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We address the problem of characterisation of null-forms of conic 3-dimensional systems, that is, control-affine systems whose field of admissible velocities forms a conic (without parameters) in the tangent space. Those systems have been previously identified as the simplest control systems under a conic nonholonomic constraint or as systems of zero curvature. In this work, we propose a direct characterisation of null-forms of conic systems among all control-affine systems by studying the Lie algebra of infinitesimal symmetries. Namely, we show that the Lie algebra of infinitesimal symmetries characterises uniquely null-forms of conic systems.

Introduction

In [START_REF] Schmoderer | Conic nonholonomic constraints on surfaces and control systems[END_REF], we propose a characterisation and a classification of single input controlaffine systems which admit conic sets as admissible velocities. In particular, we give a characterisation of all 3dimensional control-affine systems with scalar control that are feedback equivalent, locally around ( 0 , 0 , 0 ) ∈ ℝ 3 , to one of the following conic null-forms

Σ ∶ ⎧ ⎪ ⎨ ⎪ ⎩ ̇ = cos( ) ̇ = sin( ) ̇ = , Σ ∶ ⎧ ⎪ ⎨ ⎪ ⎩ ̇ = cosh( ) ̇ = sinh( ) ̇ = , and Σ ∶ ⎧ ⎪ ⎨ ⎪ ⎩ ̇ = 2 ̇ = ̇ = .
The parabolic system Σ actually depends on the nature of the point ( 0 , 0 , 0 ) around which the systems Σ is considered: an equilibrium or not. As a consequence, Σ has two distinct normal forms, for 0 = 0 and 0 ≠ 0, and we will specify this distinction just before our main result Theorem 1.

We call the systems Σ , Σ , and Σ , null-forms because of the absence of any parameters, functional or realcontinuous, in their expression (in particular, observe that those system are trivial in the sense of [START_REF] Serres | Control systems of zero curvature are not necessarily trivializable[END_REF]). We call the systems Σ , Σ , and Σ , elliptic, hyperbolic, and parabolic, respectively, because in the manifold ℝ 2 , equipped with local coordinates ( , ), the trajectories ( ( ), ( )) of Σ , Σ , and Σ satisfy a nonholonomic constraint of the form = ̇ 2 + ̇ 2 -1 = 0, = ̇ 2 -̇ 2 -1 = 0, and = ̇ 2 -̇ = 0, respectively. And, clearly, , resp. , and resp. , describes ellipses, resp. hyperbolas, and resp. parabolas, in the tangent bundle ℝ 2 ; see [START_REF] Schmoderer | Conic nonholonomic constraints on surfaces and control systems[END_REF] for a detailed analysis of the link between quadratic equations on ℝ 2 and control systems. The elliptic and hyperbolic systems Σ and Σ show up in the seminal trendsetting paper [START_REF] Agrachev | Feedback-Invariant Optimal Control Theory and Differential Geometry, II. Jacobi curves for singular extremals[END_REF] as control-affine systems of zero curvature. Moreover, Σ describes the well-known Dubins model of a car [START_REF] Dubins | On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents[END_REF], while Σ is its hyperbolic counterpart Monroy-Pérez (1998). The parabolic system Σ is studied in [START_REF] Schmoderer | Conic nonholonomic constraints on surfaces and control systems[END_REF]. We will denote by Σ the set {Σ , Σ , Σ } of the three above nullforms conic systems when we discuss properties that do not require to distinguish a specific system.

In the present work, we propose a direct local characterisation of those null-forms conic systems within the class of all control-affine systems on a 3-dimensional manifold with scalar control. In [START_REF] Schmoderer | Conic nonholonomic constraints on surfaces and control systems[END_REF], we analysed systems under quadratic nonholonomic constraints and, in particular, studied the null forms Σ but the obtained results differ from those of the present paper in two aspects. In [START_REF] Schmoderer | Conic nonholonomic constraints on surfaces and control systems[END_REF], first, we characterise Σ , Σ , and Σ among conic systems and, second, that goal is achieved by identifying invariants of the classification. On the other hand, in the present paper, first, we propose a characterisation that directly applies to any control-affine system (on a 3D-manifold with scalar control). Second, we use completely different tools. Namely, the methodology that we apply to describe our null-forms is based on the study of the Lie algebra of infinitesimal symmetries (see below for a precise definition), which turns out to uniquely determine all null-forms Σ (with additional regularity conditions for Σ ).

Outline of the paper

The paper is organised as follows. In the next subsection, we will introduce all notions of control theory that we will need for our results. In particular, we give a definition of feedback equivalence and of infinitesimal symmetries. Next, we will first compute the Lie algebra of infinitesimal symmetries of null-forms of conic systems Σ and identify those Lie algebras in the well-known Bianchi classification of 3dimensional Lie algebras. Afterwards, we will enunciate and prove our main result, which shows that the Lie algebras of infinitesimal symmetries of null-forms of conic systems completely determine corresponding systems.

Preliminaries

Throughout the paper, the word "smooth" will always mean ∞ -smooth, and all objects (vector fields, differential forms, functions, manifolds) are assumed to be smooth.

Control-affine systems. We consider control-affine systems Σ of the form

Σ ∶ ̇ = ( ) + ( ) , ∈ ℝ,
where the state belongs to a smooth 3-dimensional manifold  (or an open subset of ℝ3 since all our results are local), and and are smooth vector fields on  (smooth sections of the tangent bundle ). We denote a controlaffine system by the pair Σ = ( , ), we set  = span { }, the distribution spanned by the vector field , and we set  1 = span { , [ , ]}. We call two control affine systems Σ = ( , ) and Σ = ( ̃ , ̃ ) on  feedback equivalent, if there exists a diffeomorphism ∶  →  and smooth functions ( ) and ( ), satisfying ( ) ≠ 0, and such that

̃ = * ( + ) and ̃ = * ( ),
where * denotes the tangent map of , that is

( * )( ̃ ) = -1 ( ̃ ) ⋅ -1 ( ̃ ) .
If is defined locally around 0 and ̃ 0 = ( 0 ), then we say that Σ and Σ are locally feedback equivalent at 0 and ̃ 0 , respectively. A feedback transformation will be denoted by the triple ( , , ) or simply ( , ) if = Id.

Infinitesimal symmetries. We introduce the notion of symmetries in the case of single input control-affine system (see [START_REF] Respondek | Nonlinearizable single-input control systems do not admit stationary symmetries[END_REF]; [START_REF] Grizzle | The structure of nonlinear control systems possessing symmetries[END_REF] for a detailed introduction). For a control-affine system Σ = ( , ), we define the field of admissible velocities  as

( ) = { ( ) + ( ) ∶ ∈ ℝ} ⊂ .
We say that a diffeomorphism ∶  →  is a symmetry of Σ if it preserves the field of affine lines  (equivalently, the affine distribution

 = + ), that is, *  = .
We say that a vector field on  is an infinitesimal symmetry of Σ = ( , ) if the (local) flow of is a local symmetry, for any for which it exists, that is, ( ) *  = . Consider the system Σ = ( , ) and recall that  is the distribution spanned by the vector field . Since ( ) * ( + ) = + , it follows that ( ) * preserves  and preserves modulo , which immediately gives the following characterisation of infinitesimal symmetries.

Proposition 1. A vector field is an infinitesimal symmetry of the control-affine system Σ = ( , ) if and only if

[ , ] = 0 mod  and [ , ] = 0 mod .

By the Jacobi identity, it is easy to see that if 1 and 2 are infinitesimal symmetries, then so is 1 , 2 , hence the set of all infinitesimal symmetries forms a real Lie algebra.

Notice that the Lie algebra of infinitesimal symmetries is attached to the affine distribution  = +  and not to a particular pair ( , ). Different pairs ( , ) related via feedback transformations ( , ) define the same  and thus give rise to the same Lie algebra of infinitesimal symmetries which, therefore, is a feedback invariant object attached to Σ.

Main results

In this section, we prove that the Lie algebras of infinitesimal symmetries of the systems Σ , Σ , and Σ , determine the corresponding systems among all control-affine systems. With the help of Proposition 1, we give in the next lemma the Lie algebras of infinitesimal symmetries of the systems Σ , Σ , and Σ .

Lemma 1 (Lie algebra of infinitesimal symmetries of Σ ).

The Lie algebra of infinitesimal symmetries of Σ , Σ , and Σ are respectively:

= vect ℝ , , - - , = vect ℝ , , + + , = vect ℝ , , 2 + + .
We will denote by the set of the three above Lie algebras in order to state general facts about them. Those three Lie algebras share the property of having the abelian Lie ideal vect ℝ , , which corresponds to the fact that the systems Σ are invariant under translations ( , ) ↦ ( + , + ), with , ∈ ℝ. The third vector field plays the role of an Euler vector field for and is an infinitesimal rotation (trigonometric or hyperbolic) in the case of and .

Proof. The proof is a direct calculation using the characterisation of infinitesimal symmetries given in Proposition 1. Let = 1 + 2 + 3 , where = ( , , ), be an infinitesimal symmetries of Σ . Then, using that is a symmetry of , we deduce that 1 = 1 ( , ) and cos( ) 2 + sin( ) 2 = cos( ) 3 .

Multiplying the first equation by cos( ) and inserting the second equation, we obtain 1 -2 cos(2 ) + 1 + 2 sin(2 )

+ 1 + 2 = 0,
which yields, first, 1 = 1 ( ) and 2 = 2 ( ), and, second,

1 ( ) =
+ and 2 ( ) = -+ , where , , ∈ ℝ. Finally, taking ( , , ) = (1, 0, 0), ( , , ) = (0, 1, 0), and ( , , ) = (0, 0, 1) we obtain . For Σ , it is an analogous calculation as above but with hyperbolic functions.

For Σ , we have

= 2 + , hence [ , ] ∈  implies 2 1 + 1 = 2 3 , 2 2 + 2 = 3 .
Inserting the second equation in the first, we obtain a polynomial of degree 3 in that identically vanishes. Thus each of its coefficient vanishes, implying 2 = 0, 1 = 0, and 1 = 2 2 . Therefore, we conclude that = (2 +

) + ( + ) + , where , , ∈ ℝ. Finally, taking ( , , ) = (1, 0, 0), ( , , ) = (0, 1, 0), and ( , , ) = (0, 0, 1) we obtain .

Based on the commutativity relations of the generators of , we identify the three Lie algebras in the classification of 3-dimensional Lie algebras as presented by Winternitz in [START_REF] Bowers | Classification of three-dimensional real Lie algebras[END_REF]. First, ≅ (3, 4, 0) is the Lie algebra of the euclidean group E(2), that is, the group of affine transformations of ℝ 2 which preserve the euclidean metric. In other words, is VII 0 in the [START_REF] Bianchi | Sugli spazii a tre dimensioni che ammettono un gruppo continuo di movimenti[END_REF][START_REF] Bianchi | On the Three-Dimensional Spaces Which Admit a Continuous Group of Motions[END_REF]) classification of 3-dimensional Lie algebras. Second, ≅ (3, 2, -1) is the Lie algebra of the Poincaré group P(1, 1), of affine transformations of ℝ 2 which preserve the Lorentz metric, i.e.

is VI 0 is the Bianchi classification. Finally, ≅ (3, 2, 2) with no immediate interpretation and is one of VI-algebras of the Bianchi classification, see Proposition 1 for its characterisation. The notation emphasises that and fall into the same class of [START_REF] Bowers | Classification of three-dimensional real Lie algebras[END_REF] but for different parameters (2 and -1, respectively), while remains apart. When considering complex Lie algebras we would have ≅ (3, 2, -1) and thus the three Lie algebras would fall into the same class but in that case we would not be able to distinguish between and as those complex Lie algebras would be isomorphic. The following proposition gives checkable conditions to identify the Lie algebras among all 3-dimensional Lie algebras.

Proposition 2 (Characterisation of

). A 3-dimensional Lie algebra is isomorphic to if and only if = ⊕ , with an abelian ideal of dimension 2, and the action ad ∶ → of any ∈ on satisfies (i) either ad is diagonalisable with two non-zero real eigenvalues related by 1 = 2 2 , in which case ≅ .

(ii) or ad has two purely imaginary eigenvalues, in which case ≅ .

(iii) or ad is diagonalisable with two non-zero real eigenvalues related by 1 = -2 , in which case ≅ .

Proof. See [START_REF] Bowers | Classification of three-dimensional real Lie algebras[END_REF].

Before giving our main result, notice that null-forms elliptic and hyperbolic systems Σ and Σ do not possess any equilibrium point, i.e. 0 ∉ ( ). On the other hand, the drift = 2 + of the null-form parabolic system Σ considered locally around ( 0 , 0 , 0 ) possesses an equilibrium if 0 = 0 and not if 0 ≠ 0. As a consequence, the system Σ possesses two non-equivalent local normal forms, which can be represented around 0 = 0 by

Σ 0 ∶ ⎧ ⎪ ⎨ ⎪ ⎩ ̇ = 2 ̇ = ̇ = and Σ 1 ∶ ⎧ ⎪ ⎨ ⎪ ⎩ ̇ = ( + 1) 2 ̇ = + 1 ̇ = , respectively.
We now formulate and prove that the Lie algebra of Σ, being isomorphic to , completely characterises those 3dimensional control-affine systems Σ = ( , ), with scalar control, that are locally feedback equivalent to Σ . Recall that we attach to a control affine system the distributions  = span { } and  1 = span { , [ , ]}.

Theorem 1 (Σ are characterised by

). Consider the control-affine system Σ ∶ ̇ = ( ) + ( ) on a smooth 3-dimensional manifold  with a scalar control, and let be its Lie algebra of infinitesimal symmetries.

( ) Σ is locally feedback equivalent to Σ , around 0 ∈ , if and only if ≅ and ( 0 ) ⊕ ( 0 ) = 0 . ( ) Σ is locally feedback equivalent to Σ , around 0 ∈ , if and only if ≅ and ( 0 ) ⊕ ( 0 ) = 0 . ( ) Σ is, locally around 0 ∈ , feedback equivalent to Σ 1 , around ( 0 , 0 , 0), if and only if ≅ , ( 0 ) ⊕ ( 0 ) = 0 , and ( 0 ) ∉ ( 0 ).
( )' Σ is, locally around 0 ∈ , feedback equivalent to Σ 0 , around ( 0 , 0 , 0), if and only if

≅ , ( 0 ) ⊕ ( 0 ) = 0 , ( 0 ) ∈ ( 0 ), and dim  1 ( 0 ) = 2.
Remark 1. Two systems Σ (resp. Σ ) around any two points 0 and ̃ 0 are locally feedback equivalent to each other. On the other hand, equilibrium points ( 0 ) ∈ ( 0 ) and non-equilibrium points ( 0 ) ∉ ( 0 ) are distinguished for Σ : the system is feedback equivalent to Σ 0 in the former case and to Σ 1 in the latter as assert statements ( )' and ( ), respectively.

Notice that in statement ( )' the condition on the pointwise rank of the distribution  1 can be replaced by ( ∧ [ , ])( 0 ) ≠ 0, compare this statement with the assumptions of Proposition 3 below.

Proof. We show the sufficiency part of the statements only as the necessity follows immediately from the list of infinitesimal symmetries given by Lemma 1. For all three cases, the beginning of the proof is the same.

Consider a control-affine system Σ, given by vector fields and , and let three vector fields 1 , 2 , 3 span the 3-dimensional Lie algebra = vect ℝ 1 , 2 , 3 of infinitesimal symmetries, which by assumption is isomorphic to . We can assume that the abelian ideal of is = vect ℝ 1 , 2 and that 1 , 2 , 3 satisfy the commutativity relations of (we express them below for each case separately). Since ( 0 ) ⊕ ( 0 ) = 0 , it follows that 1 , 2 , and are independent, locally around 0 . We apply a local diffeomorphism ( ) = ( ̃ , ̃ , ̃ ), ( 0 ) = 0 ∈ ℝ3 , such that ̃ 1 = * 1 = ̃ , ̃ 2 = * 2 = ̃ , and ̃ = * = 1 ̃ + 2 ̃ + 3 ̃ , for some smooth functions , satisfying 3 (0) ≠ 0. Replacing ̃ by 1 3 ̃ , we may assume that ̃ = 1 ̃ + 2 ̃ + ̃ . Then, since ̃ 1 and ̃ 2 are symmetries of  = span 1 ̃ + 2 ̃ + ̃ , we have ̃ , ̃ ∈ , for = 1, 2, which implies 1 = 1 ( ̃ ) and 2 = 2 ( ̃ ). Therefore, we in fact have ̃ 1 , ̃ = ̃ 2 , ̃ = 0 and thus there exists a local diffeomorphism ( , ,

) = ( ̃ , ̃ , ̃ ) such that * ̃ 1 = , * ̃ 2 =
and * ̃ = . Denote

3 = 1 3 + 2 3 + 3 3
, the third infinitesimal symmetry,

where 1 3 = 1 3 ( , ) and 2 3 = 2 3 ( , ) since 3 is a symmetry of  = span

. We now separate the case of elliptic, hyperbolic, and parabolic systems.

(i) Assume that ≅ and, since diffeomorphisms do not change the commutation relations, we have 1 , 3 = -2 and 2 , 3 = 1 . Hence,

3 = ( + ) + (-+ ) + 3 3 ( ) ,
where , are real constants. To simplify our computations, we replace 3 by 3 -1 -2 ∈ , which does not change the commutativity relations, so we can get rid of both constants. Now consider the vector field = 1 + 2 + 3 , then by the fact that 1 and 2 are symmetries of Σ we get that 1 = 1 ( ) and 2 = 2 ( ). Using the symmetry

3 = - + 3 3 ( ) , calculate 3 , = 3 3 1 -2 + 3 3 2 + 1 mod ,
which implies the following system of ODEs, where the derivatives are taken with respect to :

( ) ∶ 3 3 ( 1 ) ′ -2 = 0 3 3 ( 2 ) ′ + 1 = 0 .
By multiplying the first equation of ( ) by 1 and the second by 2 and adding them, we obtain the following relation 3 3 ( 1 ) 2 + ( 2 ) 2 ′ = 0. From ( ), it is clear that 3 3 ≢ 0 otherwise we would have 1 ≡ 2 ≡ 0 and the Lie algebra of symmetries would be much larger that . Observe that the points , where 3 3 ( ) = 0, satisfy also 1 ( ) = 2 ( ) = 0. We will show that we always have ( 1 ) 2 + ( 2 ) 2 ′ = 0. If 3 3 (0) ≠ 0, then it is clear that the conclusion holds, if 3 3 (0) = 0 but in an open neighbourhood around 0 there are no other points where 3 3 vanishes, then it is also clear that the conclusion holds. Finally if 3 3 (0) = 0 and in any open neighbourhood of zero there are other zeros of 3 3 , then consider the open segment ] 1 , 2 [ between two consecutives zeros. For all ∈] 1 , 2 [ we have ( 1 ) 2 + ( 2 ) 2 ′ = 0 thus ( 1 ) 2 + ( 2 ) 2 = ( ∈ ℝ) but since for = 1 and = 2 we have 1 ( ) = 2 ( ) = 0, for = 1, 2, therefore, by continuity, = 0. But then, we have ( 1 ) 2 + ( 2 ) 2 = 0 implying 1 = 2 = 0 on [ 1 , 2 ] and repeating this process for all consecutive roots around 0 implies that 1 = 2 = 0 around 0 but then the Lie algebra of infinitesimal symmetries would be of infinite dimension and this situation is excluded. Finally, we have ( 1 ) 2 + ( 2 ) 2 ′ = 0 around zero, implying ( 1 ) 2 + ( 2 ) 2 = , > 0. Therefore 1 = √ cos( ) and 2 = √ sin( ) and, by normalising the coordinates and , we obtain the form Σ .

(ii) The proof is essentially the same so we omit some details. Using the multiplication table 1 , 3 = 2 and 2 , 3 = 1 , we obtain which, used as a symmetry of , yields the system

( ) ∶ 3 3 ( 1 ) ′ -2 = 0 3 3 ( 2 ) ′ -1 = 0 .
We derive the relation 3 3 ( 1 ) 2 -( 2) 2 ′ = 0 and by a similar reasoning we get ( 1 ) 2 -( 2) 2 ′ = 0 around 0. Thus, ( 1 ) 2 -( 2 ) 2 = with ∈ ℝ, but necessarily ≠ 0 because the Lie algebra of infinitesimal symmetries of Σ with 1 = ± 2 is of infinite dimension. Finally, we have 1 = √ | | cosh( ) and 2 = √ | | sinh( ) and using a coordinate normalisation we get 1 = cosh( ) and 2 = sinh( ).

(iii) Using the multiplication table of

given by 1 , 3 = 2 1 and 2 , 3 = 2 , which has not been changed by applying diffeomorphisms, we obtain

3 = 2 + + 3 ( ) ,
which is a symmetry of and thus yields the system

( ) ∶ 3 3 ( 1 ) ′ -2 1 = 0 3 3 ( 2 ) ′ -2 = 0
, recall that 1 = 1 ( ) and 2 = 2 ( ). We will now distinguish two cases, namely we separate between existence or not of an equilibrium at 0 = 0.

(a) Assume that (0) ∉ (0), that is ( 1 , 2 )(0) ≠ (0, 0) and thus by ( ) we have (( 1 ) ′ , ( 2 ) ′ )(0) ≠ (0, 0). Assume 2 (0) ≠ 0, thus 2 ( ) = + ℎ( ), where = 2 (0) and ℎ(0) = 0. Replacing by ∕ we may assume that 2 ( ) = 1+ℎ( ), where ℎ ′ (0) ≠ 0, if not the second equation of (

) is not satisfied at 0 ∈ ℝ. Set ̂ = ℎ( ) and denote the transformed vector fields ̂ and ̂ 3 , for which ( ) implies ̂ 3 3 = 1 + ̂ and

̂ 1 ′ (1 + ̂ ) = 2 ̂ 1 . Solving this equation gives ̂ 1 ( ̂ ) = (1 + ̂ ) 2
with ∈ ℝ. But can not be 0, otherwise the Lie algebra of infinitesimal symmetries would be of infinite dimension, thus not isomorphic to . Finally, introducing ̂ = ∕ we obtain Σ 1 . If 2 (0) = 0, then 1 (0) ≠ 0 implying that ( 1 ) ′ (0) ≠ 0 and leading to the normalisation

̂ 1 ( ̂ ) = 1+ ̂ giving ̂ 3 3 = 2(1+ ̂ ) and ̂ 2 = (1+ ̂ ) 1∕2 . This forms is equivalent to Σ 1 by the local diffeomorphism = (1 + ̂ ) 1∕2 -1, sending 0 into 0. (b) Assume (0) ∈ (0) and ∧ ad (0) ≠ 0. If
( 2 ) ′ (0) ≠ 0, take ( ̂ , ̂ , ̂ ) = ( , , 2 ( )) as a local diffeomorphism around 0 ∈ ℝ 3 that maps 1 , 2 and 3 3 into ̂ 1 , ̂ 2 and ̂ 3 3 , respectively. We have ̂ 2 = ̂ , so the system ( ) implies ̂ 3 3 = ̂ and

̂ ̂ 1 ′ = 2 ̂ 1 .
Solving this equation gives ̂ 1 ( ̂ ) = ( ̂ ) 2 with ∈ ℝ. But can not be 0, otherwise the Lie algebra of infinitesimal symmetries would be of infinite dimension. Finally, introducing ̂ = ∕ we obtain Σ 0 . If ( 2 ) ′ (0) = 0, then ( 1 ) ′ (0) ≠ 0 and by applying the local diffeomorphism ( ̂ , ̂ , ̂ ) = ( , , 1 ( )) we get

̂ 1 = ̂ yielding ̂ 3 3 ( ̂ ) = 2 ̂ and 2 ̂ ( ̂ 2 ) ′ = ̂ 2 . Hence, | ̂ 2 | = | ̂ | 1∕2
and the only smooth solution, around ̂ = 0, is given by = 0 but then the Lie algebra of infinitesimal symmetries would be of infinite dimension contradicting our assumption.

All systems Σ that are locally feedback equivalent to either Σ or Σ are completely characterised by their symmetry algebras being isomorphic to or , respectively. This is not the case for Σ . Namely, there are systems that have as the symmetry algebra although they are not locally feedback equivalent to Σ . Proposition 3. Let Σ ∶ ̇ = ( ) + ( ) be a controlaffine system on a smooth 3-dimensional manifold  with a scalar control, and let be its Lie algebra of infinitesimal symmetries. Assume ( 0 ) ∈ ( 0 ) and, additionally, that there exists ≥ 1, the smallest integer such that ∧ ad ( 0 ) ≠ 0. Then,

≅ and ( 0 ) ⊕ ( 0 ) = 0  if and only if Σ is feedback equivalent to Σ 0, ∶ ⎧ ⎪ ⎨ ⎪ ⎩ ̇ = 2 ̇ = ̇ = around ( 0 , 0 , 0) ∈ ℝ 3 .
Moreover, it is a classical fact that (under the above assumptions) the integer is an invariant of feedback transformations, hence if ≠ ′ , ten Σ 0, and Σ 0, ′ are not locally feedback equivalent around 0 = 0. To be consistent with the notation of the above proposition, the previously considered normal form Σ 0 should actually be denoted Σ 0,1 .

Proof. We prove the necessity only, as there are no difficulties to show (repeating the arguments of Lemma 1) that the Lie algebra of infinitesimal symmetries of Σ 0, is isomorphic to . We adapt the point (iii)-(b) of the proof of Theorem 1. Assume that (0) ∈ (0) and that ≥ 1 is the smallest integer such that ∧ ad (0) ≠ 0, that is d d ( 1 , 2 )(0) ≠ (0, 0). If ( 2 ) ( ) (0) ≠ 0, then by the Taylor expansion we can write 2 ( ) = ( ), where (0) ≠ 0. We can suppose (0) > 0, if not, replace by -, and we apply around 0 ∈ ℝ 3 the local diffeomorphism ( ̂ , ̂ , ̂ ) = ( , , ( ( )) 1∕ ) that maps 1 , 2 and 3 3 into ̂ 1 , ̂ 2 and ̂ 3 3 , respectively. We have ̂ 2 = ̂ , so the system ( ) implies ̂ 3 3 = ̂ ∕ and

̂ ̂ 1 ′ = 2 ̂ 1 .
Solving this singular equation gives ̂ 1 ( ̂ ) = ̂ 2 with ∈ ℝ. However, the solution passing through ̂ = 0 is not unique so à priori we may have different values of for ̂ < 0 and ̂ > 0 but the only ∞ solutions are those given by the same value of (either = 0 or ≠ 0) for any ̂ . But can not be 0, otherwise the Lie algebra of infinitesimal symmetries would be of infinite dimension. Finally, introducing ̂ = ∕ we obtain the desired form Σ 0, .

If ( 1 ) ( ) (0) ≠ 0, then normalizing ̂ 1 = ̂ and applying an analogous procedure we deduce that ̂

2 ( ̂ ) = | ̂ | ∕2 . If
= 0 then the Lie algebra of infinitesimal symmetries would be of infinite dimension contradicting our assumptions. In all other cases of and the solution is not smooth around ̂ = 0 except for = 2 and the same value of for ̂ < 0 and ̂ > 0. But in the latter case we have ( 2 ) ( ) (0) ≠ 0, with < , that contradicts the definition of .

Remark 2. Statement ( ) of Theorem 1 and Proposition 3 describe all systems having as the symmetry algebra for which exists (in particular, all analytic systems). In the ∞ category there are, however, systems for which does not exist and the symmetry algebra is . For example, consider

⎧ ⎪ ⎨ ⎪ ⎩ ̇ = ( ) 2 ̇ = ( ) ̇ =
, with ( ) = exp -1∕ 2 and (0) = 0. By a straightforward calculation, its symmetry algebra is, indeed, but, obviously, does not exist at ( 0 , 0 , 0).

The fact that the case of existence of an equilibrium, i.e.

( 0 ) ∈ ( 0 ), exhibits a richer collection of normal forms can be explained as follows. In that case, the fields of admissible velocities  = +  becomes at 0 a linear (and not an affine) subspace ( 0 ) = ( 0 ) of 0  and the symmetries are less constrained by that structure. Conversely, any given symmetry imposes a bit less rigidity on if ( 0 ) = ( 0 ).

In [START_REF] Respondek | Nonlinearizable single-input control systems do not admit stationary symmetries[END_REF] it is proved that any control-affine single-input system, with controllable linear approximation around an equilibrium, has at most two symmetries: the identity and, in an exceptional "odd" case, a symmetry conjugated to minus identity. All systems studied in the present paper have a nontrivial 3-dimensional Lie algebra of symmetries but are in a perfect accordance with the result of [START_REF] Respondek | Nonlinearizable single-input control systems do not admit stationary symmetries[END_REF]. Namely, the systems Σ , Σ , and Σ 1 do not have equilibria while Σ 0 and Σ 0, are considered around an equilibrium but their linear approximations are not controllable.

Conclusions

In this paper, we propose a characterisation of nullforms of conic systems Σ via their Lie algebra of infinitesimal symmetries. We showed that this class of controlaffine systems is completely determined by its Lie algebra of symmetries (under some regularity assumptions do the parabolic systems Σ ). There are few results of that kind for control-affine systems existing in the literature, with a notable exception of [START_REF] Doubrov | Geometry of rank 2 distributions with nonzero Wilczynski invariants[END_REF], and more for the control-linear case, see [START_REF] Anderson | Rank 2 distributions of Monge equations: Symmetries, equivalences, extensions[END_REF]; [START_REF] Doubrov | On the models of submaximal symmetric rank 2 distributions in 5D[END_REF]; [START_REF] Kruglikov | Lie theorem via rank 2 distributions (integration of PDE of class = 1)[END_REF]. In view of all those results, it would be very interesting to study the following generalisation.

Problem. Let be a finite-dimensional Lie algebra of vector fields acting transitively on a manifold . Does uniquely determine a class of control-affine systems (around a generic point) whose Lie algebra of infinitesimal symmetries is ?

We believe that considering control-affine systems instead of control-linear systems in that problem matters. A reason is that the existence of the drift gives more rigidity on the symmetries and therefore would constraint the structure of systems possessing those symmetries. To start investigating this problem, we could begin with the study of all 2-and 3-dimensional Lie algebras (which are well known) and to characterise the control-affine systems that admit those Lie algebras as symmetries. In the thesis of the first author [START_REF] Schmoderer | Study of Control Systems under Quadratic Nonholonomic Constraints[END_REF], Theorem 1 is generalised to the class of paraboloid control-affine systems, that is control-affine system (with ≥ 1 controls and the state space being a (2 + 1)-dimensional manifold) whose field of admissible velocities is a paraboloid hypersurface of the tangent bundle.
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