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Inferring relationships among the elements in multivariate observational time-series data is challenging. Representing the interactions as graphs with edges and nodes can describe such relations. While the number of nodal observations in resting-state functional Magnetic Resonance Imaging (rs-fMRI) can rise up to millions of points, such as representing each voxel in a neuroimaging study, the number of temporal observations may remain scarce, leading to ill-posed problems in large-scale data. Here, we recently proposed a novel method for network connectivity analysis, large-scale Nonlinear Granger Causality (lsNGC), which combines the principle of Granger causality and nonlinear dimensionality reduction using Gaussian kernels leading to radial basis function neural networks for time-series prediction. In this study, we apply lsNGC on synthetic rs-fMRI data with known ground truth and compare its performance to competing state-of-the-art methods. We find that the proposed lsNGC method significantly outperforms the existing methods in accuracy, as measured by the Area Under the Receiver Operating Characteristic (AUROC, 0.867 ± 0.028), with p < 10 -9 as compared to competing methods, thus quantitatively affirming the merits of lsNGC for the analysis of large-scale brain networks in neuroimaging studies.

INTRODUCTION

A powerful technique for extracting connectivity from time-series data is Granger Causality (GC) [START_REF] Granger | Some recent development in a concept of causality[END_REF]. GC has been widely applied to functional MRI data analysis, e.g. [START_REF] Basu | Network Granger causality with inherent grouping structure[END_REF]. A large-scale linear GC approach based on invertible dimension reduction has been proposed by our group previously, e.g. [START_REF] Dsouza | Exploring connectivity with large-scale Granger causality on resting-state functional MRI[END_REF]. Although such studies have successfully demonstrated and extended the applicability of linear GC approaches in functional MRI (fMRI) analysis, the likely nonlinear physiological basis of the transmitted signals and associated hemodynamic processes, (e.g. [START_REF] Johnston | Nonlinear estimation of the BOLD signal[END_REF]) motivates nonlinear extensions of GC to better capture the underlying properties of the observed nonlinear dynamic systems. Various nonlinear extensions of GC proposed in the recent literature include Local Linear Nonlinear Autoregressive (LLNAR) models [START_REF] Freiwald | Testing non-linearity and directedness of interactions between neural groups in the macaque inferotemporal cortex[END_REF], extensions of autoregressive models (e.g. [START_REF] Li | A nonlinear identification method to study effective connectivity in functional MRI[END_REF]), such as polynomial autoregression [START_REF] Bezruchko | Modeling nonlinear oscillatory systems and diagnostics of coupling between them using chaotic time series analysis: applications in neurophysiology[END_REF], as well as kernel-based nonlinear GC approaches [START_REF] Liao | Kernel Granger causality mapping effective connectivity on fMRI data[END_REF]. However, besides computational expense, the extendibility to multivariate analysis of high-dimensional dynamic systems based on a low number of temporal observations, i.e. short time-series, as typically acquired in fMRI, involves specific challenges regarding parameter optimization of sophisticated nonlinear time-series models on limited data. We have recently introduced large-scale Nonlinear Granger Causality (lsNGC) [START_REF] Wismüller | Large-scale nonlinear Granger causality: A data-driven, multivariate approach to recovering directed networks from short time-series data[END_REF] for effective network connectivity analysis, which circumvents limitations of current nonlinear methods by simultaneously enabling time-series separability, computational efficiency, and extendibility to multivariate analysis of short time-series. By introducing a dimension reduction step as a key component into a structured machine learning scenario, lsNGC aims at directed, nonlinear, multivariate time-series causality analysis in large complex networks which is expected to accomplish whole-brain resting-state functional MRI analysis on a high spatial resolution scale. In this paper, we investigate the performance of lsNGC at inferring network connectivity in resting-state fMRI (rs-fMRI) data.

This work is embedded in our group's endeavor to expedite artificial intelligence in biomedical imaging by means of advanced pattern recognition and machine learning methods for computational radiology and radiomics, e.g., .

ALGORITHM

We introduce the large-scale Non-Linear Granger Causality (lsNGC) algorithm, which is explained in the following: After decomposing a multidimensional time-series system into two components, namely a single "conditional source" time-series and a remaining "incomplete" system, further non-linear processing steps of both components remain strictly separated, until the processed information of both components is subsequently combined in a linear way for computing Granger causality indices. -In detail, we propose the following: Let S ∈ R N ×T be the complete multidimensional time-series system to be analyzed, where N is the number of time-series of length T . Subsequently, proceed as follows: Select a "target" time-series X from S and a "conditional source" time-series Y from S, for which the presence of a directed Granger-causal influence of Y on X shall be investigated. Note that such influence shall be examined in a strictly multivariate sense, i.e., in the presence of all other time-series in S.

Eliminate time-series Y from the multidimensional time-series system S, which yields the "incomplete" system

S \ Y of dimension (N -1) × T .
Perform dimension reduction D on the incomplete system S \ Y , which yields the dimension-reduced incomplete system V = D(S \ Y ) of dimension d × T . Note that d may be chosen d < T .

Compute predictions of future values x of time-series X from the information provided by the dimension-reduced incomplete system V, both with and without consideration of information provided by the conditional source time-series Y . To this end:

• Extract lagged coordinate sliding windows v of V and y of Y , where matrices v are of dimension d × m and vectors y of dimension 1 × m, with m being the model order, i.e., the temporal length of the sliding windows.

• Perform non-linear (e.g. radial basis functions) kernel transformations Φ(v) and Ψ(y) on the lagged coordinate sliding windows v of V and y of Y .

• Compute the estimates x = g(Φ(v), Ψ(y)) and x = h(Φ(v)), i.e., both with and without consideration of information provided by the conditional source time-series Y , where functions g and h are linear combinations x = s v Φ(v) + s y Ψ(y) and x = r v Φ(v), with real vectors s v , s y and r v matching the dimensions of Φ and Ψ and components of s v , s y and r v being determined by least squares regression techniques.

• Compare the estimated variances ε vy and ε v of the residuals, which can be used to compute Granger causality indices. If ε vy < ε v holds, Y is said to have a causal influence on X (in a multivariate sense). Specific aspects of the method, including time-series separability, interpretability, dimension reduction, and computational efficiency can be found in [START_REF] Wismüller | Large-scale nonlinear Granger causality: A data-driven, multivariate approach to recovering directed networks from short time-series data[END_REF].

SIMULATION ON SYNTHETIC FMRI DATASET

Quantitative evaluation of lsNGC and competing algorithms was performed on semi-realistic data of rs-fMRI brain recordings [START_REF] Smith | Network modelling methods for fmri[END_REF][START_REF] Löwe | Amortized causal discovery: Learning to infer causal graphs from time-series data[END_REF], in which noise and the hemodynamic response were included in the data generation process. These data were adopted from Netsim [START_REF] Smith | Network modelling methods for fmri[END_REF], and the network 'sim3' with N = 15 was used in our simulations. The hemodynamic responses were generated to model the time-delayed interactions among different

Synthetic fMRI network

Figure 1. Netsim network 'sim3' adopted from [START_REF] Smith | Network modelling methods for fmri[END_REF] is shown in this figure. The network simulations model hemodynamic response and noise, which resembles real-world resting-state fMRI data, with signal-to-noise ratio of 20 dB. The network has 15 nodes, and 50 different realizations of the network were used in our evaluations. Table 1. Simulation time and performance on Netsim dataset [START_REF] Smith | Network modelling methods for fmri[END_REF] in identical conditions, except TE and MI, which were performed on Nvidia GeForce 1080-Ti GPU, with the rest based on CPU operations. All simulations were performed in Python 3.8.

AUROC MI

0.728 ± 0.010 TE 0.727 ± 0.006 GC 0.762 ± 0.038 lsNGC 0.867 + 0.028 brain regions, and, as a result, a smooth signal was generated that resembles recorded fMRI brain signals with an inherent signal-to-noise ratio (SNR) of 20 dB. The advantage of the simulated fMRI is that the ground truth (GT) for network connectivity is known, which is not available for real fMRI datasets. The graph is shown in Fig. 1. Hence, the test results can be used to quantitatively compare different algorithms in the presence of noise hemodynamic response condition, which is not possible for real-world datasets. In line with the literature, we use the Area Under the Receiver Operating Characteristic (AUROC) as a comparison metric. Here, the task is to infer the underlying connectivity between 15 brain regions across 50 network simulation instances. Results are shown in Fig. 2 and Table . 1. In Fig. 2, the AUROC of the proposed lsNGC algorithm significantly outperforms the competing methods, affirming its ability at accurately detecting the underlying directed network connectivity structure in simulated fMRI signals under conditions of noise and smoothing based on hemodynamic response, resembling the real-world situation. Diagnostic accuracy results are listed in Table . 1.

CONCLUSIONS

This paper investigates the performance of large-scale nonlinear Granger causality (lsNGC) at discovering nonlinear relations in large-scale systems comprising short-length time-series observational data. The applications are broad, from neuroscience to climatology and finance, though we use it for learning meaningful representations from the synthetic rs-fMRI data. By using radial basis function neural networks to solve the curse of dimen- sionality in large-scale systems with nonlinear dimensionality reduction, our results outperform the competing methods, namely MI, TE, and GC. Our results suggest superior performance at network connectivity analysis in high-dimensional systems with a limited number of temporal observations. We conclude that lsNGC may provide valuable contributions to the clinical diagnosis of neurological and psychiatric disease by inferring causal connectivity in large-scale brain networks.

Figure 2 .

 2 Figure2. Performance of various algorithms, namely mutual information (MI)[START_REF] Kraskov | Estimating mutual information[END_REF], transfer entropy (TE)[START_REF] Schreiber | Measuring information transfer[END_REF], multivariate Granger causality (GC)[START_REF] Granger | Some recent development in a concept of causality[END_REF], and our proposed method (lsNGC,[START_REF] Wismüller | Large-scale nonlinear Granger causality: A data-driven, multivariate approach to recovering directed networks from short time-series data[END_REF]) on the Netsim dataset[START_REF] Smith | Network modelling methods for fmri[END_REF]. Areas under the Receiver Operating Characteristics (AUROC) are shown in the figure, where each column represents a different algorithm (see titles). Boxplots represent [Q1, Q3]=[0.25, 0.75] quartiles and median, and the cap lines represent [minimum, maximum]=[Q1-1.5×(Q3-Q1), Q3+1.5×(Q3-Q1)]. As can be seen, the proposed algorithm (lsNGC) significantly outperforms other methods from the literature, suggesting robustness of the method against noise and hemodynamic response effects encountered in fMRI data. Wilcoxon test p-values of the proposed lsNGC method as compared to MI, TE, and GC are all < 10 -9 .
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