How Reproducible are Surface Areas Calculated from the BET Equation? - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Advanced Materials Année : 2022

How Reproducible are Surface Areas Calculated from the BET Equation?

Johannes Osterrieth (1) , James Rampersad (1) , David Madden (1) , Nakul Rampal (1) , Luka Skoric (1) , Bethany Connolly (1) , Mark Allendorf (2) , Vitalie Stavila (2) , Jonathan Snider (2) , Rob Ameloot (3) , João Marreiros (3) , Conchi Ania (4) , Diana Azevedo (5) , Enrique Vilarrasa‐garcia (5) , Bianca Santos (5) , Xian‐he Bu (6) , Ze Chang (6) , Hana Bunzen (7) , Neil Champness (8) , Sarah Griffin (8) , Banglin Chen (9) , Rui‐biao Lin (9) , Benoit Coasne (10) , Seth Cohen (11) , Jessica Moreton (11) , Yamil Colón (12) , Linjiang Chen (13) , Rob Clowes (13) , François-Xavier Coudert (14) , Yong Cui (15) , Bang Hou (15) , Deanna d'Alessandro (16) , Patrick Doheny (16) , Mircea Dincă (17) , Chenyue Sun (17) , Christian Doonan (18) , Michael Thomas Huxley (18) , Jack Evans (19) , Paolo Falcaro (20) , Raffaele Ricco (20) , Omar Farha (21) , Karam Idrees (21) , Timur Islamoglu (21) , Pingyun Feng (22) , Huajun Yang (22) , Ross Forgan (23) , Dominic Bara (23) , Shuhei Furukawa (24) , Eli Sanchez (24) , Jorge Gascon (25) , Selvedin Telalović (25) , Sujit Ghosh (26) , Soumya Mukherjee (26) , Matthew Hill (27) , Muhammed Sadiq (27) , Patricia Horcajada (28) , Pablo Salcedo‐abraira (28) , Katsumi Kaneko (29) , Radovan Kukobat (29) , Jeff Kenvin , Seda Keskin (30) , Susumu Kitagawa (24) , Ken‐ichi Otake (24) , Ryan Lively (31) , Stephen Dewitt (31) , Phillip Llewellyn (32, 33, 34) , Bettina Lotsch (35, 36) , Sebastian Emmerling (35, 36) , Alexander Pütz (35, 36) , Carlos Martí‐gastaldo (37) , Natalia Padial (37) , Javier García‐martínez (38) , Noemi Linares (38) , Daniel Maspoch (39) , Jose Suárez del Pino (39) , Peyman Moghadam (40) , Rama Oktavian (40) , Russel Morris (41) , Paul Wheatley (41) , Jorge Navarro (42) , Camille Petit (43) , David Danaci (43) , Matthew Rosseinsky (13) , Alexandros Katsoulidis (13) , Martin Schröder (44) , Xue Han (44) , Sihai Yang (44) , Christian Serre (45) , Georges Mouchaham (45) , David Sholl (31) , Raghuram Thyagarajan (31) , Daniel Siderius (46) , Randall Snurr (21) , Rebecca Goncalves (21) , Shane Telfer (47) , Seok Lee (47) , Valeska Ting (48) , Jemma Rowlandson (48) , Takashi Uemura (49) , Tomoya Iiyuka (49) , Monique Veen (50) , Davide Rega (50) , Veronique van Speybroeck (51) , Sven Rogge (51) , Aran Lamaire (51) , Krista Walton (31) , Lukas Bingel (31) , Stefan Wuttke (52) , Jacopo Andreo (52) , Omar Yaghi (53) , Bing Zhang (53) , Cafer Yavuz (54) , Thien Nguyen (54) , Felix Zamora (55) , Carmen Montoro (55) , Hongcai Zhou (56) , Angelo Kirchon (56) , David Fairen‐jimenez (1)
1 CAM - University of Cambridge [UK]
2 Sandia National Laboratories [Livermore]
3 KU Leuven - Catholic University of Leuven = Katholieke Universiteit Leuven
4 CEMHTI - Conditions Extrêmes et Matériaux : Haute Température et Irradiation
5 UFC - Universidade Federal do Ceará = Federal University of Ceará
6 NKU - Nankai University
7 UNIA - University of Augsburg
8 UON - University of Nottingham, UK
9 UTSA - The University of Texas at San Antonio
10 LIPhy - Laboratoire Interdisciplinaire de Physique [Saint Martin d’Hères]
11 UC San Diego - University of California [San Diego]
12 UND - University of Notre Dame [Indiana]
13 University of Liverpool
14 IRCP - Institut de Recherche de Chimie Paris
15 Shangaï Jiao Tong University [Shangaï]
16 The University of Sydney
17 MIT - Massachusetts Institute of Technology
18 University of Adelaide
19 TU Dresden - Technische Universität Dresden = Dresden University of Technology
20 TU Graz - Graz University of Technology [Graz]
21 Northwestern University [Evanston]
22 UC Riverside - University of California [Riverside]
23 University of Glasgow
24 Kyoto University
25 KAUST - King Abdullah University of Science and Technology [Saudi Arabia]
26 IISER Pune - Indian Institute of Science Education and Research Pune
27 Monash university
28 Instituto IMDEA Energia
29 Shinshu University [Nagano]
30 Koç University
31 Georgia Institute of Technology [Atlanta]
32 TotalEnergies
33 AMU - Aix Marseille Université
34 CNRS - Centre National de la Recherche Scientifique
35 Max Planck Institute for Solid State Research
36 LMU - Ludwig Maximilian University [Munich] = Ludwig Maximilians Universität München
37 UV - Universitat de València
38 Universidad de Alicante
39 BIST - Barcelona Institute of Science and Technology
40 University of Sheffield [Sheffield]
41 University of Saint Andrews
42 UGR - Universidad de Granada = University of Granada
43 Imperial College London
44 University of Manchester [Manchester]
45 IMAP - Institut des Matériaux Poreux de Paris
46 NIST - National Institute of Standards and Technology [Gaithersburg]
47 Massey University
48 University of Bristol [Bristol]
49 UTokyo - The University of Tokyo
50 TU Delft - Delft University of Technology
51 UGENT - Universiteit Gent = Ghent University
52 Ikerbasque - Basque Foundation for Science
53 UC Berkeley - University of California [Berkeley]
54 KAIST - Korea Advanced Institute of Science and Technology
55 UAM - Universidad Autónoma de Madrid
56 Texas A&M University [College Station]
Nakul Rampal
Xian‐he Bu
  • Fonction : Auteur
Ze Chang
  • Fonction : Auteur
Omar Farha
Ross Forgan
Shuhei Furukawa
  • Fonction : Auteur
Eli Sanchez
  • Fonction : Auteur
Matthew Hill
Muhammed Sadiq
  • Fonction : Auteur
Patricia Horcajada
Jeff Kenvin
  • Fonction : Auteur
Seda Keskin
  • Fonction : Auteur
Susumu Kitagawa
Matthew Rosseinsky
Christian Serre
Georges Mouchaham
Shane Telfer
  • Fonction : Auteur
Seok Lee
  • Fonction : Auteur
Omar Yaghi
Bing Zhang
David Fairen‐jimenez

Résumé

Porosity and surface area analysis play a prominent role in modern materials science. At the heart of this sits the Brunauer–Emmett–Teller (BET) theory, which has been a remarkably successful contribution to the field of materials science. The BET method was developed in the 1930s for open surfaces but is now the most widely used metric for the estimation of surface areas of micro- and mesoporous materials. Despite its widespread use, the calculation of BET surface areas causes a spread in reported areas, resulting in reproducibility problems in both academia and industry. To prove this, for this analysis, 18 already-measured raw adsorption isotherms were provided to sixty-one labs, who were asked to calculate the corresponding BET areas. This round-robin exercise resulted in a wide range of values. Here, the reproducibility of BET area determination from identical isotherms is demonstrated to be a largely ignored issue, raising critical concerns over the reliability of reported BET areas. To solve this major issue, a new computational approach to accurately and systematically determine the BET area of nanoporous materials is developed. The software, called “BET surface identification” (BETSI), expands on the well-known Rouquerol criteria and makes an unambiguous BET area assignment possible.
Fichier principal
Vignette du fichier
article.pdf (1.53 Mo) Télécharger le fichier
Origine : Publication financée par une institution

Dates et versions

hal-03677646 , version 1 (24-05-2022)
hal-03677646 , version 2 (07-07-2022)

Identifiants

Citer

Johannes Osterrieth, James Rampersad, David Madden, Nakul Rampal, Luka Skoric, et al.. How Reproducible are Surface Areas Calculated from the BET Equation?. Advanced Materials, 2022, 34 (27), pp.2201502. ⟨10.1002/adma.202201502⟩. ⟨hal-03677646v2⟩
91 Consultations
223 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More