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ABSTRACT

We undertake the first comprehensive and quantitative real-space analysis of the cosmological information content in the environments
of the cosmic web (voids, filaments, walls, and nodes) up to non-linear scales, k = 0.5 h Mpc−1. Relying on the large set of N-body
simulations from the Quijote suite, the environments are defined through the eigenvalues of the tidal tensor and the Fisher formalism is
used to assess the constraining power of the spectra derived in each of the four environments and their combination. Our results show
that there is more information available in the environment-dependent power spectra – both individually and when combined – than
in the matter power spectrum. By breaking some key degeneracies between parameters of the cosmological model such as Mν–σ8 or
Ωm–σ8, the power spectra computed in identified environments improve the constraints on cosmological parameters by factors of ∼15
for the summed neutrino mass Mν and ∼8 for the matter density Ωm over those derived from the matter power spectrum. We show that
these tighter constraints are obtained for a wide range of the maximum scale, from kmax = 0.1 h Mpc−1 to highly non-linear regimes
with kmax = 0.5 h Mpc−1. We also report an eight times higher value of the signal-to-noise ratio for the combination of environment-
dependent power spectra than for the matter spectrum. Importantly, we show that all the results presented here are robust to variations
of the parameters defining the environments, suggesting a robustness to the definition we chose to extract them.

Key words. cosmology: theory – large-scale structure of Universe – cosmological parameters

1. Introduction

One of the successes of modern cosmology is the observation
of the matter distribution at megaparsec scales, for which both
data and simulations are available. This impressive pattern, com-
monly referred to as the cosmic web (Klypin & Shandarin 1983;
Bond et al. 1996), was first observed in galaxy surveys like the
Center for Astrophysics Redshift Survey (de Lapparent et al.
1987) and was recently traced more precisely by other redshift
surveys like the Sloan Digital Sky Survey (SDSS, York et al.
2000) or the Two-Micro All Sky Survey (2MASS, Skrutskie
et al. 2006). In this multi-scale pattern, isolated clumps of mat-
ter residing in empty under-dense parts of the Universe are flow-
ing into flattened planar-like regions and are then funnelled into
tubular elongated structures to finally end their journey by feed-
ing large and massive anchors. The formation of these cosmic
structures, called voids, walls, filaments, and nodes, respectively,
was predicted by pioneering analytical models in the seven-
ties (Zel’dovich 1970; Doroshkevich & Shandarin 1978), which
linked the gravitational collapse of the primordial density fluc-
tuations, assumed and observed to be Gaussian distributed, to
the formation of anisotropic structures. This non-linear gravita-
tional evolution yields a non-Gaussian distribution of the matter
at late time with strong mode couplings in which the information
is spread over higher order correlations. It is well established
that the way matter evolves and clusters through time and under
the effect of gravity is highly impacted by the initial density
perturbations and by the underlying cosmological model
described by the values of the cosmological parameters.

Despite the non-Gaussian nature of the matter distribution
at low redshifts, basic summary statistics like the one-point
probability distribution function and the two-point correlation
function, or the Fourier-equivalent power spectrum, constitute
a wealthy source of information about the cosmological model
that can be used in practice through the sparse and biased obser-
vation of tracers such as galaxies to constrain cosmological
parameters (e.g., Cole et al. 2005; Tinker et al. 2012; Alam et al.
2017; Gruen et al. 2016, 2018; Gil-Marín et al. 2017; Uhlemann
et al. 2020).

Numerous works also show that the first higher order term,
namely the bispectrum, carries non-negligible information able
to improve the constraints (Sefusatti et al. 2006; Yankelevich &
Porciani 2019; Hahn et al. 2020; Hahn & Villaescusa-Navarro
2021; Agarwal et al. 2021; Gualdi et al. 2021). However, because
of the difficulties of directly measuring and computing higher
order statistics (see e.g., Schmittfull et al. 2013; Philcox 2021),
alternative methods were proposed to account only partially, or
indirectly, for higher order terms. Example of these methods are
the minimum spanning tree analysis from Naidoo et al. (2020,
2022) and ‘marked statistics’ (Stoyan 1984). The latter enables
the computation of a weighed version of the two-point informa-
tion in which a mark is assigned to each tracer, for example a
galaxy, halo, or particle, based for instance on the local lumi-
nosity (Beisbart & Kerscher 2000; Sheth et al. 2005) or density
(White 2016). More recently, the wavelet scattering transform
(Mallat 2012) also introduced a non-linear transformation of the
input density field to extract further information by cascading
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convolutions with directional wavelet filters and was success-
fully applied to cosmological simulations (see e.g., Allys et al.
2019, 2020; Cheng et al. 2020; Cheng & Ménard 2021). These
last two approaches were shown to improve the constraints over
the real-space matter power spectrum by Massara et al. (2021)
and Valogiannis & Dvorkin (2021), respectively. Other works
make use of direct additional observables to the density field,
such as the velocity, to improve the constraints on cosmological
models and parameters (e.g., Mueller et al. 2015; Kuruvilla &
Aghanim 2021; Kuruvilla 2022).

While substantial efforts are being made to link the prop-
erties of cosmic web elements (mainly clusters and filaments)
to the formation and evolution of matter tracers like galaxies
(see e.g., Alpaslan et al. 2014; Malavasi et al. 2017, 2022; Codis
et al. 2018; Bonjean et al. 2018, 2020), little is currently known
about the information these environments carry about the under-
lying cosmological model. Strong focus has been placed on
the use of the densest and therefore most easily identified ele-
ments of the cosmic web, namely nodes. The hierarchical struc-
ture formation makes them particularly interesting for probing
not only the matter and dark energy contents of the Universe
(e.g., Bahcall et al. 1997; Bahcall & Fan 1998; Holder et al.
2001; Salvati et al. 2018; Marulli et al. 2018) but also the
amplitude of the initial density fluctuations (for a review, see
Allen et al. 2011). The clustering properties of the other extreme
environment represented by voids also drew the attention of
cosmologists, who used these to probe the accelerated expan-
sion of the Universe and the summed neutrino mass (Lee &
Park 2009; Lavaux & Wandelt 2012; Pisani et al. 2015). The
extent of void clustering as well as their size, shape, number,
bias, and corresponding evolution with redshift are therefore key
quantities probing the underlying cosmological model (van de
Weygaert & Platen 2011; Hamaus et al. 2014, 2015; Massara
et al. 2015; Schuster et al. 2019; Kreisch et al. 2019). The con-
straints brought by these two extreme environments, that is voids
and nodes, are for example combined in Bayer et al. (2021) and
Kreisch et al. (2021), who show that the information provided by
the halo mass function and the void size function leads to con-
siderable improvement of the matter power spectrum constraints
in real space.

However, cosmic web complexity and its full pattern go
beyond the picture provided by the properties of voids and
nodes. We can expect that, when splitting the matter into the
various environments, a simple two-point statistical analysis
would deliver different information, which when combined may
break degeneracies and improve the constraints on cosmologi-
cal parameters. These expectations are in line with the recent
findings of Paillas et al. (2021) in which the two-point corre-
lation function computed from galaxies in several density bins
improves the cosmological constraints in redshift space. In the
present paper, we present a first thorough analysis of the cos-
mological information of the matter distribution in the several
cosmic web environments identified by means of the eigenval-
ues of the tidal tensor and through the power spectrum statistic
in the derived density fields. From the intrinsic differences in
densities, tidal force, and anisotropies exhibited by these envi-
ronments, we explore their distinct sensitivities to the variations
of cosmological parameters. After introducing the N-body sim-
ulations used in our analysis in Sect. 2, we present our method-
ological approach in Sect. 3, presenting and assessing the envi-
ronments definition and defining the power spectrum estimator.
In Sect. 4, we then present the Fisher formalism and report the
constraints obtained on the six studied cosmological parameters
using the power spectrum derived from each environment indi-

vidually and from their combination. In Sect. 5, we discuss the
obtained results and compare them with other recent findings.
After drawing some conclusions from this work and offering
future and perspectives in Sect. 6, we present a study of the con-
vergence and assumptions of the analysis in the Appendices.

2. The Quijote simulations

Quijote (Villaescusa-Navarro et al. 2020) is a publicly available1

large suite of N-body simulations. With 44 100 simulations
spanning more than a thousand cosmological models, each
with multiple realisations, it is an ideal dataset with which to
perform statistical cosmological analyses as it allows us to build
accurate covariance matrices and compute derivatives for any
cosmological representation. Each simulation consists of a set of
5123 particles (and 5123 neutrinos in massive neutrinos cases)
that are evolved forward in time from z = 127 to z = 0 using a
tree-PM Gadget-3 code (Springel 2005) in a box of L = 1 Gpc h−1

in size initialised with the second-order Lagrangian perturba-
tion theory for massless neutrino simulations and with the
Zel’dovich approximation for massive neutrino simulations. The
fiducial cosmology is a flat ΛCDM cosmology with parameters
consistent with Planck Collaboration VI (2020): Ωm = 0.3175,
Ωb = 0.049, h = 0.6711, ns = 0.9624, and σ8 = 0.834. With
these parameters, and assuming zero mass for neutrinos
(Mν = 0), 15 000 random realisations are computed. The
Quijote suite then provides 500 realisations by varying each
parameter individually, fixing the others at their fiducial values.
The step sizes are: dΩm = 0.010, dΩb = 0.002, dh = 0.020,
dns = 0.020, and dσ8 = 0.015. Additionally, 500 realisations
using several sums of neutrino mass are also computed, with
Mν =

∑
mν = {0.1, 0.2, 0.4} eV, which we refer to as M+

ν ,M
++
ν ,

and M+++
ν cosmologies, respectively. Because massive neutrino

simulations are initialised with the Zel’dovich approximation,
we also use, for consistency, a massless neutrino simulation
initialised this way for the computation of derivatives with
respect to Mν.

3. Cosmic web environments: segmentation and
statistics

3.1. Cosmic web segmentation

Over the past decades, several methods have been proposed to
identify cosmic structures in either simulations or observations.
Some algorithms directly rely on the density field as an input
and base their definition on the curvature of the density or the
gravitational field (such as Hahn et al. 2007; Forero-Romero
et al. 2009; Aragon-Calvo et al. 2010a; Cautun et al. 2013)
or on its topological description (Aragón-Calvo et al. 2010b;
Sousbie 2011). Other algorithms rely on more observable inputs,
such as the sparse distribution of galaxies (or halos in simula-
tions), to identify structures such as filaments through geometrical
principles (Stoica et al. 2007; Chen et al. 2015; Tempel et al. 2016)
or based on graph theory (such as Barrow et al. 1985; Alpaslan
et al. 2014; Bonnaire et al. 2020, 2021; Pereyra et al. 2020). In
the present theoretical work, we aim to study all the cosmic web
environments (voids, walls, filaments, and nodes) based on the
dark matter particles of the Quijote simulations. To achieve that,
we choose a web finder that defines environments in a physical
way based on the local level of tidal anisotropy using prescrip-
tions originating from the linear growth of perturbations in the
1 https://quijote-simulations.readthedocs.io/en/
latest/
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Zel’dovich approximation (Zel’dovich 1970). Following the for-
malism introduced in Hahn et al. (2007), and later extended by
Forero-Romero et al. (2009), we identify the environments in
the simulations through the tidal tensor T, hereafter referred to
as T-web formalism. From the discrete set of particle positions,
we first rely on a B-spline interpolation scheme (Hockney &
Eastwood 1981; Sefusatti et al. 2016) to estimate the density
field ρ(x) on an N3

g regular grid. For our purposes, we adopt an
interpolation of order four, namely the piecewise-cubic spline
(PCS) scheme, in which the mass of a particle is spread over the
43 = 64 closest cells. By noting d = Ng‖x− xp‖2/L with x being
the centre of a grid cell, xp the particle position, and L the size
of the box length (assuming a cubic box), PCS weights are given
by

(4 − 6d2 + 3d3)/6 if d ∈ [0, 1[ ,
(2 − d)3/6 if d ∈ [1, 2[ ,
0 otherwise.

(1)

This choice of interpolation order is a good trade-off between the
accuracy of the reconstructed field and its computational time.

From the density field ρ, we derive the gravitational potential
Φ by solving the Poisson equation

∆Φ(x) = 4πGρ(x), (2)

where ∆ is the Laplacian operator and G is the gravitational
constant. It is convenient to write this equation in terms of the
reduced gravitational potential Φr(x) = Φ(x)/4πGρ̄, with ρ̄
being the averaged density, so that Eq. (2) satisfies ∆Φr(x) =
δ(x), with δ(x) = ρ(x)/ρ̄−1 the overdensity. Solving this reduced
version of the Poisson equation in Fourier space using a discrete
approximation of the Laplacian operator (in our case, a seven-
point approximation) holds an estimate of Φ(x) on the grid. From
the gravitational potential, we obtain the tidal tensor in each grid
cell x as

Ti, j(x) =
∂2Φ(x)
∂xi∂x j

, (3)

leading to the field of eigenvalues λ1(x) ≤ λ2(x) ≤ λ3(x).
The cosmic environment associated with a grid cell x is finally
obtained depending on the number of eigenvalues below a given
threshold λth, as defined in Table 1.

We then use the segmentation of the density field obtained
at the cell level to build individual overdensity fields for each
environment. To do so, we simply propagate the classes at the
particle level by assigning the same environment signature to
all hosted particles in a given cell. Even though more sophisti-
cated schemes have been proposed (see e.g., Wang et al. 2020),
we expect this approach to be sufficiently robust for the parti-
cles at hand, but other methods could be of use when applying
the procedure to coarser structures like halos. Based on the PCS
interpolation scheme, we then build four corresponding overden-
sity fields {δv, δw, δf , δn} where the subscripts respectively refer
to void, wall, filament, and node environment. The matter den-
sity field δm is therefore decomposed into the four environmental
fields and fulfils the linear combination

δm = fv δv + fw δw + ff δf + fn δn, (4)

where fα denotes the mass fraction of the environment α, where
Nα/N is the number of particles in the α environment and N the
total number of particles2. In Fig. 1 we show this decomposition

2 The mass fractions are expressed here in terms of number of particles
because they all have the same mass in the N-body simulations.

0

100

0

100

0

100

Y
[M

p
c/
h
]

0

100

0.0 0.2 0.4 0.6 0.8 1.0
X [Mpc/h] ×103

0

100 0.4

0.6

0.8

1.0

1.2

1.4

lo
g

10
( 2

+
f α
δ α

)

Fig. 1. Overdensity fields computed in the different environments. From
top to bottom: set of five 2.77 Mpc h−1 depth slices showing the fields
δm, δv, δf , δw, and δn, respectively. Overdensity fields in cosmic web
environments are computed from the T-web classification of particles
and are normalised such that δm =

∑
α fαδα.

Table 1. Cosmic web classification rules in the cell x depending on the
eigenvalues λ1 ≤ λ2 ≤ λ3 of the tidal tensor.

Environment Condition

Void λ1, λ2, λ3 < λth
Wall λ1, λ2 < λth, λ3 > λth
Filament λ1 < λth, λ2, λ3 > λth
Node λ1, λ2, λ3 > λth

with the contribution of each environment to the overall matter
density field for a thin 2.77 Mpc h−1 depth slice. As expected,
nodes describe a discrete set of dense objects found at the inter-
sections of filaments and voids cover most of the surface with
large low-density areas.

3.2. Choice of the parameters

In our implementation of the T-web formalism, the potential is
smoothed with a Gaussian of standard deviation σN Mpc h−1

before the classification. The full segmentation procedure there-
fore depends on three parameters, which are: σN , the Gaus-
sian smoothing scale, Ng, the total number of grid cells, and
λth, the threshold for the eigenvalues of the tidal tensor. Both
Ng and σN are related to a smoothing effect of the fields and
can be combined in an effective smoothing scale defined as
Reff

2 =
(
L/Ng

)2
+ σN

2. The choice of Ng represents a trade-
off between the minimum scales involved in the analysis and
the resolution of the simulation containing, in the present case,
5123 particles. To be able to probe non-linear scales up to around
0.5 h Mpc−1, we find that Ng = 360 is a good choice, lead-
ing to a half-Nyquist frequency of kNyq/2 = 0.57 h Mpc−1, with
kNyq = πNg/L. In practice, we set kmax = 0.5 h Mpc−1, allow-
ing us to take into account both large and non-linear scales
without introducing bias induced by aliasing effects occurring
when k > kNyq/2. On the other hand, σN blurs out structures
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Fig. 2. Averaged mass fractions 〈 fα〉 in the different cosmic web envi-
ronments for distinct values of {λ−th, λ

fid
th , λ

+
th} = {0.2, 0.3, 0.4} of the

T-web formalism.

at scales below this value. Physically, the sizes of the struc-
tures (radii of nodes, widths of filaments and walls) spread over
a few Mpc h−1 (Cautun et al. 2014). If we want to accurately
describe the structures whilst still aiming at a target scale of
12.5 Mpc h−1 in configuration space (corresponding to a Fourier
mode of 0.5 h Mpc−1), Reff should be limited so that some vox-
els can be used to probe it. Consequently, for Reff to be below
4 Mpc h−1 and with Ng = 360, σN should be below 3 Mpc h−1.
In practice, we adopt σN = 2 Mpc h−1, leading to an effective
smoothing scale of Reff = 3.4 Mpc h−1. After assessing several
reasonable values of σN ∈ [1.5, 2.5] Mpc h−1, we find that the
volume fractions are changed by less than a percent while the
mass fractions are modified by around 3%. The chosen fidu-
cial value of the smoothing scale is also coherent with previous
usage of Gaussian smoothing for continuous fields before apply-
ing Hessian-based classification methods (e.g., Hahn et al. 2007;
Cautun et al. 2013, 2014; Martizzi et al. 2019).

However, the λth parameter has a greater effect on the classi-
fication of environments, both in terms of volume and mass frac-
tion (Forero-Romero et al. 2009). The impact of this parameter
is illustrated in Fig. 2, which shows the averaged mass fractions
〈 fα〉 for each cosmic web environment as drawn by the T-web
formalism with three values of λth: {λ−th, λ

fid
th , λ

+
th} = {0.2, 0.3, 0.4}.

The fiducial value of 0.3 corresponds roughly to the thresh-
old at which voids percolate for the cosmological volume of
L3 = 1 (Gpc/h)3 (Forero-Romero et al. 2009). Figure 2 reports
the mass fractions obtained with these three values of λth, show-
ing that an increasing number of particles is associated with
voids and less with filaments and nodes when the threshold is
increased. More quantitatively, varying λth from 0.2 to 0.4 leads
to a factor of two difference between the obtained mass fractions
in voids.

In order to derive constraints from environments that are
robust to the identification of the environments and therefore
indirectly robust to changes in the definitions of the various web-
finder methods (see e.g., Libeskind et al. 2017), we embed both
σN and λth as nuisance parameters in the analysis such that all
presented cosmological constraints are marginalised over them.

3.3. Cosmological sensitivity of the classification

Figure 3 shows the ratio between the averaged mass fractions in
each environment when a cosmological parameter varies and the
average obtained with the fiducial cosmology, 〈 fα〉/〈 f fid

α 〉. The
error bars (represented by the bars around points and crosses,
and by the grey shaded area for fiducial simulations) are the
3σ confidence intervals. Many cosmological parameters cause
sizeable changes in these proportions, and parameters related
to matter density, like σ8 and Ωm, are among those having the
greatest impact, together with ns. The most notable variations
are induced by σ8, where an increase (respectively decrease)
leads to a larger (respectively smaller) mass fraction in dense
environments (nodes and filaments). This is in agreement with
the definition of σ8 that is measuring how matter clusters at a
scale of 8 Mpc h−1. The impact of neutrino mass, even though
smaller in comparison, is significant with fraction ratios lying
outside the 3σ confidence regions when varying this parameter.
The right panel of Fig. 3 shows that, similarly to the effect of σ8,
increasing Mν makes dense environments even denser. All these
different effects observed in the mass fractions already suggest
that each cosmological parameter has a different impact on the
environments; these effects can be further refined when inspect-
ing the information contained in the power spectra.

3.4. Power spectra in cosmic web environments

The auto power spectrum Pαα(k) is defined as the covariance of
Fourier modes of the overdensity field δα, with α ∈ {v,w, f, n}
denoting voids, walls, filaments, and nodes, respectively. For an
overdensity field δα, the power spectrum is given by

Pαα(k)δ(3)
D (k1 + k2) =

1
(2π)3 〈δ̃α(k1)δ̃α(k2)〉, (5)

with k = ‖k1‖2, δ̃ referring to the Fourier transform of δ, and
δ(3)

D is the Dirac delta distribution in R3. For simulations with
Mν > 0, power spectra are computed based on the total matter
density fields containing both dark matter and neutrino particles,
δm = fCDMδCDM + fνδν, where δν is the neutrino field and δCDM
is the field of dark matter particles. The fraction fν is computed
as Ων/Ωm with Ων = Mνh−2/93.14 eV and fν + fCDM = 1.

However, the PCS smoothing scheme used to evaluate the
overdensity fields δα deforms the shape of the estimated power
spectra (Jing 2005), and we correct for this effect by first decon-
volving the fields δα through the application of the window func-
tion in Fourier space

W(k) =

∏
i

(
1 −

4
3

si +
2
5

s2
i −

4
315

s3
i

)−1

, (6)

with si = sin
(
πki/2kNyq

)
and kNyq the Nyquist frequency. Finally,

because of the discrete nature of the input, namely the dark mat-
ter particles (or the neutrinos in massive neutrino simulations),
we also subtract the shot noise contribution from power spectra
estimated with Eq. (5). Even though the number of particles is
very large and we expect the shot noise contribution to be small
at the scales of interest, auto-spectra Pαα (including also Pmm)
are subtracted by the quantity 1/n̄α where n̄α = Nα/L3. In mas-
sive neutrino simulations, the shot noise is removed from the
two weighed discrete contributions of the dark matter and the
neutrino particles. However, this latter is expected to be small
on the overall power spectra because of the f 2

ν weight which is
small in the explored values of Mν.
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Fig. 3. Ratios between mass fractions in the cosmic web environments and mass fractions obtained with fiducial cosmology for an eigenvalue
threshold of λfid

th = 0.3 when varying (left) Ωm,Ωb, h, ns and σ8 or (right) Mν. Points are centred on the average over the Nderiv = 500 realisations
for each cosmology and error bars show the ±3σ interval. The grey shaded area corresponds to the ±3σ interval of the fiducial cosmology fractions
obtained from the Nfid = 7000 realisations.

The auto-spectra are computed with a spectral bin size dk =
2kf with kf = 2πNg/L ' 0.0126 h Mpc−1. For a maximum scale
of kmax = 0.5 h Mpc−1, this yields 40 bins in Fourier space for
each environment, as well as for the matter spectra. The vari-
ous auto-spectra Pαα(k) are shown in Fig. 4 in their normalised
versions f 2

αPαα(k) in order to better visualise the contributions
of each environment to the overall matter spectrum Pmm(k). We
qualitatively observe different shapes with Pff(k), which glob-
ally resembles a shift of the matter power spectrum, which is
emphasised in the bottom panel where the ratios to Pmm(k) are
shown. However, node, void, and wall auto-spectra show dif-
ferent shape dependencies. In particular, we note that, at large
scales (k < 0.13 h Mpc−1), the dominant contribution is asso-
ciated with filaments while most of the power is contained in
nodes at smaller scales. Also, at large scales, Pvv(k) and Pww(k)
share similar amplitudes but the former quickly decreases when
k > 0.05 h Mpc−1 with respect to all other environments. These
different k-dependencies reflect the dissimilar statistical distribu-
tions of the matter in several cosmic web environments.

4. Cosmological information content of cosmic web
environments

4.1. Fisher formalism

Considering a set of model parameters θ ∈ Rd (cosmological
parameters in our case), we assume that the vector s ∈ Rn is a
statistic built from an observable (here, the binned power spectra
drawn from the overdensity fields) following a Gaussian distribu-
tion s ∼ N(s̄,Σ). Its log-likelihood can therefore be written

log p(s | θ) = −
1
2

(s − s̄)TΣ−1(s − s̄) −
1
2

log |Σ| + const., (7)

where the constant comes from the normalisation of the distri-
bution. A common way to quantify the information carried by
s on θ is to use the Fisher information matrix I(θ). From the
Fréchet-Darmois-Cramér-Rao inequality, its inverse I(θ)−1 cor-
responds to a lower bound on the variance of any unbiased esti-
mator drawn from s, which can therefore be used to assess the
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efficiency of the representation. Elements of the Fisher matrix
are defined as the variance of the derivative of the log-likelihood,
namely

[I(θ)]i, j = Eθ

(∂ log p(s | θ)
∂θi

)T (
∂ log p(s | θ)

∂θ j

) , (8)
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which can also be written in terms of the second derivative of
the log-likelihood under some smoothness constraints (which are
fulfilled in the Gaussian case),

[I(θ)]i, j = −Eθ

[
∂2 log p(s | θ)

∂θi∂θ j

]
, (9)

where Eθ is the expectation taken over the distribution p(s | θ).
This latter equation intuitively explains how the amount of infor-
mation is measured. A sharp log-likelihood around θ implies a
huge increase with small changes of the parameters, making the
statistic s very sensitive to variations dθ. On the other hand, a
weakly curved log-likelihood with a locally flat behaviour advo-
cates for a poor representative power of the statistic because
its sensitivity to changes of the parameters is low. Under the
Gaussian assumption described above and by further considering
a covariance matrix Σ independent of cosmological parameters
θ, mainly because this contribution is expected to be small and a
source of underestimation of errors (Carron 2013; Kodwani et al.
2019), the Fisher information matrix reads

[I(θ)]i, j =

(
∂s̄
∂θi

)T

Σ−1
(
∂s̄
∂θ j

)
. (10)

The non-linear operation of the inversion to compute the preci-
sion matrix Σ−1 leads to a biased estimate, although the covari-
ance can be computed using the classical unbiased estimation.
Under the previously established Gaussian assumption, the unbi-
ased estimate of the precision matrix is given by (Kaufman 1967;
Hartlap et al. 2007)

Σ−1 =
Nfid − n − 2

Nfid − 1
Σ̂
−1
, (11)

where Nfid is the number simulation at the fiducial cosmol-
ogy, n is the length of the summary statistics vector s, and
Σ̂ = (s − s̄) (s − s̄)T / (Nfid − 1) is the unbiased estimate of the
covariance matrix.

In our study, the partial derivatives of the summary statis-
tics with respect to parameters of the model can be computed
numerically using the variations of cosmologies provided by the
Quijote suite of simulations. Considering the set of cosmological
parameters studied here, {Ωm,Ωb, h, ns, σ8}, we can estimate

∂s̄
∂θi
'

s̄(θi + dθi) − s̄(θi − dθi)
2dθi

. (12)

In the case of massive neutrino simulations, Mν > 0 with a fidu-
cial value at 0.0 eV. For this parameter, we therefore cannot rely
on Eq. (12) and instead estimate the derivative using the four-
point forward approximation

∂s̄
∂Mν

'
s̄(4M+

ν ) − 12s̄(2M+
ν ) + 32s̄(M+

ν ) − 21s̄(Mν = 0.0)
12M+

ν

. (13)

Because massive neutrino simulations in Quijote are initialised
using the Zel’dovich approximation and fiducial simulations are
initialised using the second-order Lagrangian perturbation the-
ory, the quantity s̄(Mν = 0.0) is computed using the fiducial
simulations initialised along with the Zel’dovich approximation.
In all the presented results, unless stated otherwise, the numer-
ical estimation of derivatives and covariances has been made
with Nderiv = 500 and Nfid = 7000 realisations, respectively. In
Appendix A, we discuss the impact of these numbers and assess
the numerical stability of the results.
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Fig. 5. Correlation coefficients Ci j for the matter power spectrum (top)
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4.2. Information content of power spectra in cosmic web
environments

The two key ingredients of the Fisher-based quantification of
information appear in Eq. (10) as the covariance matrix Σ and
the partial derivatives of the statistic with respect to the cosmo-
logical parameters. Figure 5 plots a proxy of the first ingredient
through the normalised version of the covariance matrix, namely
the correlation matrix C, whose elements are defined as

Ci j =
Σi j√
ΣiiΣ j j

. (14)

The first striking observation when inspecting the correla-
tion matrix for Pmm in the top panel of Fig. 5 is that it
quickly becomes highly non-diagonal with correlation coeffi-
cients Ck1,k2 = 0.5 at scales of ∼0.3 h Mpc−1. Such high cou-
plings between scales are expected at low redshifts, with Fourier
modes being increasingly correlated with time, as a result of the
non-linear evolution of the matter distribution (see Blot et al.
2015). These non-diagonal terms intrinsically reduce the repre-
sentative power of the matter power spectrum to constrain the
cosmological parameters, independently of how it varies with
these latter. The power spectra in different environments – shown
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in the bottom panel of Fig. 5 – display less off-diagonal cross-
correlation coefficients of high values, except in the node-node
case. Indeed, Fourier modes of Pnn are highly correlated with
values Ck1k2 ∼ 0.5 for k1, k2 ∼ 0.2 h Mpc−1, which is a signa-
ture of the highly non-linear environment it represents. Other
environments display lower values of the correlation coefficients
at similar scales, with ∼10−1 for filaments, ∼10−2 for walls,
and ∼5 × 10−2 for voids. Fewer and fewer correlations between
modes are therefore observed in environments with decreasing
|δ|, from non-linear regions like nodes and filaments, followed by
mildly non-linear voids, and finally walls having the distribution
of densities closest to zero, being consequently the environment
exhibiting the least coupling between Fourier modes, as can be
visually appreciated from Fig. 5.

Figure 6 shows the second ingredient of the Fisher-forecast
formalism: the partial derivatives for all the studied statistics.
Compared to Pmm, the spectra drawn from the cosmic web
environments show different patterns in the derivatives, probing
broader ranges of amplitudes and exhibiting different features.
Taking the example of the Ωm parameter in the top left panel,
the change of sign occurs at different scales for each environ-
ment, and seems to follow the order of average density, namely
from voids to nodes. This pattern is also observed for other
parameters like Ωb, h, ns, and Mν. The similar k-dependencies
observed between the partial derivatives of the matter power
spectrum demonstrates the limitation of this statistic in discrimi-
nating between the effects of different cosmological parameters.
Showing various dependencies, the power spectra in the cosmic
web environments appear to provide different information on the
set of cosmological parameters, and when combined all together,

they may break degeneracies and allow us to put tighter con-
straints on the underlying cosmological model.

One way to quantify the information gained from the power
spectra in the environments is to compute the marginalised 1σ
confidence ellipses that can be obtained from the Fisher infor-
mation matrices (10). These latter are shown in Fig. 7 when
using the matter power spectrum or those from each environment
either individually or combined. Table 2 gathers the marginalised
σθi constraints obtained in the different cases defined as

σθi =
1√[

I(θ)−1]
i,i

, (15)

where Ii,i is the ith diagonal element of the Fisher informa-
tion matrix. The corner plot of Fig. 7 exhibits the degenera-
cies among parameters in almost all panels with black elon-
gated ellipses translating the limitation of Pmm in distinguishing
between the effect of varying one or other parameter, which is
already suggested by the shapes of the derivatives. This is for
instance observed in the Mν–σ8 panel (also reported and stud-
ied in previous works such as Villaescusa-Navarro et al. 2013,
2014; Peloso et al. 2015), or the panel showing Ωm–σ8. When
inspecting the ellipses obtained from the spectra computed in
the individual environments, we clearly distinguish different ori-
entations for several parameters. It is for instance especially
striking in the Mν–σ8 plane where Pff and Pvv are showing quasi-
orthogonal ellipses, but also in the projected space involving σ8
and h, ns, or Ωb. This illustrates the complementary information
delivered by the two-point statistic in cosmic web environments,
which, when combined all together, tightens up the constraints as
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quantitatively shown in Table 2 with improvement factors over
the matter power spectrum ranging from 2.9 to 15.7 for the five
cosmological parameters considered and 15.2 for the sum of
neutrino mass. The different structures observed in the deriva-
tives of Fig. 6 and the individually lower couplings between
k modes in the covariance matrices from the bottom panel of
Fig. 5 also translate into better constraints for some environ-
ments and parameters, except nodes and σ8. The high level of
correlation brought by the Pnn coefficients and the small range of
amplitudes probed by their derivatives indeed lead to large errors
on cosmological parameters when exploiting this environment
alone. Without similar high couplings, the other environments
perform either equivalently or better than the matter power spec-

trum in most cases. It is worth noting that these constraints do not
take into account any additional prior information coming from
other measurements that could improve them even further, such
as information from the cosmic microwave background (CMB)
experiments (Planck Collaboration VI 2020).

The results presented above were obtained by including λth
and σN as nuisance parameters. When fixing those to their fidu-
cial values, we obtain the constraints reported in Table C.1, which
are quasi-identical for Pcomb on cosmological parameters Ωm, Ωb,
h, and ns. Adding the nuisance parameters and marginalising over
them mainly impacts σ8 and Mν where the improvement factors
are respectively lowered down from 7.2 and 24.3 to 2.9 and 15.2.
This is mainly due to the additional degeneracies induced by the
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Table 2. Marginalised 1-σ constraints obtained from the power spectrum in different environments for all cosmological parameters in real space
and considering λth and σN as nuisance parameters.

Statistics σΩm σΩb σh σns σσ8 σMν

Pmm 0.0969 0.0413 0.5145 0.5019 0.0132 0.8749
Pvv 0.0381 (2.5) 0.0234 (1.8) 0.295 (1.7) 0.2962 (1.7) 0.0466 (0.3) 0.8982 (1.0)
Pww 0.0752 (1.3) 0.0419 (1.0) 0.4902 (1.0) 0.3852 (1.3) 0.0903 (0.1) 1.0374 (0.8)
Pff 0.0320 (3.0) 0.0189 (2.2) 0.2444 (2.1) 0.2546 (2.0) 0.0230 (0.6) 0.8151 (1.1)
Pnn 0.0971 (1.0) 0.0481 (0.9) 0.6142 (0.8) 0.6004 (0.8) 0.2006 (0.1) 1.6178 (0.5)
Pcomb 0.0126 (7.7) 0.0093 (4.5) 0.0793 (6.5) 0.0319 (15.7) 0.0046 (2.9) 0.0575 (15.2)

Notes. σMν is in units of eV.

two additional parameters, with for instance σ8 and σN which
have similar effects on the power spectra, mainly a shift (also
visible from the corresponding panel in Fig. 7). The obtained
results from Pcomb therefore show good robustness to these nui-
sance parameters, given their impact on the segmentation of
the environments and on the derived statistics. Quantitatively,
voids, walls, filaments, nodes, and their combination are respec-
tively leading to marginalised error over the threshold of σλth =
{0.0050, 0.0133, 0.0133, 0.1785, 0.0013} and over the smoothing
parameter of σσN = {0.5405, 0.2061, 0.1463, 0.2988, 0.0160},
showing that both are well constrained by the combination of
environment-dependent spectra. Even though the choice of λth
and σN may influence the identified cosmic structures, the anal-
ysis of the classification parameters shows us that varying those
parameters affects only partially the derived cosmological con-
straints. This is especially encouraging in the sense that it leaves
room for other definitions of cosmic environments to be applied.
Even though leading to different detected structures (see e.g.,
Libeskind et al. 2017), we should end up with similar results
at the constraints level. Interestingly, we also report that, when
either fixing the T-web formalism parameters or leaving them
free, the filament environment provides the best individual con-
straints. When comparing Tables 2 and C.1, we see that filaments
are indeed performing individually better than the matter power
spectrum for most parameters, closely followed by the Pvv statis-
tic. We notice that some environments constrain some cosmolog-
ical parameters particularly well, such as Mν for voids, as theo-
retically expected and stated in previous works (e.g., Pisani et al.
2015; Massara et al. 2015; Kreisch et al. 2019) but also for fila-
ments, which provides tight constraints on Ωm or Mν compared
to Pmm.

The marginalised constraints reported so far were obtained
by including all the modes of power spectra below kmax =
0.5 h Mpc−1. Figure 8 illustrates the evolution of σθi for each
parameter and studied statistic with the value of the maximum
scale involved to derive them kmax ∈ [0.1, 0.5] h Mpc−1. The
first conclusion we can draw is that the information extracted
from Pmm saturates when kmax increases. This saturation of the
matter power spectrum, also pointed out by previous analyses
(e.g., Takahashi et al. 2010; Blot et al. 2015; Chan & Blot 2017),
mostly comes from the degeneracies among parameters which
does not lead to any further improvement on the constraints at
mildly non-linear scales when kmax > 0.25 h Mpc−1. The smaller
errors obtained in the filament and void environments are not
observed at all scales. In particular, when restricting the anal-
ysis to kmax < 0.2 h Mpc−1, the analyses of individual environ-
ments do not better constrain the set of cosmological parameters,
even though their combination still leads to an improvement over
the matter power spectrum analysis for all considered values
of kmax.

An alternative quantity measuring the information carried
by a statistic is given by the signal-to-noise ratio (S/N) that
describes the reachable accuracy of the statistical measurement
given the covariance matrix. In general, the S/N of a summary
statistic s ∈ Rn is defined as

S/N(s) =
√

sTΣ−1s , (16)

with Σ−1 being the corresponding precision matrix defined by
Eq. (11). Figure 9 shows the evolution of the S/N for the mat-
ter and environment-dependent power spectra as a function of
the maximum scale kmax. We again observe the flattening when
kmax approaches non-linear scales at 0.25 h Mpc−1 for S/N(Pmm)
(also reported in Angulo et al. 2008; Takahashi et al. 2010;
Blot et al. 2015). This feature is also observed for some spec-
tra in environments like filaments but at higher k values and all
environment-dependent statistics reach a higher value of S/N,
except for nodes. This latter saturates at an S/N 1.5 times smaller
than the matter power spectrum at 0.5 h Mpc−1, making it the
lowest value among all environments, which is coherent with the
findings of the Fisher forecast. Void is the environment perform-
ing best individually over a wide range of scales but is over-
taken by walls when kmax > 0.35 h Mpc−1. The shapes of the
S/N evolution with kmax from the combination of environments
also suggest that a further increase is possible when going to
even smaller scales, kmax > 0.5 h Mpc−1, thanks to the break-
ing of degeneracies where the matter analysis is no longer able
to improve. Quantitatively, the S/N obtained from the combina-
tion of environments is eight times higher than that from Pmm at
kmax = 0.5 h Mpc−1.

5. Discussion

The obtained results show that using summary statistics derived
after segmenting the matter distribution into the different com-
ponents of the cosmic web (voids, walls, filaments, and nodes)
allows better leverage of cosmological parameters in real space
than the matter power spectrum analysis. The derived statis-
tics in individual environments also exhibit less correlations
between Fourier modes, except for the highly non-linear envi-
ronments that are nodes. Alternative approaches like the marked
power spectrum and the wavelet scattering transform (WST)
were employed in recent analyses of the very same sets of sim-
ulations and cosmological parameters by Massara et al. (2021)
and Valogiannis & Dvorkin (2021), respectively. Alternatively,
Bayer et al. (2021) propose an analysis using information from
the halo mass function (HMF) and the void size function (VSF)
in real space. All three analyses, together with ours, consider
a maximum scale of kmax = 0.5 h Mpc−1 and can therefore be
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Fig. 9. Evolution of the signal-to-noise ratio S/N with kmax ∈

[0.11, 0.5] Mpc h−1 for the several studied statistics: the matter power
spectrum, the power spectrum computed in the cosmic web environ-
ments, and the combination of environment-dependent spectra.

naturally compared. The constraints obtained from these vari-
ous statistics are summarised in Table 3. The information con-
tained in the power spectra bins in cosmic web environments
provides the tightest constraints on Ωm, Ωb, h, and ns, and com-
petitive values for constraints on Mν and σ8; however, these lat-

ter are both best constrained by the coefficients derived from
the WST. Compared to the partial information from the extreme
environments of voids and nodes obtained by Bayer et al. (2021),
our environment-dependent statistics are able to tighten the con-
straints with improvement factors of {0.5, 4.1, 2.9, 3.1, 1.4, 1.7}
on the parameters {Ωm,Ωb, h, ns, σ8,Mν}, hence performing bet-
ter than the VSF + HMF statistic in all cases, except for Ωm.

It is however important to note that all these forecasts are
performed in real space, and some statistics could be deeply
affected by the redshift-space distortions breaking the density
field isotropy. This is for instance the case of the WST, which
requires adaption of the wavelets to be applied in this setting
(Valogiannis & Dvorkin 2021), but also in our case, where the
detection of the environment can be affected by the distortions,
reducing the representative power of the environment-dependent
statistics. Second, it should be noted that the analysis we pro-
pose is the only one including extra nuisance parameters related
to the cosmic web classification, λth and σN , consequently artifi-
cially increasing the dimension of the parameter space and hence
decreasing the constraints on the target parameters through addi-
tional degeneracies. As a fairer comparison, the last column of
Table 3 shows the constraints we obtain when fixing the param-
eters of the classification method at their fiducial values. Finally,
not only are the obtained values of the constraints important, but
so is the physical interpretability of the coefficients encoding the
field information. In that regard, the physical interpretability of
the power spectra in cosmic web environments, being a simple
two-point function, is straightforward, as well as the halo mass
and void size functions.

6. Summary and conclusions

In this work, we carried out the first quantitative analysis of
the cosmological information content of power spectra from the
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Table 3. Comparison of the marginalised 1-σ constraints obtained from different Fisher forecasts using different statistics.

Statistic M WST HMF + VSF Pcomb

Free Fixed

Publication Massara et al. (2021) Valogiannis & Dvorkin (2021) Bayer et al. (2021) This work

σΩm 0.013 0.014 0.006 0.012 0.012
σΩb 0.010 0.012 0.037 0.009 0.009
σh 0.098 0.104 0.23 0.079 0.078
σns 0.048 0.031 0.100 0.032 0.031
σσ8 0.002 0.001 0.007 0.005 0.002
σMν

0.017 0.008 0.096 0.058 0.036

Notes. M stands for the marked power spectrum, WST for the wavelet scattering transform, HMF + VSF for halo mass function and void size
function. In the Pcomb column, ‘Free’ refers to the constraints obtained when marginalising over the two nuisance parameters related to the
segmentation scheme, λth and σN , while ‘Fixed’ are the ones when fixing those parameters at their fiducial values. σMν is in units of eV.

several cosmic web environments (nodes, filaments, walls, and
voids). The derived statistics were computed from density fields
associated with the environments identified through the eigen-
values of the Hessian matrix of the gravitational potential. Using
the large suite of Quijote simulations, we performed a Fisher
forecast by numerically estimating the partial derivatives and the
covariance matrices of the extracted statistics in the non-linear
regime with kmax = 0.5 h Mpc−1. We then compared the con-
straints on the cosmological parameters {Ωm,Ωb, h, ns, σ8,Mν}

derived from the cosmic web environments to those from the
analysis of the matter power spectrum, marginalising over the
two parameters of the web-finder method. From this analysis in
real space, we report that:

– Environment-dependent spectra show different shape depen-
dencies when varying cosmological parameters such as Mν,
Ωm, and σ8 with respect to each other and to the matter
power spectrum. These variations originate from the intrin-
sic differences in densities and hence evolution histories of
each environment, where the observed structures at z = 0 are
imprinted differently depending on the cosmology.

– Power spectra in void, wall, and filament environments are
less subject to mode coupling than the one computed from
the matter for which overdense regions like nodes induce
correlations between Fourier modes at small scales. As a
result, voids and filaments for instance perform individually
better than a matter power spectrum analysis for all cosmo-
logical parameters, except σ8.

– The combination of power spectra in the environ-
ments leads to the breaking of some key degenera-
cies between parameters of the cosmological model
which consequently tightens the constraints with improve-
ment factors of {7.7, 4.5, 6.5, 15.7, 2.9, 15.2} on parameters
{Ωm,Ωb, h, ns, σ8,Mν}, respectively, over the matter power
spectrum. Such combination of spectra also yields an eight
times higher S/N.

– The constraints obtained from the combination of environ-
ments are superior to those obtained from the matter power
spectrum for the whole range of maximum scales analysed
in the range kmax ∈ [0.1, 0.5] h Mpc−1.

– For the maximum scale involved in the analysis, kmax =
0.5 h Mpc−1, the combination of environment-dependent
spectra led to competitive (and better in some cases) con-
straints compared to other state-of-the-art numerical analy-
ses relying on the same set of simulations, with the advan-
tage of being easily interpreted.

– The reported constraints are robust to variations of the two
main parameters used to classify the environments, λth and
σN . When varying these two parameters, the results are the
same at the percentage level for Ωm, Ωb, and h, impacting
mainly σ8, and Mν due to additional degeneracies.

In conclusion, we show that there is significantly more informa-
tion contained in the density field when analysing the cosmic
environments individually and using the combination of two-
point statistics rather than when directly relying on the matter
density field summarised by its power spectrum alone. The size-
able improvements in the constraints on all cosmological param-
eters brought by our environment-dependent analysis, even in
the ideal case addressed in the present study, opens up the pos-
sibility to take advantage of the power spectra in environments
for the optimal exploitation of future large galaxy redshift sur-
veys such as the Dark Energy Spectroscopic Instrument (DESI,
Levi et al. 2013) or Euclid (Laureijs et al. 2011). The present
study however focuses on the real-space constraints obtained
using information from cosmic web environments, both alone
and combined. Applying this approach to observational data
would consequently imply the use of biased tracers, analytical
modelling of the spectra in the environments, and the inclu-
sion of effects of redshift–space distortions. Physical observa-
tions will indeed provide us with biased tracers of the matter
distribution, like halos or galaxies, instead of dark matter par-
ticles. Relying on such tracers would imply taking into account
their relation to the matter distribution through notably the inclu-
sion of additional nuisance parameters related to the so-called
bias. These would both increase the dimension of the parameter
space and induce additional degeneracies. Analytical modelling
of the power spectrum as a function of the environments may be
a complex endeavour even when relying on physically grounded
web-finder methods such as the one used here, and in particular
in the range of modes investigated here. Alternative approaches
like simulation-based inference frameworks (see Leclercq 2018;
Alsing et al. 2019; Cranmer et al. 2020) or emulators (as pro-
posed in Heitmann et al. 2009, 2010, 2014; Lawrence et al. 2010)
can be used to perform parameter estimation. Finally, observa-
tions are carried in redshift-space in which the peculiar veloc-
ities of matter tracers distort the spatial distribution, especially
in dense regions. We still need to assess the information gain
in the redshift space, where the multipole decomposition of the
power spectrum already allows us to tighten the constraints on
the matter component, and this will be the subject of a forth-
coming paper (Bonnaire et al., in prep.).
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Appendix A: Stability and convergence analysis
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Fig. A.1. Convergence analysis of the numerical precision matrix as a
function of Nfid with fixed Nderiv = 500 (upper panel) and derivatives as a
function of Nderiv with fixed Nfid = 7000 (lower panel) for the combined
spectra statistics Pcomb. The grey area shows the 2% agreement area.

In the Fisher forecast, we resort to numerical estimations of
the precision matrices defined in Eq. (11) but also of the

derivatives from Eq. (12) and (13). To avoid biased results
induced by a non-convergence of these quantities, it is essen-
tial to check the stability of the derived constraints under reduc-
tion of both Nfid, the number of simulations used to compute
the covariances, and Nderiv, the number of simulations for the
derivatives. We focus here on the convergence of the constraints
σθi derived in all setups, from individual environments with 40
Fourier bins or from the combination of power spectra yielding
the maximum total length among all the studied statistical sum-
maries with n = 160. We note that the convergence of the mat-
ter power spectrum in Quijote simulations is already studied in
Villaescusa-Navarro et al. (2020). In Fig. A.1, we show how the
maximum deviation of marginalised constraints behaves when
varying Nfid in the upper panel and Nderiv in the lower one. We
plot, for each considered statistic, the evolution of the maximum
deviation over all cosmological parameters

max
θi

∣∣∣∣∣∣ σθi (N)
σθi (N = Nmax)

− 1

∣∣∣∣∣∣ , (A.1)

with N being either Nfid or Nderiv and Nmax respectively taking
values 7000 and 500. For all the individual environments and
their combination, convergence at a ±2% level is obtained when
Nfid ∼ 4500 for the computation of the covariance matrix. Indi-
vidually, the constraints from the several statistics reach 5% con-
vergence when Nderiv ≤ 400 for all environments except walls for
which the 5% level is obtained around 450 simulations. How-
ever, convergence of the derivatives is obtained at the percent-
age level for Pcomb when Nderiv ' 300, highlighting the good
convergence properties of this statistic and excluding any bias
induced by numerical instabilities in the computation of Fisher
constraints for the combination of spectra.

Appendix B: Gaussianity of the statistics

When deriving the Fisher matrices in Eq. (10), we assumed the
distribution of the statistics s to be Gaussian, expressed through
Eq. (7). To quantify any deviation from Gaussianity which could
lead to biased estimation of errors, we report in Fig. B.1 the
skewness and excess kurtosis distributions for each k bin for all
the computed power spectra. At large scales, the small number of
modes available to compute the averages of Eq. (5) creates sig-
nificant non-Gaussianities for all spectra. As a result of the cen-
tral limit theorem, at higher values of k, there are more modes for
the estimators to be averaged over leading the Gaussian hypothe-
sis to be more accurate. Still, some spectra, mainly Pmm and Pnn,
show deviations from the Gaussian hypothesis at small k with
a higher value of the skewness compared to other spectra. The
impact of these non-Gaussian signatures is however limited in
our analysis because we mostly focus on the gains of our statis-
tics with respect to the matter power spectrum which already
exhibits the same features.
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Fig. B.1. Skewness (left panel) and excess kurtosis (right panel) distributions for each k bin of the power spectra. In both plots, the dashed grey
horizontal line denotes the zero value.

Appendix C: Constraints with fixed segmentation
parameters

In the main text, the presented results show the cosmological
constraints obtained on Ωm, Ωb, h, ns, σ8 and Mν in Table 2
when marginalising over the two parameters of the T-web for-

malism used to identify the environments, namely λth and σN .
As expected, when fixing these at their fiducial values, respec-
tively 0.3 and 2 h/Mpc, the constraints are tighter, as presented
in Table C.1. This especially occurs for the σ8 and Mν parame-
ters, while the others remain unchanged.

Table C.1. Marginalised 1-σ constraints obtained from the power spectrum in different environments for all cosmological parameters when
fixing the nuisance parameters to their fiducial values, namely λth = 0.3 and σN = 2 Mpc/h. σMν is in units of eV.

Statistics σΩm σΩb σh σns σσ8 σMν

Pmm 0.0969 0.0413 0.5145 0.5019 0.0132 0.8749
Pvv 0.0305 (3.2) 0.0183 (2.3) 0.1907 (2.7) 0.1104 (4.5) 0.0110 (1.2) 0.3272 (2.7)

Pww 0.0340 (2.9) 0.0204 (2.0) 0.1884 (2.7) 0.0688 (7.3) 0.0250 (0.5) 0.5183 (1.7)
Pff 0.0174 (5.6) 0.0124 (3.3) 0.1200 (4.3) 0.0684 (7.3) 0.0125 (1.1) 0.2708 (3.2)
Pnn 0.0271 (3.6) 0.0191 (2.2) 0.2013 (2.6) 0.1350 (3.7) 0.0242 (0.5) 0.5365 (1.6)

Pcomb 0.0123 (7.9) 0.0092 (4.5) 0.0782 (6.6) 0.0307 (16.4) 0.0018 (7.2) 0.0360 (24.3)
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