of Distributed Computing

All these models share several common features, introduced to capture the limitations of
the devices [6]: the network can have an arbitrary topology; all nodes of the network have
a finite number of states, independent of the size of the network or its topology; all nodes
run the same protocol; and state changes only depend on the states of a bounded number of
neighbors, again independent of the size of the network.

Unfortunately, despite this very substantial common ground, the models still differ in
many aspects, which makes it hard to compare results across them, or decide which features
are essential for a particular result. A study of the models allows one to identify four specific
junctions at which they choose different paths:

Detection. In some models, agents can only detect the existence of neighbors in a certain
state [8]. In others, they can count their number, up to a fixed threshold [6, 8]. For
example, in biological models, cells communicate by emitting special kinds of proteins,
and detecting them; in some models the cells may detect the presence of the protein
when its concentration exceeds a given threshold, while in others they are able to detect
different concentration levels.
Acceptance. Some models compute by stable consensus, which requires all nodes to
eventually agree on the outcome of the computation (but the nodes do not need to know
that consensus has been reached) [3, 1, 13], while others require the nodes to reach a
consensus in a halting configuration [8]. Acceptance by stable consensus is computationally
powerful, since it permits the algorithm designer to concentrate on ensuring that every
bad input is eventually rejected; declaring all non-rejecting states accepting ensures that
every good input is eventually accepted.
Selection. In some models, at each step a scheduler chooses an arbitrary set of nodes to
make a step [6, 12], while in others it is exactly one, or exactly one pair of neighboring
nodes [3, 1, 13]. We call the latter exclusive or interleaving models. Intuitively, interleaving
models are useful when it can be assumed that process steps are much faster than the time
interval between them, while the former policy does not need this assumption. In addition,
they help the algorithm designer, who can assume that agents act in mutual exclusion.
(Examples where this is useful can be found in the proofs of Propositions 16 and 20.)
Another common option for selection is the synchronous execution model [8], where all
nodes are selected in each step. Again this can be helpful for designing algorithms, but it
is incompatible with exclusive selection.
Fairness. Some models use fairness assumptions designed to model or approximate
stochastic behavior [3, 1, 13], while others choose minimal notions, like “all nodes make
a step infinitely often”, which only assume the absence of crash faults (see, e.g., [7, 9]).
Stochastic-like assumptions are reasonable for biological or chemical models, but can
be too strong for networks of artificial nodes, which may follow non-random execution
policies. Stochastic models may be able to solve problems that cannot be solved with
weaker fairness assumptions.

The goal of this paper is to explore the space of models spanned by the above parameters, and
compare their computational power within a specific framework. For this we use distributed
automata, a generic formalism for the description of finite-state distributed algorithms. Such
an automaton consists of a set of rules that tell the nodes of a graph how to change their
state depending on the states of their neighbors. Intuitively, the automaton describes an
algorithm that allows the nodes of an input graph to decide, in a distributed way, whether the
graph satisfies a given property. The computational power of a class of distributed automata
is then given by the class of graph languages recognized by the automata in the class, or, in
other words, by the graph properties that the class of automata can decide.
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We start with twenty classes of distributed automata, and show that with respect to their
computational power, they fall into seven different classes. This reduction is a consequence
of two results presented in this paper: (1) acceptance by halting configuration only has non-
trivial expressive power if it is combined with counting; (2) both interleaving and synchronous
selection have the same power as liberal selection where arbitrarily many nodes can move at
the same time (and therefore, one can design an automaton in an interleaving or synchronous
model, which is less error prone, and then translate it to a liberal model). Some of the
simulations we design to prove the results are of independent interest. In particular, we give
explicit constructions showing how to simulate interleaving models by non-interleaving ones.

The paper is organized as follows. Section 2 introduces distributed automata and their
variants. Sections 3 to 5 show that the variants collapse to at most the seven equivalence
classes mentioned above. Section 6 contains separation results showing that the seven classes
are different. Finally, Section 7 presents further results on their expressive power. Proofs
missing or only sketched can be found in the appendix of the arXiv version.

2 A taxonomy of distributed automata

Given sets X,Y , we denote by 2X the power set of X, and by XY the set of functions Y → X.
We define [m :n] := {i ∈ Z | m ≤ i ≤ n} and [n] := [0 :n], for any m,n ∈ Z such that m ≤ n.
Angle brackets indicate excluded endpoints, e.g., 〈m :n] := [m− 1 :n] and [n〉 := [0 :n− 1].

Let Λ be a finite set. A (Λ-labeled, undirected) graph is a triple G = (V,E, λ), where V is
a finite nonempty set of nodes, E is a set of undirected edges of the form e = {u, v} ⊆ V

such that u 6= v, and λ : V → Λ is a labeling. Isomorphic graphs are considered to be equal.
Convention: Throughout the paper, all graphs have at least two nodes and are connected.

2.1 Distributed automata
Distributed automata take a graph as input, and either accept or reject it. To define them
we first introduce distributed machines.

Distributed machines. Let Λ be a finite set of symbols and let β ∈ N+. A (distributed)
machine with input alphabet Λ and counting bound β is a tuple M = (Q, δ0, δ, Y,N), where
Q is a finite set of states, δ0 : Λ → Q is an initialization function, δ : Q × [β]Q → Q is a
transition function, and Y,N ⊆ Q are two sets of accepting and rejecting states, respectively.
The function δ updates the state of a node v based on the number of neighbors v has in each
state, but it can only detect if v has 0, 1, . . . , (β − 1), or at least β neighbors in a given state.

Selections, schedules, configurations, runs, and acceptance. A selection of a Λ-labeled
graph G = (V,E, λ) is a set S ⊆ V , and a schedule of G is an infinite sequence of selections
σ = (S0, S1, S2, . . .) ∈ (2V )ω. Intuitively, the selection St is the set of nodes activated by the
scheduler at time t.

Let M = (Q, δ0, δ, Y,N) be a distributed machine with input alphabet Λ. A configuration
of M on G is a mapping C : V → Q. Given a configuration C and a node v ∈ V , we let
NC
v : Q→ [β] denote the function that assigns to each state q the number of neighbors of v

that are in state q up to threshold β, i.e., min
{
β, card({u | {u, v} ∈ E ∧ C(u) = q})

}
. We

call NC
v the β-bounded multiset of states of v’s neighbors.

CONCUR 2020



10:4 A Classification of Weak Asynchronous Models of Distributed Computing

For any selection S, we define the successor configuration of C via S to be the configuration
succδ(C, S) that one obtains from C if all nodes in S evaluate the transition function δ

simultaneously while the remaining nodes keep their current state. Formally, for all v ∈ V ,

succδ(C, S)(v) =
{
C(v) if v /∈ S
δ
(
C(v), NC

v

)
if v ∈ S.

This brings us directly to the notion of a run. Given a schedule σ = (S0, S1, S2, . . .), the
run of M on G scheduled by σ is the infinite sequence ρ = (C0, C1, C2, . . . ) of configurations
that are defined inductively as follows, where ◦ denotes function composition, and t ∈ N:

C0 = δ0 ◦ λ and Ct+1 = succδ(Ct, St).

A configuration C is accepting if C(v) ∈ Y for every v ∈ V , and rejecting if C(v) ∈ N for
every v ∈ V . A run ρ = (C0, C1, C2, . . . ) of M on G is accepting if there is a time t ∈ N such
that Ct′ is accepting for every t′ ≥ t. In other words, a run is accepting if from some time
on it only visits accepting configurations. Similarly, ρ is rejecting if eventually all visited
configurations are rejecting. Following [3], we call this acceptance by stable consensus.

Distributed automata. Not every schedule of a distributed machine models an execution;
for example, schedules in which a node is never activated are usually considered illegal.
We assume that distributed machines are controlled by a scheduler that ensures that the
machine executes a legal run. Formally, a scheduler is a pair Σ = (s, f), where s is a selection
constraint that assigns to every graph G = (V,E, λ) a set s(G) ⊆ 2V of permitted selections
such that every node v ∈ V occurs in at least one selection S ∈ s(G), and f is a fairness
constraint that assigns to every graph G a set f(G) ⊆ s(G)ω of fair schedules of G. We call
the runs with schedules in f(G) fair runs (with respect to Σ).

A distributed automaton is a pair A = (M,Σ), whereM is a machine and Σ is a scheduler
satisfying the consistency condition: for every graph G, either all fair runs of M on G are
accepting, or all fair runs of M on G are rejecting. Intuitively, the machine is “immune” to
the scheduler because its answer is independent of the scheduler’s choices. This formalizes
the standard notion of “asynchronous distributed algorithm”. Notice that the consistency
condition is a very strong semantic requirement. Although we will not do so in this paper,
one can prove that it is undecidable whether a given pair (M,Σ) satisfies it.

A accepts G if every fair run of A on G is accepting, and rejects G otherwise. The
language L(A) recognized by A is the set of graphs it accepts. Two automata are equivalent
if they recognize the same language.

2.2 Classifying distributed automata

We classify automata according to four criteria: detection capabilities, acceptance condition,
selection constraint, and fairness constraint. The first two criteria concern the distributed
machine, and the other two the scheduler. For each criterion, we investigate some of the
major options that have been considered in the literature.

Detection. In some models, agents can only detect the existence of neighbors in a certain
state. This corresponds to non-counting machines, i.e., machines with counting bound β = 1.
Other models can detect the number of neighbors up to a higher bound [8].
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Acceptance. As mentioned above, distributed machines accept by stable consensus. This
is the acceptance condition of population protocols and chemical reaction networks [3, 1, 13].
Other models consider a notion of acceptance where each node explicitly decides to accept
or reject [8]. This notion is captured by halting automata. A machine M is halting if its
transition function does not allow the nodes to leave accepting or rejecting states, i.e., if
δ(q, P ) = q for every q ∈ Y ∪N and every β-bounded multiset P ∈ [β]Q. In halting machines,
each node knows whether the input graph will be accepted the moment it enters an accepting
or rejecting state. Indeed, by the consistency condition, in every fair run, eventually either
all nodes occupy accepting states, or all nodes occupy rejecting states. Since nodes can never
leave an accepting state once they enter it, each node that enters such a state knows that all
other nodes will eventually do likewise. The same applies to rejecting states.

Selection. A scheduler Σ = (s, f) is synchronous on G = (V,E, λ) if s(G) = {V }. Intu-
itively, at every step all nodes make a move. Σ is exclusive or interleaving-based on G if
s(G) = {{v} | v ∈ V }. Intuitively, at every step exactly one node makes a move, i.e., nodes
execute steps in mutual exclusion. Finally, Σ is liberal on G if s(G) = 2V . Intuitively, at
every step an arbitrary subset of nodes makes a move. A scheduler is called synchronous if it
is synchronous on every graph. Exclusive and liberal schedulers are defined analogously.

Fairness. A schedule σ = (S0, S1, . . .) of a graph G is weakly fair if for every node v of G,
there exist infinitely many indices t such that v ∈ St. In other words, a schedule is weakly
fair if every node is active infinitely often. A scheduler Σ = (s, f) is weakly fair if f(G)
contains precisely the weakly-fair schedules of s(G)ω for every graph G. This is the weakest
fairness constraint one can impose on distributed automata; it only excludes runs in which a
node crashes, and does not participate in the computation anymore.

With respect to a given selection constraint s, a schedule σ = (S0, S1, . . .) ∈ s(G)ω of a
graph G is strongly fair if for every finite sequence (T0, . . . , Tn) ∈ s(G)∗ there exist infinitely
many indices t such that (St, St+1, . . . , St+n) = (T0, T1, . . . , Tn). Intuitively, strong fairness
requires that every possible finite sequence of selections is scheduled infinitely often. If every
node is selected independently with positive probability, stochastic schedules are almost
surely strongly fair. A scheduler Σ = (s, f) is strongly fair if for every graph G, the set f(G)
contains precisely the strongly-fair schedules of s(G)ω.
I Remark 1. Whether a schedule σ of a graph G = (V,E, λ) is strongly fair or not depends
on s(G). For example, if s(G) = {V }, then the synchronous schedule V ω is strongly fair, but
if s(G) = 2V , then it is not.

Our notion of strong fairness implies an apparently stronger one, used frequently in the
literature, stating that in a strongly fair run, a sequence of configurations that is enabled
infinitely often must occur infinitely often:

I Lemma 2. Let A be a strongly fair automaton and (D0, . . . , Dn) be a sequence of configura-
tions of A such that Di+1 is the successor configuration of Di via some selection Si permitted
by A, for i ∈ [0 :n〉. For any fair run ρ = (C0, C1, . . . ) of A, if Ci = D0 for infinitely many
indices i ∈ N, then (Cj , . . . , Cj+n) = (D0, . . . , Dn) for infinitely many indices j ∈ N.

The classification above yields 24 classes of automata (four classes of machines and six
classes of schedulers). To assign mnemonics to them, we use lowercase letters for the most
restrictive machine variants (i.e., non-counting and halting), and the same letters in uppercase
for the other variants. With schedulers we proceed the other way round, assigning lowercase
letters to the most liberal variants (i.e., liberal selection and weak fairness). Intuitively, due
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Figure 1 Initial classification of the models according to the class of graph languages they
recognize. Arrows indicate inclusion between classes of languages. The diagram can be thought of as
lying in four-dimensional space, where each dimension represents one of our four parameters. The
vectors of the “coordinate system” are labeled with the statement number of Lemma 3 that proves
the inclusions in the corresponding direction. In the coming sections, classes are shown to be equal
if and only if they have the same color, reducing the 20 classes to 7, as shown in Figure 4. This
means in particular that we completely eliminate the dimension of selection (shown in dotted lines),
leaving us with only three dimensions.

to the consistency condition, the more liberal a scheduler, the harder it is for an automaton
to recognize a graph language, because more runs have to yield the same result. So, loosely
speaking, we expect the expressive power to increase with the number of uppercase letters.

Detection Acceptance Selection Fairness

d: non-counting a: halting s: liberal f: weak
D: counting A: stable consensus S: exclusive F: strong

$: synchronous

We denote each class of automata by a string wxyz ∈ {d, D} × {a, A} × {s, S, $} × {f, F}.
The class of languages recognized by wxyz-automata is denoted G(wxyz). The following
lemma states all relations between language classes that follow directly from the definitions.
Statement 1 abbreviates “G(dxyz) ⊆ G(Dxyz) for all x ∈ {a, A}, y ∈ {s, S, $}, z ∈ {f, F}”.
We use the same convention in Statements 2 to 5, and throughout the paper. That is, any
statement with four-letter strings containing the wildcard symbol * must be expanded into
the list of all statements that can be obtained by replacing identically positioned occurrences
of * with the same letter.

I Lemma 3. 1. G(d***) ⊆ G(D***), 2. G(*a**) ⊆ G(*A**), 3. G(***f) ⊆ G(***F),
4. G(**sf) ⊆ G(**Sf), 5. G(**sf) ⊆ G(**$f), 6. G(**$F) ⊆ G(**$f).

Lemma 3 leads to the diagram in Figure 1, showing 20 automata classes (we have
G(**$f) = G(**$F) by Statements 3 and 6). An arrow between two classes means that every
graph language recognized by the source class is also recognized by the target class.
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The reader probably finds Figure 1 very complicated. We also do, and this was the
motivation for the present paper. How many of these classes are really different? In the next
sections we show that classes with the same color have the same expressivity, and thus that
the diagram of Figure 1 collapses to the one of Figure 4, which contains only seven classes.

3 The weakest classes have no expressiveness

We prove that das*-automata have no expressive power, and the results in Sections 4 and 5
will generalize this to da**-automata. Intuitively, if agents cannot count their neighbors, and
must reach a halting configuration, then they cannot distinguish any two graphs. Formally,
a graph property is trivial if either every graph satisfies it, or no graph satisfies it. We have:

I Theorem 4. Every das*-automaton recognizes a trivial graph property.

Proof sketch. By Statement 3 of Lemma 3, it suffices to prove the claim for dasF-automata.
So let A be a dasF-automaton, and let G and H be two graphs (connected and with at least
two nodes by convention). Assume that A accepts G but rejects H. By the consistency
condition, all fair runs of A on G accept, and all fair runs on H reject. Now let ρG and ρH
be any such runs, and let t ∈ N be a time at which all nodes in ρG and ρH have halted. We
define a new graph K that consists of t copies {Gi}i∈[1 : t] and {Hi}i∈[1 : t] of G and H, with
additional edges defined as follows. For each node wX of the original graph X ∈ {G,H}, we
denote its copy in Xi by wXi , where i ∈ [1 : t]. Let uG and vG be two adjacent nodes of G,
and uH and vH be two adjacent nodes of H. We add the connecting edges {uXi , vXi+1} for all
i ∈ [1 : t〉 and X ∈ {G,H}, as well as the edge {uGt , uHt }. This is illustrated in Figure 2.

G1 G2 Gt Ht H2 H1

uG1

vG1

uG2

vG2

. . .

uGt

vGt

uHt

vHt

. . .

uH2

vH2

uH1

vH1

Figure 2 Graph K used in the proof of Theorem 4.

We show that there is a fair run ρ of A on K that neither accepts nor rejects. It follows
that A does not satisfy the consistency condition, contradicting the hypothesis. Since A is
a non-counting automaton, initially every node wXi except for uGt and uHt “sees” the same
neighborhood as the corresponding node wX in the original graph X. Only the two nodes uGt
and uHt may have a different neighborhoods than uG and uH , and this might affect their
behavior starting at time 1. Their different behavior can be propagated to other nodes
in subsequent rounds, but it takes time before it reaches every node. We exploit this to
construct ρ in such a way that some nodes of K (those of G1) reach an accepting state, while
others (those of H1) reach a rejecting state. Since A is a halting automaton, these nodes will
never change their state again, and so the run is neither accepting nor rejecting. J

4 Synchronicity can always be simulated

We show that every class with synchronous selection is equivalent to the corresponding
class with liberal selection. Albeit non-trivial, this is easy to prove by a standard technique
of distributed computing known as alpha synchronizer. (The term was introduced in [4],
but a similar idea appeared earlier in cellular automata theory [10].) Given a machine
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M = (Q, δ0, δ, Y,N), we define a machine M̃ = (Q̃, δ̃0, δ̃, Ỹ , Ñ) such that for every graph G,
the unique synchronous run of M on G accepts (rejects) iff every weakly fair run ρ of M̃ on
G accepts (rejects). The gadget achieving this is called a “synchronizer”, because it ensures
that the nodes of G behave “as in the synchronous case”, even when selection is liberal.

The set of states of M̃ is Q̃ := Q×Q× {0, 1, 2}. Given (q, q′, i) ∈ Q̃, we call q the past
M-state, q′ the current M-state, and i the phase. The initialization function is given by
δ̃0(a) := (δ0(a), δ0(a), 0). In order to define the transition function δ̃, let v be a node in state
(q, q′, i). If v is selected by the scheduler, its next state is determined as follows:

If at least one neighbor of v is in phase (i− 1) mod 3, then v does not change state.
Intuitively, if some neighbor is still one phase behind, then v waits for it to “catch up”.
If every neighbor of v is in phase i or (i+ 1) mod 3, then v moves to (q′, q′′, (i+ 1) mod 3),
where q′′ is defined as follows. Let Nv be the set of neighbors of v, and for each
u ∈ Nv, let (qu, q′u, iu) be the state of u. Further, let q′′u := q′u if iu = i, and q′′u := qu if
iu = (i+ 1) mod 3, and letM be the multiset over Q containing for each u ∈ Nv a copy
of the state q′′u. (Loosely speaking, M contains the current M -states of the neighbors
of v that are in the same phase as v, and the past M -states of the neighbors that are
one phase ahead, i.e., the states they had when they were in the same phase as v). Let
Mβ be given byMβ(q) = min{β,Mβ(q)}. We define q′′ := δ(q,Mβ); loosely speaking,
v moves to the state it would move to in M if all its neighbors were in the same phase.

Let ρ̃ be any weakly-fair run of M̃ on a graph G. Fix a node v of G, and extract from ρ̃

the sequence q′10q
′
11q
′
12 q
′
20q
′
21q
′
22 . . . q

′
i0q
′
i1q
′
i2 . . ., where q′ij denotes the current M -state of v

immediately after entering phase j for the i-th time. Now, let ρ be the unique synchronous
run of M on G, and let q′0q′1q′2 . . . be the sequence obtained by projecting ρ onto the states
of v. It is easy to see that these two sequences coincide. By the definition of stable acceptance,
ρ̃ accepts iff ρ accepts, and rejects iff ρ rejects. Using this construction, we obtain:

I Theorem 5. For every **$*-automaton there is an equivalent **s*-automaton.

5 Exclusivity does not increase expressiveness

In this section, we obtain the rather surprising result that the computational power of a
class of automata does not increase if we restrict its schedulers to interleaving ones (which
guarantees that agents act in mutual exclusion with all other agents).

5.1 Exclusivity under strong fairness
We start by considering strongly fair models, i.e., we compare a class of the form **sF with
the corresponding class **SF. On an intuitive level, their equivalence might be less surprising
than the subsequent result presented in Section 5.2 because strong fairness provides a way to
break symmetry, which can be exploited to simulate exclusivity. Nevertheless, neither class
trivially subsumes the other, so we have to prove inclusions in both directions.

I Theorem 6. For every **sF-automaton there is an equivalent **SF-automaton.

Proof sketch. Given a **sF-automaton A, we construct a **SF-automaton B such that for
all input graphs G, every strongly fair run of B on G simulates a strongly fair run of A on G.
The difficulty lies in the fact that A and B do not share the same notion of strong fairness
because they have different selection constraints. While A’s liberal scheduler guarantees
that arbitrary sequences of selections will occur infinitely often, B’s exclusive scheduler can
select only one node at a time. To simulate A’s behavior with B, we adapt the synchronizer
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from Section 4. Just like there, nodes keep track of their previous and current state in A,
as well as the current phase number modulo 3. However, instead of updating their state in
every phase, they only do so if an additional activity flag is set. Thus, we can simulate an
arbitrary selection S by raising the flags of exactly those nodes that lie in S. The outcome
of a phase simulated in this way will be the same as if all the nodes in S made a transition
simultaneously. The main issue is how to set the activity flags in each phase in such a way
that every finite sequence (S1, . . . , Sn) of selections is guaranteed to occur infinitely often.
We show that this is possible, exploiting the fact that B’s scheduler is strongly fair. J

I Theorem 7. For every **SF-automaton there is an equivalent **sF-automaton.

Proof sketch. First, we note that the only way exclusivity could possibly be useful is to
break symmetry between adjacent nodes. This is because for an independent set (i.e., a set
of pairwise non-adjacent nodes), the order of activation is irrelevant: whether the scheduler
activates them all at once or one by one in some arbitrary order, the outcome will always
be the same. Consequently, to simulate a run with exclusivity, it suffices to simulate a run
where no two adjacent nodes are active at the same time. We provide a simple protocol
that makes use of the strong fairness constraint (in an environment with liberal selection) to
ensure that if a node wants to execute a transition, then it will eventually be able to do so
while all its neighbors remain passive. J

5.2 Exclusivity under weak fairness
We now show that even in the absence of strong fairness, the restriction to interleaving
schedulers does not increase expressive power. At first sight, this may be quite surprising
because exclusivity inherently breaks symmetry, whereas an automaton with liberal selection
and weak fairness can always be assumed to run synchronously and thus be incapable of
breaking symmetry. In fact, it is easy to come up with examples of automata that exploit
exclusivity to ensure termination.

I Proposition 8. For every **sf-automaton, there exists a **Sf-automaton that recognizes
the same graph language but makes use of exclusive selection to ensure termination. If run
synchronously, it never terminates (and hence it is not a valid **sf-automaton).

However, although the automata described in Proposition 8 make use of exclusivity, they
do not really benefit from it; they only recognize languages that can also be recognized
by liberal automata. As we will see in Theorem 11, this observation can be generalized to
arbitrary **Sf-automata. Intuitively, since exclusivity does not add any expressive power, it
can in a certain sense be simulated without needing to break symmetry.

The proof of Theorem 11 is based on the notion of Kronecker cover. The Kronecker
cover (also known as bipartite double cover) of a graph G = (V,E, λ) is the bipartite graph
G′ = (V ′, E′, λ′) where V ′ = V ×{0, 1}, E′ =

⋃
{u,v}∈E{ {(u, 0), (v, 1)}, {(u, 1), (v, 0)} }, and

λ′((v, i)) = λ(v) for all (v, i) ∈ V ′. An example is provided in Figure 3.
The Kronecker cover in Figure 3 is connected because the nodes in {u, v, w}×{0, 1} form

a cycle. The following lemma generalizes this observation.

I Lemma 9. The Kronecker cover of a connected graph G is connected if and only if G
contains a cycle of odd length, (i.e., if and only if G is non-bipartite).

If a Kronecker cover is connected, then it constitutes a legal input for a distributed
automaton. The next key lemma shows that, in this case, a weakly fair automaton cannot
even distinguish between a graph and its Kronecker cover.
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Figure 3 A graph (on the left) and its Kronecker cover (on the right).

I Lemma 10. For every ***f-automaton A with input alphabet Λ and every non-bipartite
Λ-labeled graph G, A accepts G if and only if it accepts the Kronecker cover of G.

We can now prove the main technical result of this section:

I Theorem 11. For every **Sf-automaton there is an equivalent **sf-automaton.

Proof sketch. Given a **Sf-automaton A, we construct an equivalent **$f-automaton B
(i.e., a synchronous automaton). This is sufficient to prove the claim, because we know from
Theorem 5 that B can always be simulated by a **sf-automaton using a synchronizer.

Let G be an input graph for A. If we were guaranteed that the labels of G define a
proper vertex coloring (i.e., edges connect nodes of different colors), then the task would
be straightforward. Indeed, since each color of a proper coloring represents an independent
set, B could simply operate in cyclically repeating phases, each one activating precisely the
nodes of one of the colors. As explained in the proof of Theorem 7, such a run is equivalent
to a run of an exclusive scheduler that activates the nodes of each independent set one by
one (in some arbitrary order).

This approach can be adapted to bipartite graphs because a bipartite graph has exactly
two possible 2-colorings. However, computing one of the two 2-colorings would require to
break symmetry, which a **$f-automaton cannot do. So instead, the states of automaton B
have two components, one corresponding to each coloring, and nodes update both components
when they are activated.

Using these ideas, we construct B in such a way that it recognizes the same bipartite
graphs as A. Then we use Lemmas 9 and 10 to prove that L(A) = L(B). Indeed, if G is not
bipartite, then by Lemma 9, its Kronecker cover G′ is connected and therefore constitutes
a legal input for a distributed automaton. By Lemma 10, B accepts G if and only if it
accepts G′. Since Kronecker covers are bipartite by definition, we know from the above
discussion that B accepts G′ if and only if A accepts G′. Finally, again by Lemma 10,
A accepts G′ if and only if it accepts G. From this chain of equivalences, we can conclude
that G is accepted by B if and only if it is accepted by A. J

6 Separations

In Sections 3, 4 and 5 we have shown that the classes of graph languages in Figure 1 collapse
to at most the seven classes shown on the left of Figure 4. In this section we show that the
seven classes are all different. For this we examine four graph languages, and determine
which classes are expressive enough to recognize them:
B: The language of graphs with set of labels {black,white} having at least one black node.
S: The language of star graphs, i.e., the set of all connected, unlabeled graphs in which
one node (the center) has degree at least 2, and all others (the leaves) have degree 1.
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C3: The language containing one single graph, namely the cycle C3 with three nodes
labeled by 0, 1, and 2, respectively.
Seven: The language of even stars, i.e., the graphs of S with an even number of leaves.

The results are summarized on the right of Figure 4.

dasf

Dasf dAsf

DasF DAsf dAsF

DAsF Class B S C3 Seven

DAsF 3 3 3 3

DasF 7 3 7 3

DAsf 3 3 7 7

dAsF 3 3 3 7

Dasf 7 3 7 7

dAsf 3 7 7 7

dasf 7 7 7 7

Figure 4 On the left, quotient of the classification of Figure 1. On the right, four graph languages,
and the automata models capable of recognizing them.

Recognizing properties of labeled graphs: the language B

The main difference between the two types of acceptance is that halting automata cannot
recognize properties that require nodes to wait an unlimited amount of time for some
information that may never arrive, while even the simplest class of automata accepting by
stable consensus can recognize some of those properties, such as B.

I Proposition 12. B is recognizable by a dAsf-automaton, but not by any *a**-automaton.

Proof sketch. The dAsf-automaton has two states, called black and white. The initial state
of a node is given by its label. Black nodes remain always black, and white nodes with a
black neighbor become black. Since graphs are connected by assumption, if a graph contains
some black node then eventually all nodes are black, otherwise all nodes stay white.

For the second part, one can show that DasF-automata cannot distinguish between an
entirely white cycle and a sufficiently long path graph whose nodes are all white except for
two black nodes at the endpoints. (The argument is similar to the proof of Theorem 4.) J

Recognizing properties of unlabeled graphs: the language S

We show in Proposition 13 that dAsf-automata cannot recognize any non-trivial property of
unlabeled graphs (which we identify with the labeled graphs whose nodes all carry the same
label). That is, while dAsf-automata can recognize properties of the labeling of a graph, they
cannot recognize any non-trivial property of its structure. Then we show in Proposition 14
that the strong fairness of dAsF-automata allows them to recognize S.

I Proposition 13. dAsf-automata can only recognize trivial properties of unlabeled graphs.
In particular, S is not recognizable by a dAsf-automaton.

Proof. Let A be a dAsf-automaton, and let ρ = (C0, C1, . . .) be the synchronous run of A on
an unlabeled graph G = (V,E), i.e., the run scheduled by V ω. We show that A either accepts
all unlabeled graphs, or rejects all unlabeled graphs. Since V ω is a weakly fair schedule, ρ is
a fair run, and so by the consistency condition A accepts G iff ρ is accepting. Since G is
unlabeled, in C0 every node of G is in the same state q0, which is independent of G. Moreover,
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since ρ is synchronous and A is non-counting, in each configuration Ci every node of G is in
the same state qi, which is also independent of G. So the states visited by ρ are independent
of G, and so A either accepts all unlabeled graphs, or rejects all unlabeled graphs. J

I Proposition 14. S is recognizable by a dAsF-automaton and by a Dasf-automaton.

Proof sketch. We give a dAsF-automaton that recognizes S. The states of the automaton
are pairs (d, c), where d ∈ {leaf, center, unknown,neither} is the estimate of v, and c ∈ {0, 1}
is its color. Every time a node is selected it flips its color. When a node with estimate
unknown sees two neighbors with different colors, it switches to center, and if from then on
it sees a neighbor with estimate center, it moves to neither. Strong fairness is crucial for
correctness: by Lemma 2, it ensures that a node that is not a leaf will eventually be selected
in a configuration in which at least two of its neighbors have different colors.

Now we give a Dasf-automaton with β = 2 that recognizes S. Since β = 2, a node can
determine for each state q if it has 0, 1, or at least 2 neighbors in q. The automaton’s states
are {init, leaf,non-leaf, accept, reject}. Initially all nodes are in state init. The nodes update
their estimates depending on the number of neighbors (0, 1, or at least 2) in each state. J

Symmetry breaking: the language C3

We show that the language C3 requires both acceptance by stable consensus and strong
fairness to be recognizable. Intuitively, both of them are required to distinguish C3 from
arbitrarily long cycles that repeat the labeling of C3 cyclically.

I Proposition 15. C3 is recognizable by a dAsF-automaton, but neither by DA*f-automata
nor by Da*F-automata.

Proof sketch. Our dAsF-automaton for C3 checks two conditions: first, that the input graph
is a cycle with cyclic labeling 0−1−2, and second, that it contains exactly one node labeled
by 2 (which implies that the cycle has length 3). For both conditions, we use a similar
trick as in Proposition 14, relying on acceptance by stable consensus and strong fairness to
eventually break symmetry between otherwise indistinguishable nodes. To verify the second
condition, each node labeled by 2 successively sends signals in both directions through the
cycle, and checks that those signals always come back from the expected direction.

For the second part of the claim, we show that DA*f- and Da*F-automata cannot dis-
tinguish C3 from C6, the hexagon whose nodes are labeled by 0−1−2−0−1−2 (and back
to 0). To do so, given a fair run ρ3 of such an automaton on C3, we construct a fair run ρ6
on C6 that “duplicates” the behavior of ρ3. In the case of Da*F-automata, this duplication
is performed only until ρ3 has reached a halting configuration (because otherwise ρ6 would
violate the strong fairness constraint). J

Counting neighbors modulo a number: the language Seven

Since counting automata can only count up to a threshold β, no node can directly observe
that it has an even number of neighbors. This makes the language Seven rather difficult to
recognize. We now show that the combination of counting and strong fairness can do the job.
The proof also provides a good example where exclusivity helps to design an algorithm.

I Proposition 16. Seven is recognizable by a DasF-automaton.
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Proof sketch. In Proposition 14 we have exhibited a Dasf-automaton A recognizing S. We
now give a DaSF-automaton B that uses counting, exclusivity, and strong fairness to further
decide if the number of leaves is even. Loosely speaking, B first executes A; if A rejects,
then B rejects, because the graph is not even a star. If A accepts, then B enters a new phase
during which it counts the number of leaves modulo 2. By Theorem 7, B is equivalent to a
DasF-automaton.

We can assume that when A accepts, all nodes are labeled with either leaf or center
(the unique non-leaf). We give an informal description of B. Leaves can be in states visible,
invisible, dead, even, or odd. While leaves have not been counted by the center, they alternate
between the states visible and invisible. The center only increments its modulo-2 counter if
exactly one leaf is visible. After a leaf is counted, it moves to dead. When all leaves become
dead, i.e., when they have all been counted, the center decides whether to accept or reject;
the leaves read the decision from the counter, and move to even or odd accordingly. J

The next two results show that recognizing Seven needs both counting and strong fairness.

I Proposition 17. Seven is not recognizable by DA*f-automata.

Proof. We show that for every DA*f-automaton A there exist stars G and G′ such that
exactly one of G and G′ belongs to Seven, but A either accepts both of them or rejects both
of them. Let β ≥ 1 be A’s counting bound, and let G and G′ be the stars with β + 1 and
β+ 2 leaves, respectively. Now consider the synchronous runs ρ and ρ′ of A on G and G′. By
symmetry, and since the number of leaves exceeds β in both G and G′, at every time t ∈ N,
the center is in the same state in ρ and ρ′, and likewise all leaves are in the same state. So
the sequences of states visited by the center and the leaves are the same in both ρ and ρ′,
and therefore ρ is accepting iff ρ′ is accepting. J

I Proposition 18. Seven is not recognizable by dA*F-automata.

Proof sketch. Given a dA*F-automaton A, the proof identifies an even number n, depending
on A, such that if A accepts the star with n leaves, then it cannot reject the star with n+ 1
leaves. The proof is involved, and can be found in the appendix of the arXiv version. J

7 Expressive power

As a first application of our results, we investigate the expressivity of our models for graph
languages that depend only on the labeling function of a graph, and not on its topology.

Given a Λ-labeled graph G = (V,E, λ), where Λ = {`1, . . . , `k}, let #G : Λ → N be the
mapping that assigns to each label ` the number #G(`) of nodes of V such that λ(v) = `. A
language is Presburger-definable if there is a formula ϕ(x1, . . . , xk) of Presburger arithmetic
such that a Λ-labeled graph G belongs to the language if and only if ϕ(#G(`1), . . . ,#G(`k))
holds. An example of such a language is B, the set of graphs that contain a black node.

We show that DAsF-automata recognize all Presburger languages, but none of the other
six classes do. The negative part of the result follows easily from the table in Figure 4.

I Proposition 19. There exist Presburger-definable languages that are not recognizable by
d***-, *a**-, or ***f-automata.

Proof. By Proposition 12, *a**-automata cannot recognize the language B, which is
Presburger-definable. Furthermore, by Propositions 14, 17 and 18, dA*F- and DA*f-automata
can recognize the language S of star graphs but not the language Seven of stars with an
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even number of leaves. This implies that dA*F- and DA*f-automata cannot recognize the
Presburger-definable language of graphs with an odd number of nodes, because the inter-
section of this language with S is equal to Seven, and languages recognizable by distributed
automata are closed under intersection (by a standard product construction). J

For the positive part, we proceed in three steps: First, following [1] and Section 5 of [3], we
introduce graph population protocols, a graph variant of the well-known population protocol
model introduced in [2, 3]. Then we recall a result of [3] showing that graph population
protocols recognize all Presburger-definable languages. Finally, we show that every graph
population protocol can be simulated by a DAsF-automaton.

Our definition of graph population protocols is equivalent to that of [1, 3], but reuses the
notation of Section 2 as far as possible. A graph population protocol Π = (Q, δ0, δ, Y,N) is
defined like a DASF-automaton with machine M = Π, except for the following differences:

The transition function is of the form δ : Q2 → Q2.
A selection of a graph G = (V,E, λ) is an ordered pair S = (u, v) ∈ V 2 of adjacent nodes
(instead of a singleton {u} ⊆ V ), and the selection constraint on G is {(u, v) | {u, v} ∈ E}.
Ct(v) is defined inductively as follows, for t ∈ N and v ∈ V :

C0(v) = δ0(λ(v)) and Ct+1(v) =


δ
(
Ct(v), Ct(u)

)
fst if St = (v, u) for some u,

δ
(
Ct(u), Ct(v)

)
snd if St = (u, v) for some u,

Ct(v) otherwise,

where Pfst and Psnd denote the first and second component of a pair P .
So, intuitively, the scheduler selects two adjacent nodes, which update their states according
to δ. The definitions of all other relevant notions remain the same. This holds in particular
for acceptance by stable consensus and strong fairness (which are baked into the model), and
the consistency condition. Standard population protocols correspond to graph population
protocols on complete graphs, where every pair of distinct nodes is connected by an edge.

It is shown in [3] that standard population protocols recognize all Presburger-definable
languages. Further, Theorem 7 of [3] shows that every language recognized by population
protocols is also recognized by graph population protocols. Loosely speaking, given a
population protocol, one constructs the protocol on graphs in which, when an edge of the
graph is selected, either the two nodes connected by it interact as in the population protocol, or
they swap their states. By strong fairness, the states of the nodes can “move around the graph”,
and any pair of states eventually interacts infinitely often. The choice between interacting or
swapping is nondeterministic, but it can be simulated by deterministic transitions (see [3]).
Therefore, in order to show that DA*F-automata recognize all Presburger-definable languages,
it suffices to simulate graph population protocols with distributed automata. As in the proof
of Proposition 16, we make use of exclusivity to simplify the construction.

I Proposition 20. For every graph population protocol there is an equivalent DA*F-automaton.

Proof sketch. We present a simulation that runs a population protocol on a distributed
automaton. To this end, the automaton has to simulate a scheduler that selects ordered
pairs of adjacent nodes instead of arbitrary sets of nodes. For any pair (u, v) that is selected
to perform a transition, let us call u the initiator and v the responder of the transition. By
Theorem 7, we may assume that the automaton’s scheduler selects a single node in each step.

The main idea is as follows: When a node u is selected and sees that it can become the
initiator of a transition, it declares its intention to do so by raising the flag “?”. Then u waits
until some neighbor v is selected and raises the flag “!”, which signals that v wants to become



J. Esparza and F. Reiter 10:15

the responder of a transition. If this happens, the next time u is selected, it computes its
new state according to the state of v and the transition function of the population protocol,
but also keeps its old state in memory so that v can still see it. After that, v also updates its
state, and finally u deletes its old state, which completes the transition. Throughout this
protocol, the nodes verify that they have exactly one partner during each transition. If this
condition is violated, they raise the error flag “⊥” and abort their current transition. J

I Corollary 21. DA*F-automata recognize all Presburger-definable languages.

8 Conclusions

We have conducted an extensive comparative analysis of the expressive power of weak
asynchronous models of distributed computing. Our analysis has reduced the initial “jungle”
of twenty different models to only seven. This reduction in complexity is achieved by
Theorems 4, 5, 6, 7, and 11, all of which have a clear and intuitive interpretation.

We have also shown that the seven classes are distinct, and have identified inclusions
and non-inclusions between them. However, two inclusions remain open: Are Dasf or DAsf
included in dAsF? Intuitively, this asks if strong fairness and acceptance by stable consensus
can be used to simulate counting. We can provide a positive answer for graphs of bounded
degree (a limitation common in practice), because in this case even dA*F and DAsF coincide.

I Proposition 22. For every DA*F-automaton A and every k ∈ N there is a dA*F-automaton
B equivalent to A on graphs of maximum degree k.

However, for arbitrary graphs we conjecture that neither Dasf nor DAsf are included in dAsF.
Finally, we have made a first step towards characterizing the graph languages recognizable

by the different classes, by transferring a characterization for population protocols.
As a last note, observe that our results hold for decision problems on undirected graphs

that can be solved by consensus in the framework of distributed automata. Several of
our constructions (e.g., those in Theorems 5 and 7) rely on bidirectional communication,
which is not guaranteed on directed graphs. Furthermore, exclusive selection leads to higher
computational power for non-decision problems. For instance, it can be used to solve the
vertex coloring problem on graphs of bounded degree (by a standard greedy algorithm),
which, for symmetry reasons, is impossible in a model with synchronous selection.
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