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Learning from time-dependent streaming data with online stochastic algorithms

Antoine Godichon-Baggioni, Nicklas Werge∗, Olivier Wintenberger

LPSM, Sorbonne Université, 4 place Jussieu, 75005 Paris, France

Abstract

We study stochastic algorithms in a streaming framework, trained on samples coming from a dependent data source.
In this streaming framework, we analyze the convergence of Stochastic Gradient (SG) methods in a non-asymptotic
manner; this includes various SG methods such as the well-known stochastic gradient descent (i.e., Robbins-Monro
algorithm), mini-batch SG methods, together with their averaged estimates (i.e., Polyak-Ruppert averaged). Our
results form a heuristic by linking the level of dependency and convexity to the rest of the model parameters. This
heuristic provides new insights into choosing the optimal learning rate, which can help increase the stability of SG-
based methods; these investigations suggest large streaming batches with slow decaying learning rates for highly
dependent data sources.

Keywords: stochastic optimization, machine learning, stochastic algorithms, online learning, streaming,
time-dependent data

1. Introduction

Over the past decade, machine learning and artificial intelligence have become mainstream in many parts of
society; substantial improvements in the performance and cost of mass storage devices and network systems have
contributed to this. Traditional machine learning methods often work in a batch or offline learning setting, where the
model is re-trained from scratch when new data arrive. Such learning methods suffer some critical drawbacks, such
as expensive re-training costs when dealing with new data and thus poor scalability for large-scale and real-world
applications. At the same time, these intelligent systems generate a practically infinite amount of large-scale data sets,
many of which come as a continuous data stream, so-called streaming data.

Streaming data arrives as an endless sequence of samples (data points), which means that at any given time, the
model must be able to adapt to the samples observed (so far) to predict/label new samples accurately. Such (streaming)
models can never be seen as complete but must be updated continuously as newer samples arrive. Methods that
recalculate the model from scratch on the arrival of new samples are impractical due to their high computational cost.
Therefore we need procedures that effectively update the model as more samples arrive. This computational efficiency
should not be at the expense of accuracy; the model’s accuracy should be close to that achieved if we built a model
from scratch using all the samples (Bottou and Cun, 2003).

Stochastic approximation algorithms have proven effective in overcoming the drawbacks of traditional (batch/of-
fline) machine learning methods as they only use samples one by one without knowing their number in advance,
especially the Stochastic Gradient (SG) method (Robbins and Monro, 1951). These SG methods have proven scalable
and robust in many areas ranging from smooth and strongly convex problems to complex non-convex ones, which
makes them applicable in many large-scale machine learning tasks for real-world applications where data are large in
size (and dimension) and arrive at a high velocity. Such first-order methods have been intensively studied in theory
and practice in recent years (Bottou et al., 2018).
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The classical analyses for SG methods typically require unbiased gradients drawn independently and identically
distributed (i.i.d.) from some underlying (and unknown) data generation process (Cesa-Bianchi et al., 2004). How-
ever, in practice, learning often happens with non-i.i.d. (and biased) data, e.g., network traffic, meteorological, finan-
cial time series, or other sensor data. We go beyond these standard assumptions by allowing dependent and biased
gradients. SG methods can converge even when they only have access to biased gradients, but most analysis has
been developed with specific applications in mind (Ajalloeian and Stich, 2020; Bertsekas, 2016; d’Aspremont, 2008;
Devolder et al., 2011; Schmidt et al., 2011). Stochastic learning algorithms for non-i.i.d. data are not as well under-
stood as for i.i.d. data; however, some researchers have examined the convergence of statistical learning algorithm in
non-i.i.d. settings (Agarwal and Duchi, 2012; Mohri and Rostamizadeh, 2010; Yu, 1994).

Solving the problem of stochastic approximations using streaming SGs methods means we must approach the
objective using the gradually arriving samples drawn according to some unknown dependent process. This leads
to some new challenges, e.g., this endless stream of samples (may) changes at each step (and arrives sequentially),
meaning that streaming SGs must be able to adapt to varying arrival speeds without compromising accuracy. We
present and analyze streaming SGs that overcome these challenges and achieve convergence in various settings with
long- and short-range dependence, model misspecification, and changing data streams.

Contributions. In this paper, we investigate SG methods in a streaming framework (Godichon-Baggioni et al.,
2021), where the data comes from dependent stochastic processes. We provide non-asymptotic analysis and quantify
the magnitude of achievable convergence rates under various dependency structures and convexity levels. Our frame-
work covers many applications with dependence and biased gradients under weak gradient assumptions. Our results
construct a heuristic between the level of dependency, noise, and convexity and the achievable learning rate to obtain
optimal convergence. Generally, SG methods can achieve convergence using non-decreasing (streaming) batch sizes,
which counteract the long-range (and short-range) dependence and model misspecification. We show that biased SG
methods converge with the same accuracy as unbiased SG methods if the bias is not too large. More surprisingly,
these heuristics can be used in practice to help increase the stability of SG-based methods.

Organization. Section 2 presents the streaming framework on which the non-asymptotic analysis relies; we
introduce some key concepts, definitions, and assumptions. In particular, Section 2.2 contains the assumptions about
dependency structures and gradients, with some examples of how these could be verified using mixing conditions.
Our convergence results are presented in Section 3, with and without averaging (Sections 3.1 and 3.2). Each result is
followed by a thorough discussion that relates to other work. All our convergence analysis depends on the assumptions
in Section 2 and some additional conditions for the averaged case (Section 3.2). At last, experimentations of our
findings are illustrated in Section 4, with some final remarks in Section 5.

2. Problem Formulation

We consider the Stochastic Optimization (SO) problem minθ∈Θ L(θ) = Et[lt(θ)], where Θ ⊆ Rd is a convex body1

and lt : Rd → R is some differentiable random functions (possibly non-convex), e.g, see Nesterov et al. (2018). We
solve the SO problem in a streaming framework, where a block lt = (lt,1, . . . , lt,nt ) of nt ∈ N random functions arrives at
any given time t ∈ N. In solving the SO problem, we use the Stochastic Streaming Gradient (SSG) estimate proposed
by Godichon-Baggioni et al. (2021), given as

θt = θt−1 −
γt

nt

nt∑
i=1

∇θlt,i (θt−1) , θ0 ∈ Θ, (1)

where γt is the learning rate satisfying the conditions
∑∞

i=1 γi = ∞ and
∑∞

i=1 γ
2
i < ∞ (Robbins and Monro, 1951).

Note that if ∀t, nt = 1, SSG becomes the well-known SG method, which has attracted a lot of attention (Bousquet and
Elisseeff, 2002; Hardt et al., 2016; Shalev-Shwartz et al., 2011; Xiao, 2009; Zhang, 2004). Almost surely convergence
of SO algorithms were shown in Pelletier (1998). In many models, there may be constraints on the parameter space,
which would require a projection of the parameters; therefore, we also introduce the Projected Stochastic Streaming

1A convex body in Rd is a compact convex set with non-empty interior.
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Gradient (PSSG) estimate, defined by

θt = PΘ

θt−1 −
γt

nt

nt∑
i=1

∇θlt,i (θt−1)

 , θ0 ∈ Θ, (2)

where PΘ denotes the Euclidean projection onto Θ, i.e., PΘ(θ) = arg minθ′∈Θ‖θ − θ
′‖2. To shorten notation, we let

∇θlt(θ) = n−1
t

∑nt
i=1 ∇θlt,i(θ). An essential extension is the Polyak-Ruppert averaging (Polyak and Juditsky, 1992; Rup-

pert, 1988), which guarantees optimal statistical efficiency without jeopardizing the computational cost; the Averaged
Stochastic Streaming Gradient (ASSG) is given by

θ̄t =
1
Nt

t−1∑
i=0

ni+1θi, θ̄0 = 0, (3)

where Nt =
∑t

i=1 ni is the accumulated sum of observations. Likewise, let PASSG denote the (Polyak-Ruppert)
averaged estimate of PSSG (2).

2.1. Quasi-strong Convex Objectives

Following Gower et al. (2019); Moulines and Bach (2011), we assume that L has a unique global minimizer θ∗ ∈ Θ

such that ∇θL(θ∗) = 0, and it is µ-quasi-strongly convex (Karimi et al., 2016; Necoara et al., 2019), i.e, there exists
µ > 0 such that ∀θ ∈ Θ,

L(θ∗) ≥ L(θ) + 〈∇θL(θ), θ − θ∗〉 +
µ

2
‖θ − θ∗‖2. (4)

The µ-quasi-strongly convexity assumption is a non-strongly convex relaxation of the SO problem, which is more
conservative than µ-strongly convexity. Relaxations of convexity is crucial in practice to ensure robustness and adap-
tiveness of the algorithms, e.g., for non-strongly convex SO, see Bach and Moulines (2013); Necoara et al. (2019);
Nemirovski et al. (2009).

2.2. Stochastic Streaming Gradient Assumptions: Dependence, Biased, Expected Smoothness, and Gradient Noise

We go beyond the classical assumptions that require unbiased (uniformly bounded) gradients by allowing the
gradients to be dependent and biased estimates. Our aim is to non-asymptotically bound the SSG estimates (1) to (3)
explicitly using the SO problem parameters. In order to do this, we let the natural filtration of the SO problem
Ft = σ(li : i ≤ t), and assume the following about the gradients (∇θlt):

Assumption 1-p (Dννt-dependence and Bννt-bias). Let θ0 be F0-measurable. For each t ≥ 1, the random function
∇θlt(θ) is square-integrable, Ft-measurable, and there exists a positive integer p such that for all Ft−1-measurable
θ ∈ Θ,

E[‖E[∇θlt(θ)|Ft−1] − ∇θL(θ)‖p] ≤ νp
t (Dp

νE[‖θ − θ∗‖p] + Bp
ν ), (5)

for some positive sequence (νt)t≥1 with Dν, Bν ≥ 0.

In the classical convergence analysis of SG methods, one assumes that the SGs are uniformly bounded. However,
this assumption is too restrictive as it only may hold for some losses (Bottou et al., 2018; Nguyen et al., 2018). Instead,
we follow the same ideas as in Gower et al. (2019); Moulines and Bach (2011), to make the following assumption
about the expected smoothness of the stochastic gradients (∇θlt).

Assumption 2-p (κt-expected smoothness). There exists a positive integer p such that ∀θ, θ′ ∈ Θ, E[‖∇θlt(θ) −
∇θlt(θ′)‖p] ≤ κp

t E[‖θ − θ′‖p] for some positive sequence (κt)t≥1.

Assumption 2-p can be seen as an assumption about the smoothness properties of (lt). The last fundamental
assumption (Assumption 3-p) is a very weak assumption, and should be seen as an assumption on Θ rather than on
(lt):
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Assumption 3-p (σt-gradient noise). There exists a positive integer p such that E[‖∇θlt(θ∗)‖p] ≤ σp
t for some positive

sequence (σt)t≥1.

These assumptions (Assumptions 1-p to 3-p) are milder than the standard assumptions for stochastic approxima-
tions, e.g., see Benveniste et al. (2012); Godichon-Baggioni et al. (2021); Kushner and Yin (2003); Moulines and
Bach (2011). They include classic examples such as stochastic approximation and learning from dependent data,
which we will demonstrate later in Section 4. Assumption 1-p is on the form of mixing conditions for weakly depen-
dence sequences, implying that dependence dilutes with the rate of νt. It is possible to verify Assumption 1-p by using
moment inequalities for partial sums of strongly mixing sequences (Rio, 2017); we will refer to this as short-range
dependence. Note that for any positive integer p, Assumption 1-p can be upper bounded by

E[‖E[∇θlt(θ)|Ft−1] − ∇θL(θ)‖p] ≤ E[‖∇θlt(θ) − ∇θL(θ)‖p] = n−p
t E[‖S t‖

p], (6)

using Jensen’s inequality, where S t =
∑nt

i=1(∇θlt,i(θ) − ∇θL(θ)) is a d-dimensional vector. Let (∇θlt,i) be a strictly
stationary sequence and assume that there exists some r > p such that supx>0(xrQ(x))1/r < ∞, where Q(x) denotes
the quantile function of ‖∇θlt,i‖. Suppose that (∇θlt,i) is strongly α-mixing in the sense of Rosenblatt (1956), with
strong mixing coefficients (αt)t≥1 satisfying αt = O(t−pr/(2r−2p)). Then by Rio (2017, Corollary 6.1), we have that
E[‖S t‖

p] = O(np/2
t ), meaning, (6) is at most O(n−p/2

t ); this includes several linear, non-linear, and Markovian time
series, e.g., see Bradley (2005); Doukhan (2012) for more examples, other mixing coefficients of weak dependence
and the relations between them. In relation to the form of Assumption 1-p, this means that Bν , 0 in this case.
However, having Bν = 0 is possible in well-specified examples, which we will see later in Section 4. Note that
Assumptions 2-p and 3-p can be verified using α-mixing conditions by analogues arguments as for Assumption 1-p
such that κp

t and σp
t is O(n−p/2

t ).

3. Convergence Analysis

In this section, we consider the stochastic streaming estimates in (1) to (3) with streaming-batches (nt) arriving in
non-decreasing streams. We aim to non-asymptotically bound δt = E[‖θt − θ

∗‖2] and δ̄t = E[‖θ̄t − θ
∗‖2], such that they

only depend on the parameters of the problem.
Learning rate and function forms. Throughout this paper, we consider learning rates on the form γt = Cγnβt t−α

with Cγ > 0, β ∈ [0, 1], and α chosen accordingly to the expected streaming-batches nt. Obviously, (νt), (κt), and
(σt) may be considered as uncertain terms depending on the streaming-batch nt. Thus, let νt = n−νt , κt = Cκn−κt , and
σt = Cσn−σt with ν ∈ (0,∞), κ, σ ∈ [0, 1/2], and Cκ,Cσ > 0. Having, σ, κ ∈ [0, 1/2] follows directly from Godichon-
Baggioni et al. (2021), since σ = κ = 1/2 corresponds to the i.i.d. case2, whereas σ, κ < 1/2 allows noisier outputs.
Similarly, vt = 0 corresponds to the classical i.i.d. setting. Having νt = n−νt means Assumption 1-p, allow so-called
long-range dependence (also known as long memory or long-range persistence) when ν ∈ (0, 1/2) and short-range
dependence when ν ∈ [1/2,∞). Thus, the i.i.d. case is when ν→ ∞.

For the sake of simplicity, we consider streaming-batches (nt) on the form Cρtρ with Cρ ∈ N and ρ ∈ [0, 1) such
that nt ∈ N. This form of streaming-batches means that we are considering everything from vanilla SG and mini-batch
SG methods, to more exotic learning designs, e.g., Cρ > 1 and ρ = 0 correspond to mini-batch SG of size Cρ. We will
refer to Cρ as the streaming constant size and ρ as the streaming rate.

3.1. Stochastic Streaming Gradients
Theorem 1. Denote δt = E[‖θt − θ

∗‖2] for some δ0 ≥ 0, where (θt) follows the recursion in (1) or (2). Assume
that Assumptions 1-p to 3-p hold true for p = 2. Suppose nt = Cρtρ with ρ ∈ [0, 1) and Cρ ∈ N, such that µν =

µ − 1{ρ=0}2DνC−νρ > 0. For α − ρβ ∈ (1/2, 1), we have

δt ≤ πt +
2

2+6ρν
1+ρ B2

ν

µµνC
2ν

1+ρ

ρ N
2ρν
1+ρ

t

+
2

7+6ρσ
1+ρ C2

σCγ

µνC
2σ−β−α

1+ρ

ρ N
ρ(2σ−β)+α

1+ρ

t

, (7)

with πt given in (22) such that πt = O(exp(−N(1+ρβ−α)/(1+ρ)
t )).

2You can’t beat the system.
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Sketch of proof. Under Assumptions 1-p to 3-p with p = 2, it can be shown that (δt) satisfies the recursive relation
(20),

δt ≤ [1 − (µ − 2Dννt)γt + 2κ2
t γ

2
t ]δt−1 +

B2
ν

µ
ν2

t γt + 2σ2
t γ

2
t ,

for any γt, νt, κt, σt, and nt. This recursive relation can be explicitly upper bounded in a non-asymptotic way (by
Proposition 1) using classical techniques from stochastic approximations (Benveniste et al., 2012; Kushner and Yin,
2003). As mentioned in Zinkevich (2003), bounding the projected estimate in (2) follows directly from that E[‖PΘ(θ)−
θ∗‖2] ≤ E[‖θ − θ∗‖2], ∀θ ∈ Rd, ∀θ∗ ∈ Θ, as Θ is a convex body.

Related work. Theorem 1 replicate the results of the well-specified i.i.d. case (with Bν = 0 and κ = σ = 1/2)
considered in Godichon-Baggioni et al. (2021). Our findings also reproduce the results of Moulines and Bach (2011),
where they considered the well-specified i.i.d. case (under slightly different assumptions) using the vanilla SG method,
namely, when Cρ = 1 and ρ = 0. Moreover, if the function L has C∇-Lipschitz continuous gradients3, then (7) implies
the bound on the objective function values of L, E[L(θt) − L(θ∗)] ≤ C∇δt/2 by Cauchy–Schwarz’s inequality.

Decay of the initial conditions. The initial conditions that πt contains will be forgotten sub-exponentially fast,
since πt = O(exp(−N(1+ρβ−α)/(1+ρ)

t )) as long as µν = µ − 1{ρ=0}2DνC−νρ > 0. Note that the positivity of the dependence
penalised convexity constant µν is essential in all terms of (7). Having µν > 0 depends solely on the level of depen-
dence Dν but it is scaled by C−νρ , meaning if Dν is so large that µν is no longer positive, then we should take Cρ large
enough such that µν becomes positive again; this is illustrated in Sections 4.2 and 4.3. The streaming constant Cρ

contributes positively to all terms in (7), either directly or though µν.
The last term of (7) can be seen as the noise term decaying with O(N−(ρ(2σ−β)+α)/(1+ρ)

t ) for α − ρβ ∈ (1/2, 1), e.g.,
for any ρ ∈ [0, 1), δt = O(N−2/3

t ) when α = 2/3, β = 1/3, and σ = 1/2. In addition, the noise term is positively
affected by large streaming constants Cρ when α + β < 2σ, which will be expressed as a variance reduction, e.g., see
Section 4. In well-specified cases (Bν = 0) the noise term would also be the asymptotic term.

Behavior for Bν. The second term of (7) can be seen as an dependency term as it is determined solely by the
level of dependence ν, the bias (misspecification error) Bν, and the convexity constant µν; It is remarkable that the
dependence term is unconnected from the choice of the learning rate (γt) but instead by the streaming rate through
Cρ and ρ. The dependence term decay with O(N−2ρν/(1+ρ)

t ) which requires ρ positive to decay since ν ∈ (0,∞), e.g.,
to obtain O(N−1/2

t ) we would need ρ = 1 and ν = 1/2. It is surprising that Theorem 1 allows both long-range and
short-range dependence. Indeed, long-range dependence leads to slow convergence (slower than O(N−1/2

t )) but it will
still converge. Obviously, this only matters if Bν , 0. Overall, δt = O(max{1{Bν,0}N

−2ρν/(1+ρ)
t ,N−(ρ(2σ−β)+α)/(1+ρ)

t }).

3.2. Averaged Stochastic Streaming Gradients

In what follows, we consider the averaging estimate θ̄n given in (3) with (θt) following the SSG estimate in (1)
or the PSSG estimate in (2). Some additional assumptions is needed for bounding the rest terms of the averaging
estimate: let the function L have C∇-Lipschitz continuous gradients, i.e., there exists a constant C∇ > 0, ∀θ, θ′ ∈ Θ ⊆

Rd,

‖∇θL(θ) − ∇θL(θ′)‖ ≤ C∇‖θ − θ′‖. (8)

As discussed in Bottou et al. (2018), this assumption ensures that ∇θL does not vary arbitrarily, making the gradient
∇θL a useful indicator on how to decrease L. Next, assume that the Hessian of L is C′

∇
-Lipschitz-continuous, that is,

there exists C′
∇
> 0 such that ∀θ, θ′ ∈ Θ ⊆ Rd,

‖∇2
θL(θ) − ∇2

θL(θ′)‖ ≤ C′∇‖θ − θ
′‖. (9)

Note that (8) and (9) only needs to hold true for θ′ = θ∗. Moreover, in continuation of Assumption 3-p withσt = Cσn−σt
for σ ∈ [0, 1/2], we make the following assumption:

3Later, in Section 3.2 for the averaged estimate (3), we assume in (8) that the function L has C∇-Lipschitz continuous gradients.
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Assumption 4. There exists a non-negative self-adjoint operator Σ such that ∀t ≥ 1, n2σ
t E[∇θlt(θ∗)∇θlt(θ∗)>] � Σ+Σt,

where Σt is a positive symmetric matrix with Tr(Σt) = C′σn−2σ′
t , C′σ ≥ 0, and σ′ ∈ (0, 1/2].

Remark that in the independent or some well specified cases such as in Section 4.1.1, Assumption 4 is verified
with σ = 1/2 and C′σ = 0 (Godichon-Baggioni et al., 2021). The short-range dependence cases is when σ = 1/2,
as in Section 4.1.2, whereas, the long-range dependence case is for σ < 1/2. Moreover, Assumption 4 allows us to
obtain leading term Λ/Nt with Λ = Tr(∇2

θL(θ∗)−1Σ∇2
θL(θ∗)−1), which attains the Cramer-Rao bound; we will see this

in Theorem 2.
To consider the averaging estimate θ̄n given in (3) but with the use of the projected estimate PSSG from (2), which

we will denote PASSG. An additional assumption is needed in order to avoid calculating the six-order moment, we
make the unnecessary assumption that (∇θlt) is uniformly bounded; the derivation of the six-order moment can be
found in Godichon-Baggioni (2016).

Assumption 5. Let DΘ = infθ∈∂Θ‖θ − θ
∗‖ > 0 with ∂Θ denoting the frontier of Θ. Moreover, there exists GΘ > 0 such

that ∀t ≥ 1, supθ∈Θ‖∇θlt(θ)‖
2 ≤ G2

Θ
a.s.

Theorem 2. Denote δ̄t = E[‖θ̄t − θ
∗‖2] with θ̄n given by (3), where (θt) follows the recursion in (1) or (2). Assume

that Assumptions 1-p to 3-p for p = 4 and Assumption 4 hold true. In addition, Assumption 5 must hold true if (θt)
follows the recursion in (2). Suppose nt = Cρtρ with ρ ∈ [0, 1) and Cρ ∈ N, such that µν = µ − 1{ρ=0}2DνC−νρ > 0. For
α − ρβ ∈ (1/2, 1), we have

δ̄1/2
t ≤

Λ1/2

N1/2
t

1{σ=1/2} +
21/2Λ1/2C

1−2σ
2(1+ρ)
ρ

N
1+2ρσ
2(1+ρ)

t

1{σ,1/2} +
21/2C′1/2σ C

1−2(σ+σ′ )
2(1+ρ)

ρ

µN
1+2ρ(σ+σ′)

2(1+ρ)
t

(10)

+ O

(
max

{
N
−

2+ρ(2σ+β)−α
2(1+ρ)

t ,N
−
ρ(2σ−β)+α

1+ρ

t

})
+ Õ

(
N
−

δ+ρν
2(1+ρ)

t

)
+ 1{Bν,0}Ψt, (11)

with δ = 1{Bν=0}(ρ(2σ − β) + α) + 1{Bν,0}min{ρ(2σ − β) + α, 2ρν} and Ψt given in (36), such that

Ψt = Õ

(
max

{
N
−
ρ(σ+ν)
2(1+ρ)

t ,N
−

1+ρ(β+ν)−α
1+ρ

t ,N
−

1+2ρν
2(1+ρ)

t ,N
−
δ/2+ρν
2(1+ρ)

t ,N
−

2ρν
1+ρ

t

})
.

An explicit version of the bound is given in (37).

Sketch of proof. In Lemma 3, we conduct a general study of the Polyak-Ruppert averaging estimate (θ̄t) defined
in (3) for (γt), (νt), (κt), (σt) and (nt) on any form. Thus, Theorem 2 follows by Lemma 3 using the (specific) bounds
of δt = E[‖θt − θ

∗‖2] and ∆t = E[‖θt − θ
∗‖4] in Theorem 1 (eq. (21)) and Lemma 2.

Related work. Similarly to the well-specified i.i.d. case (Godichon-Baggioni et al., 2021), the leading term of
(10) is Λ/Nt, which obtain the (asymptotically optimal) Cramer-Rao bound (Murata and Amari, 1999). Each term
of (10) is a direct consequence of Assumption 4 and they are all independent of the choice of learning rate (γt).
Moreover, as discussed in Gadat and Panloup (2017), the bound of δ̄t can be seen as a bias-variance decomposition
between the leading terms (10) and the remaining terms in (11).

Accelerated decay. By averaging it is possible (in some specific cases) to achieve the desirable Cramer-Rao
bound, namely, the leading term Λ/Nt could obtain the optimal and incorrigible rate of O(N−1

t ). This is always
achieved in the well-specified case with σ = 1/2, even under short-range dependence (i.e., when ν > 1/2).

As for Theorem 1, the positivity of µν is essential for all terms in (11) even if it does not appear directly. In case
of lack of convexity µ or high levels of dependence constant Dν, we can only ensure convergence by increasing Cρ,
i.e., ensuring positivity of µν; this is illustrated in Sections 4.2 and 4.3 for ARCH models.

The first term of (11) decay at the rate O(N−(2+ρ(β+2σ)−α)/(1+ρ)
t ) or O(N−2(ρ(2σ−β)+α)/(1+ρ)

t ), which suggests choosing
α, β such that α + ρ(2σ/3 − β) = 2/3, e.g., α = 2/3, β = 1/3 and σ = 1/2 yields a decay of O(N−4/3

t ) for any ρ. Thus,
we can robustly achieve O(N−4/3

t ) for any streaming rate ρ by setting α = 2/3 and β = 1/3 if σ = 1/2. In general, the
convergence is resilient to any streaming rate ρ by having α = 2/3 and β = 2σ/3. But taking β > 0 would damage
the variance reduction effect from having Cρ large (e.g., see discussion after Theorem 1). Thus, there is a trade-off

between accelerating the convergence by taking β = 2σ/3 > 0 or taking β = 0 to favor from variance reduction. In
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practice, an immediate choice would be to take β = 0, but if the data or model contains a low amount of noise, it can
be advantageous to raise β to improve convergence (Godichon-Baggioni et al., 2021).

Next, the decay of the second term in (11) is tricky to interpret in a simple manner as it is a mixture of the learning
rate, streaming rate, dependence, and bias (misspecification error). Nevertheless, some observations can be made:
first, having β = 0 is beneficial for the decay rate δ in all cases. Similarly, increasing streaming rate ρ would also
increase the decay. The most important thing to mention is that if Bν , 0 then we would at most have a decay of
O(N−2/3

t ), which is the same as for the SSG in Theorem 1.
Behavior for Bν. The influence of Bν is exclusively contained in Ψt, with the exception of the second term of

(11). Also, increasing ρ will always diminish the bad influence of this bias term. Surprisingly, Ψt → 0 as t → ∞ for
any ν, but long-range dependence is excluded if we wish to obtain the desired rate of δ̄t = O(N−1). However, it does
not seem to have any major influence in our experiments in Section 4.

4. Experiments

A way to illustrate our findings is by use of classical methods that aims to construct models for time-series
analysis, modeling, and prediction of the underlying sequences of real-valued signals (Xt). These methods have
been successfully used in a wide range of applications such as statistics, econometrics, and signal processing because
of their ability to describe or predict time-varying (dependent) processes, e.g., the AutoRegressive (AR), Moving-
Average (MA), and AutoRegressive Moving-Average (ARMA) models are the most well-known models for time-
series (Box et al., 2015; Brockwell and Davis, 2009; Hamilton, 2020). The standard time-series analysis often relies
on independence and constant noise, but it can be relaxed by, e.g., the AutoRegressive Conditional Heteroskedasticity
(ARCH) model (Engle, 1982). Online learning algorithms of (both stationary and non-stationary) dependent time-
series have been studied in Agarwal and Duchi (2012); Anava et al. (2013); Wintenberger (2021).

Our experiment measures the performance by the quadratic mean error E[‖θNt − θ
∗‖2] over one thousand replica-

tions with θ0 and θ∗ drawn randomly according to the models’ specifications. It should be noted that averaging over
several replications gives a reduction in variability, that mainly benefits the SSG. The experiments will demonstrate
how the choice of Cρ and ρ affects the dependence Dν, bias Bν, and the (dependence) penalised convexity constant
µν. To compare different data streams nt = Cρtρ through the selection of Cρ and ρ, we fix the following parameters:
Cγ = 1, α = 2/3, and β = 0.

4.1. AR model

A process (Xt) is called a (zero-mean) AR(1) process, if there exists real-valued parameter θ such that Xt =

θXt−1 + εt, where (εt) is some noise process with zero mean and noise σε . To illustrate the versatility of our results,
we construct some noisy (heavy-tailed) data with long-range dependence: the noisiness is integrated using a Student’s
t-distribution with degrees of freedom above four, denoted by (zt). The long-range dependence is incorporated by
multiplying (zt) with the fractional Gaussian noise Gt(H) = Bt+1(H) − Bt(H), where (Bt(H)) is a fractional Brownian
motion with Hurst index H ∈ (0, 1). (BH

t ) can also be seen as a (zero-mean) Gaussian process with stationary and
self-similar increments. Thus, let the AR(1) process Xt be constructed using the noise process εt =

√
Gt(3/4)zt, where

a Hurst index of H = 3/4 corresponds to ν2
t , κ

2
t , σ

2
t is O(n−1/2

t ) and ν4
t , κ

4
t , σ

4
t is O(n−3/4

t ) in Assumptions 1-p to 4.

4.1.1. Well-specified case
Consider the well-specified case, in which, we estimate an AR(1) model Xt = θXt−1 + εt from the underlying

stationary AR(1) process Xt = θ∗Xt−1 + εt with |θ∗| < 1. We omit to project our estimates as this will hide the
dependence coming from Dν, which is what we wish to explore. For constant streaming-batch sizes of one, the
squared loss is lt(θ) = (Xt − θXt−1)2 with ∇θlt(θ) = −2Xt−1(Xt − θXt−1). This gives a mean squared loss

L(θ) = Et[lt(θ)] = E[(Xt − θXt−1)2] = E[(θ∗Xt−1 + εt − θXt−1)2] = (θ∗ − θ)2E[X2
t−1] + σ2

ε ,

with ∇θL(θ) = −2(θ∗ − θ)E[X2
t−1]. Thus, Assumption 1-p (for p = 2 with σ(Xt−1) ⊆ Ft−1) yields

E[‖E[∇θlt(θ)|Ft−1] − ∇θL(θ)‖2] =E[(E[2Xt−1(θXt−1 − Xt)|Ft−1] − 2(θ − θ∗)E[X2
t−1])2] = 4(θ − θ∗)2E[(X2

t−1 − E[X2
t−1])2],
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meaning that Assumption 1-p is fulfilled if Xt has bounded moments of order p. Moreover, from this we can directly
deduce that Bν = 0. Likewise, the remaining assumptions can be verified, in particular Assumption 4 is satisfied with
Σt = 0.

4.1.2. Misspecified case
Next, assume that the underlying data generating process follows the MA(1)-process, Xt = φεt−1 + εt, with φ ∈ R.

The misspecification error of fitting an AR(1) model to a MA(1) process can be found by minimizing L(θ),

θ∗ = arg min
θ

E[(Xt − θXt−1)2] = arg min
θ

E[(εt + φεt−1 − θ(εt−1 + φεt−2))2] = arg min
θ

E[(εt + (φ − θ)εt−1 − θφεt−2)2]

= arg min
θ

σ2
ε + (φ − θ)2σ2

ε + θ2φ2σ2
ε ≡ arg min

θ
(φ − θ)2 + θ2φ2 = arg min

θ
L(θ),

where L(θ) = (φ−θ)2 +θ2φ2 is a strictly convex function in θ. Thus, ∇θL(θ) = 0⇔ 2(θ−φ)+2θφ2 = 0⇔ 2θ(1+φ2) =

2φ ⇔ θ = φ/(1 + φ2), meaning for φ ∈ R we have θ ∈ (−1/2, 1/2). With this in mind, we can conduct our study of
fitting an AR(1) model to the MA(1) process with φ drawn randomly from R.

4.2. ARCH model
A key element of time series analysis is modeling heteroscedasticity of the conditional variance, e.g., volatility

clustering in financial time-series; ARCH models are some of the most well-known models that incorporate this
feature. A process (εt) is called an ARCH(1) process with parameters α0 and α1 if it satisfiesεt = σtzt,

σ2
t = α0 + α1ε

2
t−1,

(12)

where α0 > 0 and α1 ≥ 0 ensures the non-negativity of the conditional variance process (σ2
t ), and the innovations (zt)

is white noise. The ARCH process parameters are known to be challenging to estimate in empirical applications as the
optimization algorithms can quickly fail or converge to irregular solutions. Therefore, projecting the estimates is vital
for the optimization procedure. A well-discussed problem for the ARCH models is that small values of α0 are tricky
to estimate. Stabilizing the estimation of α0 would not only improve the α0 estimate but also have a positive impact
on the other model parameters. One way to deal with small values of α0 is by the using the models homogeneity, i.e.,
scaling an ARCH process (Xt) with parameters (α0, α1) gives us an ARCH process (

√
λXt) with parameters (λα0, α1)

with same innovations. To simplify our analysis we consider a stationary ARCH(1) model, where we fix α0 at 1
and initialize it at 1/2. We employ the quasi-maximum likelihood procedure for the statistical inference as outlined
in Werge and Wintenberger (2022); the quasi likelihood losses is given by lt(θ) = 2−1(X2

t /σ
2
t (θ) + log(σ2

t (θ)) with
first-order derivative

∇θlt(θ) = ∇θσ
2
t (θ)

(
σ2

t (θ) − X2
t

2σ4
t (θ)

)
where ∇θσ2

t (θ) = (1, X2
t−1)T . Observe that the loss function (lt) itself is not strongly convex but only the objective

function L may be strongly convex; convexity conditions of ARCH was investigated in Wintenberger (2021). There
are different ways to overcome lack of convexity: first, projecting the estimates such that the (conditional) variance
process (σ2

t ) stays away from zero (and close to the unconditional variance). Second, in the specific example of
ARCH model, one could also recover convexity by implementing variance targeting techniques; an example using
Generalized ARCH (GARCH) models can be found in Werge and Wintenberger (2022).

4.3. AutoRegressive (AR)-AutoRegressive Conditional Heteroskedasticity (ARCH) Model
We complete our experiments by considering an AR models with ARCH noise: the process (Xt) is called an

AR(1)-ARCH(1) process with parameters θ, α0 and α1 if it satisfies
Xt = θXt−1 + εt,

εt = σtzt,

σ2
t = α0 + α1ε

2
t−1.

(13)
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where the innovations (zt) is white noise. The statistical inference of this model is done using the squared loss for the
AR-part and the QMLE for the ARCH part, e.g., see Sections 4.1.1 and 4.2.

4.4. Discussion of experiments
The experiments described earlier in Sections 4.1 to 4.3 can be found in Figure 1; here {Cρ = 1, ρ = 0} corresponds

to the classical SG method and its (Polyak-Ruppert) average estimate, {Cρ = 64, ρ = 0} is a mini-batch SSG/ASSG,
and {Cρ = 64, ρ = 1/2} is an increasing SSG/ASSG with initial batch size of Cρ = 64.

Figure 1: Simulation of various data streams nt = Cρtρ. See Section 4 for details.

(a) AR(1): well-specified case. See Section 4.1.1 for details. (b) AR(1): misspecified case. See Section 4.1.2 for details.

(c) ARCH(1). See Section 4.2 for details. (d) AR(1)-ARCH(1). See Section 4.3 for details.

First consider the AR illustration in Figures 1a and 1b: each pair of data streams converges, but it is clear that the
traditional SG method experiences a large amount of noise initially, particularly affecting the average estimate period
but not its decay rate.4 Both methods show a noticeable reduction in variance when Cρ increases, which is particularly
beneficial in the beginning. Nevertheless, too large streaming batch sizes Cρ may hinder the convergence as this leads

4A modification of our average estimate to a weighted average version could improve convergence as it could limit the effect of poor initializa-
tions (Boyer and Godichon-Baggioni, 2020; Mokkadem and Pelletier, 2011). But despite this, we still achieve better convergence for the ASSG
method.
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to too few iterations. Moreover, Figures 1a and 1b indicates improving decay for SSG when increasing the streaming
rate ρ. Conversely, ASSG does not see improvements in the same way, as we do not exploit the potential of using
multiple observations through the β parameter, which could accelerate convergence, e.g., see Godichon-Baggioni
et al. (2021) for a discussion in the (well-specified) i.i.d. case. It is surprising that we do not see any effect from Σt in
Assumption 4, but this seems to be an artifact effect in the proof as we need fourth-order moments.

In Figures 1c and 1d, we have the experiments for the stationary ARCH(1) models, with and without the AR-
part, respectively, as outlined in Sections 4.2 and 4.3. These figures illustrate the lack of convexity when using small
streaming batch sizes, e.g., the traditional SG method and its average estimate, {Cρ = 1, ρ = 0} diverges. Remark that
the lack of convexity is expressed through the lack positively of µν, which only larger streaming batch sizes Cρ can
counteract. Moreover, the traditional SG method, {Cρ = 1, ρ = 0} is omitted in Figure 1d due to lack of convexity.
Figure 1d shows that large (Cρ = 64) and non-decreasing (ρ ≥ 0) streaming batches can converge under difficult
settings.

5. Conclusions

We studied the SO problem in a streaming framework using dependent and biased (gradient) estimates. In partic-
ular, we explored convergence rates of the SSG and ASSG algorithms in a non-asymptotic manner. The theoretical
results formed heuristics that links the level of dependency and convexity to the rest of the model parameters. These
heuristics provided new insights into determining optimal learning rates, which can help increase the stability of
SG-based methods. Our experimentation verified these investigations suggesting large streaming batches with slow
decaying learning rates for highly dependent data sources. Moreover, in large-scale learning problems with depen-
dence, noisy variables, and lack of convexity, we know how to achieve (and accelerate) convergence and reduce noise
through the learning rate and the treatment pattern of the data.

There are several ways to expand our work: first, we can extend our analysis to include streaming batches of any
size (not in terms of streaming batch size and streaming rates). Second, an extension to non-strongly convex goals
could be beneficial as it will provide more insight into how we can choose robust learning rates (Bach and Moulines,
2013; Necoara et al., 2019; Nemirovski et al., 2009). At the same time, this learning rate could be made adaptive
such that it is robust to poor initialization and requires less fine-tuning. This last objective is the most important for
practitioners as it builds a universality across applications.

6. Proofs

Let us start by giving a short sketch of how our proofs section is structured: we start by deriving recursive relations
to the desired quantities. Next, we derive a general bounds to the recursive relationship for any (γt), (νt), (κt), (σt),
and (nt). Finally, we insert the specific functions forms of (γt), (νt), (κt), (σt), and (nt), which yield the results seen
in Theorems 1 and 2. Before doing the proofs, we recall a repeating argument used to non-asymptotically bound
recursive relations of form (14):

Proposition 1 (Godichon-Baggioni et al. (2021)). Suppose (ωt), (αt), (ηt), and (βt) to be some non-negative sequences
satisfying the recursive relation,

ωt ≤ [1 − 2λαt + ηtαt]ωt−1 + βtαt, (14)

with ω0 ≥ 0 and λ > 0. Let Cω ≥ 1 be such that λαt ≤ 1 for all t ≥ tω with tω = inf{t ≥ 1 : Cωηt ≤ λ}. Then, for (αt)
and (ηt) decreasing, we have the upper bound on (ωt) given by

ωt ≤ τt +
1
λ

max
t/2≤i≤t

βi, with τt = exp

−λ t∑
i=t/2

αi


exp

Cω

t∑
i=1

ηiαi

 (ω0 +
1
λ

max
1≤i≤t

βi

)
+

t/2−1∑
i=1

βiαi

 . (15)

Proposition 1 shows a simple way to bound (ωt) in (14); the bound in (15) consists of a sub-exponential term τt

and a noise term λ−1 maxt/2≤i≤t βi. Thus, our attention is on reducing the noise term without damaging the natural
decay of the sub-exponential term where τt → 0 exponentially fast as t → ∞.
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Later in the proofs, we will insert some specific types of the sequences above, resulting in different generalized
harmonic numbers, which can be bounded with the integral test for convergence. Moreover, to present our results in
terms of Nt =

∑t
i=1 ni, we will use that (Nt/2Cρ)1/(1+ρ) ≤ t ≤ (2Nt/Cρ)1/(1+ρ). To ease notation, we will make use of

the functions ψx(t), ψy
x(t) : R+ \ {0} → R, given as

ψx(t) =


t1−x/(1 − x) if x < 1,
1 + log(t) if x = 1,
x/(x − 1) if x > 1,

and ψ
y
x(t) =


t(1−x)/(1+y)/(1 − x) if x < 1,
1 + log(t1/(1+y)) if x = 1,
x/(x − 1) if x > 1,

(16)

with y ∈ R+ such that ψy
x(t) = ψx(t1/(1+y)). Thus,

∑t
i=1 i−x ≤ ψx(t) for any x ≥ 0. Furthermore, with this notation, we

have that ψy
x(t)/t = O(t−(x+y)/(1+y)) if x < 1, ψy

x(t)/t = O(log(t)t−1) if x = 1, and ψy
x(t)/t = O(t−1) if x > 1. Hence,

for any x0, x1, x2, y ≥ 0, ψy
x0 (t)/t = Õ(t−(x0+y)/(1+y)) and ψy

x1 (t)ψy
x2 (t)/t = Õ(t−(x1+x2+y−1)/(1+y)), where the Õ(·) notation

suppress logarithmic factors.

6.1. Proofs for Section 3.1

In the following lemma, we derive an explicit recursive relation of δt = E[‖θt − θ
∗‖2] to non-asymptotically bound

the t-th estimate of (1) for any (γt), (νt), (κt), (σt), and (nt) using classical techniques from stochastic approximations
(Benveniste et al., 2012; Kushner and Yin, 2003). As mentioned in Zinkevich (2003), bounding the projected estimate
in (2) follows directly from that E[‖PΘ(θ) − θ∗‖2] ≤ E[‖θ − θ∗‖2], ∀θ ∈ Rd, ∀θ∗ ∈ Θ, as Θ is a convex body.

Lemma 1 (Second-order moment). Assume that Assumptions 1-p to 3-p hold true for p = 2. Suppose that µν =

µ − 1{νt=C}2Dννt > 0. Let 1{νt=C} and 1{νt¬C} indicate whether (νt) is constant or not. Denote δt = E[‖θt − θ
∗‖2] for

some δ0 ≥ 0, where (θt) follows the recursion in (1) or (2). For any learning rate (γt), we have

δt ≤ πt +
2B2

ν

µµν
max

t/2≤i≤t
ν2

i +
4
µν

max
t/2≤i≤t

σ2
i γi,

with

πt = exp

−µν2
t∑

i=t/2

γi


exp

1{νt¬C}2CδDν

t∑
i=1

νiγi

 exp

2Cδ

t∑
i=1

κ2
i γ

2
i

 (δ0 +
2B2

ν

µµν
max
1≤i≤t

ν2
i +

4
µν

max
1≤i≤t

σ2
i γi

)

+
B2
ν

µ

t/2−1∑
i=1

ν2
i γi + 2

t/2−1∑
i=1

σ2
i γ

2
i

 .
Proof of Lemma 1. By taking the quadratic norm on (1), expanding the norm, and taking the expectation, we can
derive the equation,

δt = δt−1 + γ2
t E[‖∇θlt(θt−1)‖2] − 2γtE[〈∇θlt(θt−1), θt−1 − θ

∗〉], (17)

where δt = E[‖θt − θ
∗‖2] with δ0 ≥ 0. To bound the second term in (17), we use Assumptions 2-p and 3-p for p = 2,

to obtain that

E[‖∇θlt(θt−1)‖2] =E[‖∇θlt(θt−1) − ∇θlt(θ∗) + ∇θlt(θ∗)‖2]

≤2E[‖∇θlt(θt−1) − ∇θlt(θ∗)‖2] + 2E[‖∇θlt(θ∗)‖2] ≤ 2κ2
t δt−1 + 2σ2

t , (18)

as ‖x+y‖p ≤ 2p−1(‖x‖p+‖y‖p). As noted in Bottou et al. (2018); Nesterov et al. (2018), (4) implies that 〈∇θL(θ), θ−θ∗〉 ≥
µ‖θ − θ∗‖2 for all θ ∈ Θ ⊆ Rd. Next, since L is µ−strongly convex (4) and θt−1 is Ft−1-measurable (Assumption 1-p),
we can bound the third term on the right-hand side of (17) by

E[〈∇θlt(θt−1), θt−1 − θ
∗〉] =E[〈∇θL(θt−1), θt−1 − θ

∗〉] + E[〈E[∇θlt(θt−1)|Ft−1] − ∇θL(θt−1), θt−1 − θ
∗〉]

≥µδt−1 − Dννtδt−1 − Bννtδ
1/2
t−1, (19)
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since

E[〈E[∇θlt(θt−1)|Ft−1] − ∇θL(θt−1), θt−1 − θ
∗〉] ≥ −E[‖E[∇θlt(θt−1)|Ft−1] − ∇θL(θt−1)‖‖θt−1 − θ

∗‖]

≥ −
√
E[‖E[∇θlt(θt−1)|Ft−1] − ∇θL(θt−1)‖2]

√
E[‖θt−1 − θ∗‖2] ≥ −

√
ν2

t (D2
νδt−1 + B2

ν)
√
δt−1 ≥ −Dννtδt−1 − Bννt

√
δt−1,

by Jensen’s inequality, Cauchy–Schwarz inequality, Hölder’s inequality, and Assumption 1-p with p = 2. Hence,
applying the inequalities (18) and (19) to (17), yields

δt ≤ [1 − 2µγt + 2Dννtγt + 2κ2
t γ

2
t ]δt−1 + 2Bννtγtδ

1/2
t−1 + 2σ2

t γ
2
t ≤ [1 − (µ − 2Dννt)γt + 2κ2

t γ
2
t ]δt−1 +

B2
ν

µ
ν2

t γt + 2σ2
t γ

2
t ,

using Young’s inequality5; 2Bννtγtδ
1/2
t−1 ≤ µγtδt−1 + B2

νν
2
t γt/µ. Next, we introduce the indicator function for whether

(νt) is constant (= C) or not (¬C), such that

δt ≤ [1 − (µν − 1{νt¬C}2Dννt)γt + 2κ2
t γ

2
t ]δt−1 +

B2
ν

µ
ν2

t γt + 2σ2
t γ

2
t , (20)

with µν = µ − 1{νt=C}2Dννt > 0. Let Cδ be the constant fulfilling the conditions of Proposition 1 such that Cδ is
chosen larger than 1 verifying Cδ(1{νt¬C}2Dννt + 2κ2

t γt) ≤ µν/2 such that it’s imply µνγt/2 ≤ 1, which is possible as
the sequence (νt) is non-increasing, and (κt) and (γt) is decreasing. At last, bounding (20) by Proposition 1 concludes
the proof.

Proof of Theorem 1. Inserting the functions γt = Cγnβt t−α, νt = n−νt , κt = Cκn−κt , σt = Cσn−σt , and nt = Cρtρ into the
bound of Lemma 1 yields

δt ≤πt +
21+2ρνB2

ν

µµνC2ν
ρ t2ρν

+
22+ρ(2σ−β)+αC2

σCγC
β
ρ

µνC2σ
ρ tρ(2σ−β)+α

(21)

≤πt +
2(2+6ρν)/(1+ρ)B2

ν

µµνC
2ν/(1+ρ)
ρ N2ρν/(1+ρ)

t

+
2(7+6ρσ)/(1+ρ)C2

σCγ

µνC
(2σ−β−α)/(1+ρ)
ρ N(ρ(2σ−β)+α)/(1+ρ)

t

,

with µν = µ − 1{ρ=0}2DνC−νρ > 0, and πt can be bounded by

exp

−µνCγC
β
ρ

2

t∑
i=t/2

iρβ−α

exp

1{ρ,0}2CδDνCγC
β
ρ

Cν
ρ

t∑
i=1

iρ(β−ν)−α

 exp

2CδC2
κC

2
γC

2β
ρ

C2κ
ρ

t∑
i=1

i2ρ(β−κ)−2α

δ0 +
2B2

ν

µµνC2ν
ρ

+
4C2

σCγC
β
ρ

µνC2σ
ρ

 +
B2
νCγC

β
ρ

µC2ν
ρ

t/2−1∑
i=1

iρ(β−2ν)−α +
2C2

σC2
γC

2β
ρ

C2σ
ρ

t/2−1∑
i=1

i2ρ(β−σ)−2α


≤ exp

−µνCγC
β
ρt1+ρβ−α

22


exp

1{ρ,0}2CδDνCγC
β
ρψα−ρ(β−ν)(t)

Cν
ρ

 exp

4(α − ρ(β − κ))CδC2
κC

2
γC

2β
ρ

(2α − 2ρ(β − κ) − 1)C2κ
ρ

δ0 +
2B2

ν

µµνC2ν
ρ

+
4C2

σCγC
β
ρ

µνC2σ
ρ

 +
B2
νCγC

β
ρψα−ρ(β−2ν)(t/2)

µC2ν
ρ

+
4(α − ρ(β − σ))C2

σC2
γC

2β
ρ

(2α − 2ρ(β − σ) − 1)C2σ
ρ


≤ exp

− µCγN(1+ρβ−α)/(1+ρ)
t

2(3+ρ(2+β)−α)/(1+ρ)C(1−β−α)/(1+ρ)
ρ


exp

1{ρ,0}2CδDνCγC
β
ρψ

ρ
α−ρ(β−ν)(2Nt/Cρ)

Cν
ρ

 exp

4(α − ρ(β − κ))CδC2
κC

2
γC

2β
ρ

(2α − 2ρ(β − κ) − 1)C2κ
ρ

δ0 +
2B2

ν

µµνC2ν
ρ

+
4C2

σCγC
β
ρ

µνC2σ
ρ

 +
B2
νCγC

β
ρψ

ρ
α−ρ(β−2ν)(Nt/Cρ)

µC2ν
ρ

+
4(α − ρ(β − σ))C2

σC2
γC

2β
ρ

(2α − 2ρ(β − σ) − 1)C2σ
ρ

 , (22)

with help of an integral test for convergence6, ψx(t) and ψ
y
x(t) from (16), and by use of (Nt/2Cρ)1/(1+ρ) ≤ t ≤

(2Nt/Cρ)1/(1+ρ).

5If a, b, c > 0, p, q > 1 such that 1/p + 1/q = 1, then ab ≤ apcp/p + bq/qcq.
6Note that

∑t
i=1 i2ρ(β−κ)−2α ≤ (2α − 2ρ(β − κ))/(2α − 2ρ(β − κ) − 1) and

∑t
i=1 i2ρ(β−σ)−2α ≤ (2α − 2ρ(β − σ))/(2α − 2ρ(β − σ) − 1) as ν > 0,

σ, κ ∈ [0, 1/2], ρ ∈ [0, 1), β ∈ [0, 1], and α − ρβ ∈ (1/2, 1).
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6.2. Proofs for Section 3.2
As in Section 6.1, we begin the following sections by conducting a general study for any (γt), (νt), (κt), (σt), and

(nt), when applying the Polyak-Ruppert averaging estimate (θ̄t) from (3). Moreover, we need to study fourth-order
rate ∆t = E[‖θt − θ

∗‖4] of the recursive estimates (1) and (2).

Lemma 2 (Fourth-order moment). Assume that Assumptions 1-p to 3-p hold true for p = 4. Suppose that µ′ν =

µ − 1{νt=C}2D4
νν

4
t /µ

3 > 0. Let 1{νt=C} and 1{νt¬C} indicate whether (νt) is constant or not. Denote ∆t = E[‖θt − θ
∗‖4] for

some ∆0 ≥ 0, where (θt) follows the recursion in (1) or (2). For any learning rate (γt), we have

∆t ≤Πt +
4B4

ν

µ3µ′ν
max

t/2≤i≤t
ν4

i +
1024
µµ′ν

max
t/2≤i≤t

σ4
i γ

2
i +

96
µ′ν

max
t/2≤i≤t

σ4
i γ

3
i ,

with

Πt = exp

−µ′ν4
t∑

i=t/2

γi


exp

1{νt¬C}C∆D4
ν

µ3

t∑
i=1

ν4
i γi

 exp

256C∆

µ

t∑
i=1

κ4
i γ

3
i

 exp

24C∆

t∑
i=1

κ4
i γ

4
i


(
∆0 +

4B4
ν

µ3µ′ν
max
1≤i≤t

ν4
i +

1024
µµ′ν

max
1≤i≤t

σ4
i γ

2
i +

96
µ′ν

max
1≤i≤t

σ4
i γ

3
i

)
+

B4
ν

µ3

t/2−1∑
i=1

ν4
i γi +

256
µ

t/2−1∑
i=1

σ4
i γ

3
i + 24

t/2−1∑
i=1

σ4
i γ

4
i

 .
Proof of Lemma 2. The derivation of the recursive step sequence for the fourth-order moment ∆t of (1) follows the
same methodology as for the second-order moment in Lemma 1. In the same way we deduced (17), we can take the
quadratic norm on (1), expand the norm, and take the square on both sides, to derive the equation

‖θt − θ
∗‖4 =(‖θt−1 − θ

∗‖2 + γ2
t ‖∇θlt(θt−1)‖2 − 2γt〈∇θlt(θt−1), θt−1 − θ

∗〉)2

=‖θt−1 − θ
∗‖4 + γ4

t ‖∇θlt(θt−1)‖4 + 4γ2
t 〈∇θlt(θt−1), θt−1 − θ

∗〉2 + 2γ2
t ‖θt−1 − θ

∗‖2‖∇θlt(θt−1)‖2

− 4γt‖θt−1 − θ
∗‖2〈∇θlt(θt−1), θt−1 − θ

∗〉 − 4γ3
t ‖∇θlt(θt−1)‖2〈∇θlt(θt−1), θt−1 − θ

∗〉.

Taking the expectation on both sides of the equality above gives us

∆t =∆t−1 + γ4
t E[‖∇θlt(θt−1)‖4] + 4γ2

t E[〈∇θlt(θt−1), θt−1 − θ
∗〉2] + 2γ2

t E[‖θt−1 − θ
∗‖2‖∇θlt(θt−1)‖2]

− 4γtE[‖θt−1 − θ
∗‖2〈∇θlt(θt−1), θt−1 − θ

∗〉] − 4γ3
t E[‖∇θlt(θt−1)‖2〈∇θlt(θt−1), θt−1 − θ

∗〉]

≤∆t−1 + γ4
t E[‖∇θlt(θt−1)‖4] + 6γ2

t E[‖θt−1 − θ
∗‖2‖∇θlt(θt−1)‖2]

− 4γtE[‖θt−1 − θ
∗‖2〈∇θlt(θt−1), θt−1 − θ

∗〉] + 4γ3
t E[‖θt−1 − θ

∗‖‖∇θlt(θt−1)‖3],

by use of Cauchy-Schwarz inequality. Next, Young’s inequality yields

4γ3
t ‖θt−1 − θ

∗‖‖∇θlt(θt−1)‖3 ≤2γ4
t ‖∇θlt(θt−1)‖4 + 2γ2

t ‖θt−1 − θ
∗‖2‖∇θlt(θt−1)‖2,

8γ2
t ‖θt−1 − θ

∗‖2‖∇θlt(θt−1)‖2 ≤(µγt/2)‖θt−1 − θ
∗‖4 + 32µ−1γ3

t ‖∇θlt(θt−1)‖4,

which helps us to obtain the simplified expression,

∆t ≤[1 + µγt/2]∆t−1 + 3γ4
t E[‖∇θlt(θt−1)‖4] + 32µ−1γ3

t E[‖∇θlt(θt−1)‖4] − 4γtE[‖θt−1 − θ
∗‖2〈∇θlt(θt−1), θt−1 − θ

∗〉].

To bound the fourth-order term E[‖∇θlt(θt−1)‖4], we make use of the Lipschitz continuity of ∇θlt (Assumption 2-p),
Assumption 3-p, and that θt−1 is Ft−1-measurable (Assumption 1-p), to have that

E[‖∇θlt(θt−1)‖4] ≤ 8κ4
t ∆t−1 + 8σ4

t , (23)

using that ‖x + y‖p ≤ 2p−1(‖x‖p + ‖y‖p) for any p ∈ N. Thus,

∆t ≤[1 + µγt/2 + 256µ−1κ4
t γ

3
t + 24κ4

t γ
4
t ]∆t−1 + 256µ−1σ4

t γ
3
t + 24σ4

t γ
4
t − 4γtE[‖θt−1 − θ

∗‖2〈∇θlt(θt−1), θt−1 − θ
∗〉].

(24)
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Next, using the same arguments as in the proof of Lemma 1, Young’s inequality, and Assumption 1-p with p = 4, we
have

4γtE[‖θt−1 − θ
∗‖2〈E[∇θlt(θt−1)|Ft−1] − ∇θL(θt−1), θt−1 − θ

∗〉] ≥ −4γtE[‖θt−1 − θ
∗‖3‖E[∇θlt(θt−1)|Ft−1] − ∇θL(θt−1)‖]

≥ −3µγt∆t−1 − µ
−3γtE[‖E[∇θlt(θt−1)|Ft−1] − ∇θL(θt−1)‖4] ≥ −3µγt∆t−1 − µ

−3γtD4
νν

4
t ∆t−1 − µ

−3γtB4
νν

4
t ,

such that the last term of (24) can be bounded as follows,

4γtE[‖θt−1 − θ
∗‖2〈∇θlt(θt−1), θt−1 − θ

∗〉] = 4γtE[‖θt−1 − θ
∗‖2〈E[∇θlt(θt−1)|Ft−1], θt−1 − θ

∗〉]

= 4γtE[‖θt−1 − θ
∗‖2〈∇θL(θt−1), θt−1 − θ

∗〉] + 4γtE[‖θt−1 − θ
∗‖2〈E[∇θlt(θt−1)|Ft−1] − ∇θL(θt−1), θt−1 − θ

∗〉]

≥ µγt∆t−1 − µ
−3γtD4

νν
4
t ∆t−1 − µ

−3γtB4
νν

4
t .

Indeed, inserting this into (24) gives us

∆t ≤

[
1 −

(
µ

2
−

D4
νν

4
t

µ3

)
γt +

256κ4
t γ

3
t

µ
+ 24κ4

t γ
4
t

]
∆t−1 +

B4
νν

4
t γt

µ3 +
256σ4

t γ
3
t

µ
+ 24σ4

t γ
4
t ,

which can be modified with use the indicator function that determines whether (νt) is constant (= C) or not (¬C), such
that

∆t ≤

[
1 −

(
µν
2
−
1{νt¬C}D

4
νν

4
t

µ3

)
γt +

256κ4
t γ

3
t

µ
+ 24κ4

t γ
4
t

]
∆t−1 +

B4
νν

4
t γt

µ3 +
256σ4

t γ
3
t

µ
+ 24σ4

t γ
4
t , (25)

with µ′ν = µ − 1{νt=C}2D4
νν

4
t /µ

3 > 0. Note that µν from Lemma 1 is lower bounded by µ′ν, and strictly lower bounded
for (νt) constant, i.e., µν > µ′ν > 0. Let C∆ ≥ 1 fulfill the conditions of Proposition 1; the C∆ constant is chosen such
that C∆(1{νt¬C}D

4
νν

4
t /µ

3 + 256κ4
t γ

2
t /µ + 24κ4

t γ
3
t ) ≤ µ′ν/2 implying µ′νγt/2 ≤ 1, which is possible as the sequence (νt) is

non-increasing, and (κt) and (γt) decrease. Hence, by applying Proposition 1 on (25), we obtain the desired bound for
∆t.

Corollary 1 (Fourth-order moment). Assume that Assumptions 1-p to 3-p hold true for p = 4. Let γt = Cγnβt t−α,
νt = n−νt , κt = Cκn−κt , and σt = Cσn−σt with ν ∈ (0,∞), β ∈ [0, 1], κ, σ ∈ [0, 1/2], and Cγ,Cκ,Cσ > 0. Suppose
nt = Cρtρ with ρ ∈ [0, 1) and Cρ ∈ N, such that µ′ν = µ − 1{ρ=0}2D4

ν/µ
3C4ν

ρ > 0. Denote ∆t = E[‖θt − θ
∗‖4] for some

∆0 ≥ 0, where (θt) follows the recursion in (1) or (2). For α − ρβ ∈ (1/2, 1), we have

∆t ≤ Πt +
22+4ρνB4

ν

µ3µ′νC
4ν
ρ t4ρν

+
22ρ(2σ−β)+2α(210µ−1 + 27CγC

β
ρ)C4

σC2
γC

2β
ρ

µ′νC
4σ
ρ t2ρ(2σ−β)+2α

, (26)

with Πt given in (27) such that Πt = O(exp(−N(1+ρβ−α)/(1+ρ)
t )).

Proof of Corollary 1. Inserting the functions γt = Cγnβt t−α, νt = n−νt , κt = Cκn−κt , σt = Cσn−σt , and nt = Cρtρ into the
bound of Lemma 2 and using γ3

t ≤ CγC
β
ργ

2
t as α−ρβ ∈ (1/2, 1), yields (26) with µ′ν = µ−1{ρ=0}2D4

ν/µ
3C4ν

ρ > 0, where
Πt can be bounded as follows,

exp

−µ′νCγC
β
ρ

4

t∑
i=t/2

iρβ−α

exp

1{ρ,0}C∆D4
νCγC

β
ρ

µ3C4ν
ρ

t∑
i=1

iρ(β−4ν)−α

 exp

28C∆C4
κC

3
γC

3β
ρ

µC4κ
ρ

t∑
i=1

iρ(3β−4κ)−3α


exp

24C∆C4
κC

4
γC

4β
ρ

C4κ
ρ

t∑
i=1

i4ρ(β−κ)−4α


∆0 +

4B4
ν

µ3µ′νC
4ν
ρ

+
1024C4

σC2
γC

2β
ρ

µµ′νC
4σ
ρ

+
96C4

σC3
γC

3β
ρ

µ′νC
4σ
ρ


+

B4
νCγC

β
ρ

µ3C4ν
ρ

t/2−1∑
i=1

iρ(β−4ν)−α +
256C4

σC3
γC

3β
ρ

µC4σ
ρ

t/2−1∑
i=1

iρ(3β−4σ)−3α +
24C4

σC4
γC

4β
ρ

C4σ
ρ

t/2−1∑
i=1

i4ρ(β−σ)−4α


≤ exp

−µ′νCγC
β
ρt1+ρβ−α

23


exp

1{ρ,0}C∆D4
νCγC

β
ρψ

0
α−ρ(β−4ν)(t)

µ3C4ν
ρ

 exp

210C∆C4
κC

3
γC

3β
ρ

µC4κ
ρ

 exp

26C∆C4
κC

4
γC

4β
ρ

C4κ
ρ

∆0 +
22B4

ν

µ3µ′νC
4ν
ρ

+
210C4

σC2
γC

2β
ρ

µµ′νC
4σ
ρ

+
27C4

σC3
γC

3β
ρ

µ′νC
4σ
ρ

 +
B4
νCγC

β
ρψ

0
α−ρ(β−4ν)(t/2)

µ3C4ν
ρ

+
210C4

σC3
γC

3β
ρ

µC4σ
ρ

+
26C4

σC4
γC

4β
ρ

C4σ
ρ

 , (27)

14



with help of the integral test for convergence;
∑t

i=1 iρ(3β−4x)−3α ≤ 3 < 22 and
∑t

i=1 i4ρ(β−x)−4α ≤ 2 for any x ≥ 0 as
α − ρβ ∈ (1/2, 1).

Lemma 3. Assume that Assumptions 1-p to 3-p for p = 4 and Assumption 4 hold true. Denote δ̄t = E[‖θ̄t − θ
∗‖2] with

θ̄n given by (3), where (θt) follows the recursion in (1) or (2). In addition, Assumption 5 must hold true if (θt) follows
the recursion in (2), which is indicated by 1{DΘ<∞}. For any learning rate (γt), we have

δ̄1/2
t ≤

Λ1/2

Nt

 t∑
i=1

n2(1−σ)
i

1/2

+
C′1/2σ

µNt

 t∑
i=1

n2(1−σ−σ′)
i

1/2

+
21/2B1/2

ν

µNt

 t∑
j=2

n jν j

j−1∑
i=1

niσi




1/2

+
1
µNt

t−1∑
i=1

δ1/2
i

∣∣∣∣∣ni+1

γi+1
−

ni

γi

∣∣∣∣∣
+

nt

µγtNt
δ1/2

t +
n1

µNt

(
1
γ1

+ 21/2(C∇ + κ1)
)
δ1/2

0 +
21/2

µNt

 t−1∑
i=1

n2
i+1(C2

∇ + κ2
i+1)δi


1/2

+
23/4

µNt

 t−1∑
j=1

(Dνδ
1/2
j + 21/2Bν)n j+1ν j+1

j−1∑
i=0

(C∇ + κi+1)ni+1δ
1/2
i




1/2

+
C′′
∇

µNt

t−1∑
i=0

ni+1∆
1/2
i ,

with Λ = Tr(∇2
θL(θ∗)−1Σ∇2

θL(θ∗)−1) and C′′
∇

= C′
∇
/2 + 1{DΘ<∞}2GΘ/D2

Θ
.

Proof of Lemma 3. The proof is divided into two parts; in the first part, (θt) follows (1), and the second part considers
(2). Assume that (θt) is derived from the recursion in (1): following Polyak and Juditsky (1992), we rewrite (1) to

1
γt

(θt−1 − θt) = ∇θlt(θt−1), (28)

where ∇θlt(θt−1) = n−1
t

∑nt
i=1 ∇θlt,i(θt−1). Observe that

∇2
θL(θ∗)(θt−1 − θ

∗) = − ∇θlt(θ∗) + ∇θlt(θt−1) − [∇θlt(θt−1) − ∇θlt(θ∗) − ∇θL(θt−1)] − [∇θL(θt−1) − ∇2
θL(θ∗)(θt−1 − θ

∗)],

where ∇2
θL(θ∗) is invertible with lowest eigenvalue greater than µ, i.e., ∇2

θL(θ∗) ≥ µId. Thus, summing the parts, taking
the quadratic norm and expectation, and using Minkowski’s inequality, gives us the inequality,

(
E

[∥∥∥θ̄t − θ
∗
∥∥∥2

])1/2
≤

E

∥∥∥∥∥∥∥∇2

θL (θ∗)−1 1
Nt

t∑
i=1

ni∇θli (θ∗)

∥∥∥∥∥∥∥
2


1/2

+

E

∥∥∥∥∥∥∥∇2

θL (θ∗)−1 1
Nt

t∑
i=1

ni∇θli (θi−1)

∥∥∥∥∥∥∥
2


1/2

+

E

∥∥∥∥∥∥∥∇2

θL (θ∗)−1 1
Nt

t∑
i=1

ni
[
∇θli (θi−1) − ∇θli (θ∗) − ∇θL (θi−1)

]∥∥∥∥∥∥∥
2


1/2

+

E

∥∥∥∥∥∥∥∇2

θL (θ∗)−1 1
Nt

t∑
i=1

ni

[
∇θL (θi−1) − ∇2

θL (θ∗) (θi−1 − θ
∗)
]∥∥∥∥∥∥∥

2


1/2

. (29)

As (∇θlt(θ∗)) is a square-integrable sequences on Rd (Assumption 1-p), we have

E


∥∥∥∥∥∥∥∇2

θL (θ∗)−1 1
Nt

t∑
i=1

ni∇θli (θ∗)

∥∥∥∥∥∥∥
2 =

1
N2

t

t∑
i=1

n2
i E

[∥∥∥∇2
θL (θ∗)−1

∇θli (θ∗)
∥∥∥2

]
+

2
N2

t

∑
1≤i< j≤t

nin jE
[〈
∇2
θL (θ∗)−1

∇θli (θ∗) ,∇2
θL (θ∗)−1

∇θl j (θ∗)
〉]
,

where the first term can be bounded by Assumption 4,

1
N2

t

t∑
i=1

n2
i E

[∥∥∥∇2
θL (θ∗)−1

∇θli (θ∗)
∥∥∥2

]
≤

1
N2

t

t∑
i=1

n2(1−σ)
i

Tr
[
∇2
θL(θ∗)−1Σ∇2

θL(θ∗)−1
]

+
C′σ

µ2n2σ′
i


=

Λ

N2
t

t∑
i=1

n2(1−σ)
i +

C′σ
µ2N2

t

t∑
i=1

n2(1−σ−σ′)
i ,
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where Λ denotes Tr[∇2
θL(θ∗)−1Σ∇2

θL(θ∗)−1]. For the next term,

2
N2

t

∑
1≤i< j≤t

nin jE
[〈
∇2
θL (θ∗)−1

∇θli (θ∗) ,∇2
θL (θ∗)−1

∇θl j (θ∗)
〉]
≤

2
µ2N2

t

∑
1≤i< j≤t

nin jE
[〈
∇θli (θ∗) ,∇θl j (θ∗)

〉]
=

2
µ2N2

t

∑
1≤i< j≤t

nin jE
[〈
∇θli (θ∗) ,E[∇θl j(θ∗)|F j−1] − ∇θL(θ∗)

〉]
≤

2
µ2N2

t

∑
1≤i< j≤t

nin jE
[
‖∇θli (θ∗)‖

∥∥∥[E[∇θl j(θ∗)|F j−1] − ∇θL(θ∗)]
∥∥∥]

≤
2

µ2N2
t

∑
1≤i< j≤t

nin j

√
E

[
‖∇θli (θ∗)‖2

]√
E

[∥∥∥[E[∇θl j(θ∗)|F j−1] − ∇θL(θ∗)]
∥∥∥2

]

≤
2Bν
µ2N2

t

∑
1≤i< j≤t

nin jσiν j =
2Bν
µ2N2

t

t∑
j=2

n jν j

j−1∑
i=1

niσi

 ,
by Cauchy-Schwarz inequality, Hölder’s inequality, and Assumptions 1-p and 3-p. Thus,E


∥∥∥∥∥∥∥∇2

θL (θ∗)−1 1
Nt

t∑
i=1

ni∇θli (θ∗)

∥∥∥∥∥∥∥
2


1/2

≤
Λ1/2

Nt

 t∑
i=1

n2(1−σ)
i

1/2

+
C′1/2σ

µN1/2
t

 t∑
i=1

n2(1−σ−σ′)
i

1/2

+
21/2B1/2

ν

µNt

 t∑
j=2

n jν j

j−1∑
i=1

niσi




1/2

. (30)

Next, by the relation in (28), we have

1
Nt

t∑
i=1

ni∇θli (θi−1) =
1
Nt

t∑
i=1

ni

γi
(θi−1 − θi) =

1
Nt

t−1∑
i=1

(θi − θ
∗)

(
ni+1

γi+1
−

ni

γi

)
−

1
Nt

(θt − θ
∗)

nt

γt
+

1
Nt

(θ0 − θ
∗)

n1

γ1
,

leading to∥∥∥∥∥∥∥∇2
θL (θ∗)−1 1

Nt

t∑
i=1

ni∇θli (θi−1)

∥∥∥∥∥∥∥ ≤ 1
µNt

t−1∑
i=1

‖θi − θ
∗‖

∣∣∣∣∣ni+1

γi+1
−

ni

γi

∣∣∣∣∣ +
1
µNt
‖θt − θ

∗‖
nt

γt
+

1
µNt
‖θ0 − θ

∗‖
n1

γ1
.

Hence, with the notation of δt = E[‖θt − θ
∗‖2], the second term can be bounded byE


∥∥∥∥∥∥∥∇2

θL (θ∗)−1 1
Nt

t∑
i=1

ni∇θli (θi−1)

∥∥∥∥∥∥∥
2


1/2

≤
1
µNt

t−1∑
i=1

δ
1
2
i

∣∣∣∣∣ni+1

γi+1
−

ni

γi

∣∣∣∣∣ +
nt

µγtNt
δ

1
2
t +

n1

µγ1Nt
δ

1
2
0 . (31)

For the third term, we can derive it as

E


∥∥∥∥∥∥∥∇2

θL(θ∗)−1 1
Nt

t∑
i=1

ni
[
∇θli(θi−1) − ∇θli(θ∗) − ∇θL(θi−1)

]∥∥∥∥∥∥∥
2 =

1
µ2N2

t

t∑
i=1

n2
i E

[
‖∇θli(θi−1) − ∇θli(θ∗) − ∇θL(θi−1)‖2

]
+

2
µ2N2

t

t∑
i< j

nin jE
[〈
∇θli(θi−1) − ∇θli(θ∗) − ∇θL(θi−1),∇θl j(θ j−1) − ∇θl j(θ∗) − ∇θL(θ j−1)

〉]
,

where
t∑

i=1

n2
i E

[
‖∇θli (θi−1) − ∇θli (θ∗) − ∇θL (θi−1)‖2

]
≤2

t∑
i=1

n2
i E

[
‖∇θli (θi−1) − ∇θli (θ∗)‖2

]
+ 2

t∑
i=1

n2
i E

[
‖∇θL (θi−1)‖2

]
≤2

t∑
i=1

n2
i κ

2
i δi−1 + 2C2

∇

t∑
i=1

n2
i δi−1,
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by the Cauchy-Schwarz inequality, Assumption 2-p and (8). For the other term, we note that

E[〈∇θli(θi−1) − ∇θli(θ∗) − ∇θL(θi−1),∇θl j(θ j−1) − ∇θl j(θ∗) − ∇θL(θ j−1)〉]
=E[〈∇θli(θi−1) − ∇θli(θ∗) − [∇θL(θi−1) − ∇θL(θ∗)],E[∇θl j(θ j−1)|F j−1] − ∇θL(θ j−1) − [E[∇θl j(θ∗)|F j−1] − ∇θL(θ∗)]〉]

≤
√
E[‖∇θli(θi−1) − ∇θli(θ∗) − [∇θL(θi−1) − ∇θL(θ∗)]‖2]√
E[‖E[∇θl j(θ j−1)|F j−1] − ∇θL(θ j−1) − [E[∇θl j(θ∗)|F j−1] − ∇θL(θ∗)]‖2]

≤
√

2E[‖∇θli(θi−1) − ∇θli(θ∗)‖2] + 2E[‖∇θL(θi−1) − ∇θL(θ∗)‖2]√
2E[‖E[∇θl j(θ j−1)|F j−1] − ∇θL(θ j−1)‖2] + 2E[‖E[∇θl j(θ∗)|F j−1] − ∇θL(θ∗)‖2]

≤

√
2κ2

i δi−1 + 2C2
∇
δi−1

√
2D2

νν
2
jδ j−1 + 4B2

νν
2
j ≤ 21/2(κiδ

1/2
i−1 + C∇δ

1/2
i−1)(Dνν jδ

1/2
j−1 + 21/2Bνν j),

using Fi−1 ⊂ F j−1 since i < j, Cauchy–Schwarz inequality, Hölder’s inequality, ‖a + b‖p ≤ 2p−1(‖a‖p + ‖b‖p) with
p ∈ N, Assumptions 1-p and 2-p, and (8). Thus,E


∥∥∥∥∥∥∥∇2

θL(θ∗)−1 1
Nt

t∑
i=1

ni
[
∇θli(θi−1) − ∇θli(θ∗) − ∇θL(θi−1)

]∥∥∥∥∥∥∥
2


1/2

≤
21/2

µNt

 t∑
i=1

n2
i κ

2
i δi−1

1/2

+
21/2C∇
µNt

 t∑
i=1

n2
i δi−1

1/2

+
23/4

µNt

 t∑
j=2

(Dνδ
1/2
j−1 + 21/2Bν)n jν j

j−1∑
i=1

(C∇ + κi)niδ
1/2
i−1




1/2

.

(32)

The last term is directly bounded by (9), using that (9) implies ∀θ, ‖∇θL(θ) − ∇2
θL(θ∗)(θ − θ∗)‖ ≤ C′

∇
‖θ − θ∗‖2/2

(Nesterov and Polyak, 2006), giving usE

∥∥∥∥∥∥∥∇2

θL (θ∗)−1 1
Nt

t∑
i=1

ni

[
∇θL (θi−1) − ∇2

θL (θ∗) (θi−1 − θ
∗)
]∥∥∥∥∥∥∥

2


1
2

≤
C′
∇

2µNt

t∑
i=1

ni∆
1/2
i−1, (33)

with the notion ∆t = E[‖θt − θ
∗‖4]. Combining the terms (30) to (33) into (29), gives us

δ̄1/2
t ≤

Λ1/2

Nt

 t∑
i=1

n2(1−σ)
i

1/2

+
C′1/2σ

µNt

 t∑
i=1

n2(1−σ−σ′)
i

1/2

+
21/2B1/2

ν

µNt

 t∑
j=2

n jν j

j−1∑
i=1

niσi




1/2

+
1
µNt

t−1∑
i=1

δ1/2
i

∣∣∣∣∣ni+1

γi+1
−

ni

γi

∣∣∣∣∣
+

nt

µγtNt
δ1/2

t +
n1

µγ1Nt
δ1/2

0 +
21/2

µNt

 t∑
i=1

n2
i κ

2
i δi−1

1/2

+
21/2C∇
µNt

 t∑
i=1

n2
i δi−1

1/2

+
23/4

µNt

 t∑
j=2

(Dνδ
1/2
j−1 + 21/2Bν)n jν j

j−1∑
i=1

(C∇ + κi)niδ
1/2
i−1




1/2

+
C′
∇

2µNt

t∑
i=1

ni∆
1/2
i−1,

which gives the desired by shifting the indices and collecting the δ0 terms,

δ̄1/2
t ≤

Λ1/2

Nt

 t∑
i=1

n2(1−σ)
i

1/2

+
C′1/2σ

µNt

 t∑
i=1

n2(1−σ−σ′)
i

1/2

+
21/2B1/2

ν

µNt

 t∑
j=2

n jν j

j−1∑
i=1

niσi




1/2

+
1
µNt

t−1∑
i=1

δ1/2
i

∣∣∣∣∣ni+1

γi+1
−

ni

γi

∣∣∣∣∣
+

nt

µγtNt
δ1/2

t +
n1

µNt

(
1
γ1

+ 21/2(C∇ + κ1)
)
δ1/2

0 +
21/2

µNt

 t−1∑
i=1

n2
i+1(C2

∇ + κ2
i+1)δi


1/2

+
23/4

µNt

 t−1∑
j=1

(Dνδ
1/2
j + 21/2Bν)n j+1ν j+1

j−1∑
i=0

(C∇ + κi+1)ni+1δ
1/2
i




1/2

+
C′
∇

2µNt

t−1∑
i=0

ni+1∆
1/2
i . (34)
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Now, assume that (θt) is derived from the recursion in (2): as above, we follow the steps of Polyak and Juditsky (1992),
in which, we can rewrite (2) to

1
γt

(θt−1 − θt) = ∇θlt(θt−1) −
1
γt

Ωt,

where Ωt = PΘ(θt−1 − γt∇θlt(θt−1)) − (θt−1 − γt∇θlt(θt−1)). Thus, summing the parts, taking the norm and expectation,
and using the Minkowski’s inequality, yields the same terms as in (29), but with an additional term regarding Ωt,
namelyE


∥∥∥∥∥∥∥∇2

θL (θ∗)−1 1
Nt

t∑
i=1

ni

γi
Ωi

∥∥∥∥∥∥∥
2


1/2

≤
1
µNt

t∑
i=1

ni

γi

√
E

[
‖Ωi‖

2
]

=
1
µNt

t∑
i=1

ni

γi

√
E

[
‖Ωi‖

2
1{θi−1−γi∇θli(θi−1)<Θ}

]
, (35)

using Godichon-Baggioni (2016, Lemma 4.3). Next, we note that E[‖Ωt‖
2
1{θt−1−γt∇θlt(θt−1)<Θ}] = 4γ2

t G2
Θ
P[θt−1 −

γt∇θlt(θt−1) < Θ], since

‖Ωt‖
2 = ‖PΘ (θt−1 − γt∇θlt (θt−1)) − θt−1 + γt∇θlt (θt−1)‖2 ≤ 2 ‖PΘ (θt−1 − γt∇θlt (θt−1)) − θt−1‖

2 + 2γ2
t ‖∇θlt (θt−1)‖2

=2 ‖PΘ (θt−1 − γt∇θlt (θt−1)) − PΘ (θt−1)‖2 + 2γ2
t ‖∇θlt (θt−1)‖2 ≤ 2 ‖θt−1 − γt∇θlt (θt−1) − θt−1‖

2 + 2γ2
t ‖∇θlt (θt−1)‖2

=4γ2
t ‖∇θlt (θt−1)‖2 ≤ 4γ2

t G2
Θ,

asPΘ is Lipschitz and ‖∇θlt(θ)‖2 ≤ G2
Θ

for any θ ∈ Θ. Moreover, as in Godichon-Baggioni and Portier (2017, Theorem
4.2) with use of Lemma 2, we know that P[θt−1 − γt∇θlt(θt−1) < Θ] ≤ ∆t/D4

Θ
, where DΘ = infθ∈∂Θ‖θ − θ

∗‖ with ∂Θ

denoting the frontier of Θ. Thus, (35) can then be bounded by

1
µNt

t∑
i=1

ni

γi

√
E

[
‖Ωi‖

2
1{θi−1−γi∇θli(θi−1)<Θ}

]
≤

2GΘ

µD2
Θ

Nt

t∑
i=1

ni∆
1/2
i ≤

2GΘ

µD2
Θ

Nt

t∑
i=1

ni+1∆
1/2
i ,

since the sequence (nt) is either constant or increasing, meaning ∀t, nt/nt+1 ≤ 1. At last, this term can be combined
into (34) with use of C′′

∇
= C′

∇
/2 + 1{DΘ<∞}2GΘ/D2

Θ
, which indicates whether (θt) follows (2) or not.

Proof of Theorem 2. The result follows by simplifying and bounding each term of Lemma 3, with use of Theorem 1
and Lemma 2. Thus, by inserting γt = Cγnβt t−α, νt = n−νt , κt = Cκn−κt , σt = Cσn−σt , and nt = Cρtρ into the bound of
Lemma 3, we obtain

δ̄1/2
t ≤

Λ1/2

N1/2
t

1{σ=1/2} +
Λ1/2C1−σ

ρ

Nt

 t∑
i=1

i2ρ(1−σ)

1/2

1{σ,1/2} +
C′1/2σ C1−σ−σ′

ρ

µNt

 t∑
i=1

i2ρ(1−σ−σ′)

1/2

+
21/2B1/2

ν C1/2
σ Cρ

µC(σ+ν)/2
ρ Nt

 t∑
j=2

 jρ(1−ν)
j−1∑
i=1

iρ(1−σ)




1/2

+
(ρ(1 − β) + α)Cρ

µCγC
β
ρNt

t−1∑
i=1

iρ(1−β)+α−1δ1/2
i +

Cρtρ(1−β)+α

µCγC
β
ρNt

δ1/2
t

+
Cρ

µNt

 1

CγC
β
ρ

+ 21/2
(
Cκ

Cκ
ρ

+ C∇

) δ1/2
0 +

21/2+ρ(1−κ)CκCρ

µCκ
ρNt

 t−1∑
i=1

i2ρ(1−κ)δi


1/2

+
21/2+ρC∇Cρ

µNt

 t−1∑
i=1

i2ρδi


1/2

+
23/4+ρ(2−ν)/2Cρ

µCν/2
ρ Nt

 t−1∑
j=1

(Dνδ
1/2
j + 21/2Bν) jρ(1−ν)

j−1∑
i=1

(
C∇ +

2ρκCκ

Cκ
ρiρκ

)
iρδ1/2

i




1/2

+
2ρC′′

∇
Cρ

µNt

t−1∑
i=0

iρ∆1/2
i ,

using ni+1/ni ≤ 2ρ and that |ni+1/γi+1 − ni/γi| ≤ (ρ(1 − β) + α)C1−β
ρ /Cγi1−ρ(1−β)−α as ρ(1 − β) + α ≤ 1 − ρ with

ρ ∈ [0, 1). Next, as σ ∈ [0, 1/2] and σ′ ∈ (0, 1/2], we have
∑t

i=1 i2ρ(1−σ−σ′) ≤ t1+2ρ(1−σ−σ′)/(1 + 2ρ(1−σ−σ′)), where
t ≤ (2Nt/Cρ)1/(1+ρ). Similarly, as ν ∈ (0,∞), we have that

t−1∑
j=2

 jρ(1−ν)
j−1∑
i=1

iρ(1−σ)

 ≤ t−1∑
j=1

jρ(1−ν)
t−1∑
i=1

iρ(1−σ) ≤ ψρ(ν−1)(t)ψρ(σ−1)(t) ≤ ψ
ρ
ρ(ν−1)(2Nt/Cρ)ψ

ρ
ρ(σ−1)(2Nt/Cρ),
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using the ψ-function defined in (16), such that
√
ψ
ρ
ρ(σ−1)(2Nt/Cρ)ψ

ρ
ρ(ν−1)(2Nt/Cρ)/Nt ≤ Õ(N−ρ(σ+ν)/2(1+ρ)

t ). Let Dκ
∇

denote C∇ + 2ρκCκ/Cκ
ρ with κ ∈ [0, 1/2], such that

21/2+ρ(1−κ)CκCρ

µCκ
ρNt

 t−1∑
i=1

i2ρ(1−κ)δi


1/2

+
21/2+ρC∇Cρ

µNt

 t−1∑
i=1

i2ρδi


1/2

≤
21/2+ρDκ

∇
Cρ

µNt

 t−1∑
i=1

i2ρδi


1/2

,

and, likewise, we have that

t−1∑
j=1

(Dνδ
1/2
j + 21/2Bν) jρ(1−ν)

j−1∑
i=1

(
C∇ +

2ρκCκ

Cκ
ρiρκ

)
iρδ1/2

i

 ≤ Dκ
∇

t−1∑
j=1

(Dνδ
1/2
j + 21/2Bν) jρ(1−ν)

j−1∑
i=1

iρδ1/2
i

 .
From (21) we know that δt ≤ Dδ/tδ with

Dδ = sup
t∈N

πttδ +
21+2ρνB2

ν

µµνC2ν
ρ

+
22+ρ(2σ−β)+αC2

σCγC
β
ρ

µνC2σ
ρ

,

and δ = 1{Bν=0}(ρ(2σ − β) + α) + 1{Bν,0}min{ρ(2σ − β) + α, 2ρν}, yielding

t−1∑
j=1

(Dνδ
1/2
j + 21/2Bν) jρ(1−ν)

j−1∑
i=1

iρδ1/2
i

 ≤ D1/2
δ

t−1∑
j=1

(DνD
1/2
δ j−δ/2 + 21/2Bν) jρ(1−ν)

j−1∑
i=1

iρ−δ/2


≤ D1/2
δ

t−1∑
j=1

(
(DνD

1/2
δ j−δ/2 + 21/2Bν) jρ(1−ν)ψδ/2−ρ(t)

)
≤ DνDδψδ/2−ρ(t)ψδ/2+ρ(ν−1)(t) + 21/2BνD

1/2
δ ψδ/2−ρ(t)ψρ(ν−1)(t)

≤ DνDδψ
ρ
δ/2−ρ(2Nt/Cρ)ψ

ρ
δ/2+ρ(ν−1)(2Nt/Cρ) + 21/2BνD

1/2
δ ψ

ρ
δ/2−ρ(2Nt/Cρ)ψ

ρ
ρ(ν−1)(2Nt/Cρ),

if δ/2−ρ ≥ 0. Hence,
√
ψ
ρ
δ/2−ρ(2Nt/Cρ)ψ

ρ
δ/2+ρ(ν−1)(2Nt/Cρ)/Nt = Õ(N−(δ+ρν)/2(1+ρ)

t ), and
√
ψ
ρ
δ/2−ρ(2Nt/Cρ)ψ

ρ
ρ(ν−1)(2Nt/Cρ)/Nt =

Õ(N−(δ/2+ρν)/2(1+ρ)
t ). Next, we define π̄t =

∑t
i=1 i2πi ≥

∑t
i=1 πi such that πt ≤ t−1 ∑t

i=1 πi ≤ t−1π̄t ≤ t−1π̄∞ since πt is
decreasing. Similarly, let Π̄t =

∑t
i=1 iρΠi. Both π̄t and Π̄t convergences to some finite constant depending on the
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model’s parameters. With use of these notions, one can show that

δ̄1/2
t ≤

Λ1/2

N1/2
t

1{σ=1/2} +
21+2ρ(1−σ)/2(1+ρ)Λ1/2C(1−2σ)/2(1+ρ)

ρ√
1 + 2ρ(1 − σ)N(1+2ρσ)/2(1+ρ)

t

1{σ,1/2} +
21+2ρ(1−σ−σ′)/2(1+ρ)C′1/2σ C(1−2σ−2σ′)/2(1+ρ)

ρ√
1 + 2ρ(1 − σ − σ′)µN(1+2ρ(σ+σ′))/2(1+ρ)

t

+

21/2B1/2
ν C1/2

σ Cρ

√
ψ
ρ
ρ(σ−1)(2Nt/Cρ)ψ

ρ
ρ(ν−1)(2Nt/Cρ)

µC(σ+ν)/2
ρ Nt

+
(ρ(1 − β) + α)Cρπ̄∞

µCγC
β
ρNt

+
(ρ(1 − β) + α)21/2+ρνBνCρψ

ρ
1+ρ(β+ν−1)−α(2Nt/Cρ)

µ3/2µ1/2
ν CγC

β+ν
ρ Nt

+
(ρ(1 − β) + α)2(4+ρ(2+2σ−3β)+3α)/2(1+ρ)CσC(2−2σ−β−α)/2(1+ρ)

ρ

(ρ(1 − σ) + (α − ρβ)/2)µµ1/2
ν C1/2

γ N(2+ρ(β+2σ)−α)/2(1+ρ)
t

+
2(1+ρ(1−β)+α)/(1+ρ)C(2+β−α)/(1+ρ)

ρ π̄∞

µCγN(2+ρβ−α)/(1+ρ)
t

+
2(1+ρ(1+3ν−β)+α))/(1+ρ)BνC

(1−β−ν−α)/(1+ρ)
ρ

µ3/2µ1/2
ν CγN(1+ρ(β+ν)−α)/(1+ρ)

t

+
2(2+ρ(1−2β+σ)+2α)/(1+ρ)CσC(2−2σ−β−α)/2(1+ρ)

ρ

µµ1/2
ν C1/2

γ N(2+ρ(β+2σ)−α)/2(1+ρ)
t

+
21/2+ρDκ

∇
Cρπ̄

1/2
∞

µNt
+

23/2+ρ(1+ν)BνDκ
∇
Cρ

√
ψ
ρ
2ρ(ν−1)(2Nt/Cρ)

µ3/2µ1/2
ν Cν

ρNt

+
2(3+ρ(5−2σ+β)−α)/2(1+ρ)Dκ

∇
CσC1/2

γ C(1+β−2σ+α)/2(1+ρ)
ρ

µµ1/2
ν N(1+ρ(2σ−β)+α)/(2(1+ρ))

t

+

23/4+ρ(2−ν)/2 √
Dκ
∇

D1/2
ν D1/2

δ Cρ

√
ψ
ρ
δ/2−ρ(2Nt/Cρ)ψ

ρ
δ/2+ρ(ν−1)(2Nt/Cρ)

µCν/2
ρ Nt

+

21+ρ(2−ν)/2B1/2
ν

√
Dκ
∇

D1/4
δ Cρ

√
ψ
ρ
δ/2−ρ(2Nt/Cρ)ψ

ρ
ρ(ν−1)(2Nt/Cρ)

µCν/2
ρ Nt

+
Cρ

µNt

 1

CγC
β
ρ

+ 21/2Dκ
∇

 δ1/2
0

+
2ρC′′

∇
CρΠ̄∞

µNt
+

21+ρ(1+2ν)B2
νC
′′
∇

Cρψ
ρ
ρ(2ν−1)(2Nt/Cρ)

µ5/2
√
µ′νC

2ν
ρ Nt

+
2(1+ρ(1+2σ−β)+α)/(1+ρ)(25µ−1/2 + 24C1/2

γ Cβ/2
ρ )C′′

∇
C2
σCγ

µ
√
µ′νC

(1−2ρσ−α)/(1+ρ)
ρ N(ρ(2σ−β)+α)/(1+ρ)

t

,

where µ′ν = µ − 1{ρ=0}2D4
ν/µ

3C4ν
ρ , Dκ

∇
= C∇ + 2κCκ/Cκ

ρ and C′′
∇

= C′
∇

+ 1{DΘ<∞}2GΘ/D2
Θ

, which can be simplified into

δ̄1/2
t ≤

Λ1/2

N1/2
t

1{σ=1/2} +
21/2Λ1/2C(1−2σ)/2(1+ρ)

ρ

N(1+2ρσ)/2(1+ρ)
t

1{σ,1/2} +
21/2C′1/2σ C(1−2(σ+σ′))/2(1+ρ)

ρ

µN(1+2ρ(σ+σ′))/2(1+ρ)
t

+
22+(7+2ρ(1+σ))/2(1+ρ)CσC(2−2σ−β−α)/2(1+ρ)

ρ

µµ1/2
ν C1/2

γ N(2+ρ(β+2σ)−α)/2(1+ρ)
t

+
2(1+ρ(1+2σ−β)+α)/(1+ρ)(25µ−1/2 + 24C1/2

γ Cβ/2
ρ )C′′

∇
C2
σCγ

µ
√
µ′νC

(1−2ρσ−α)/(1+ρ)
ρ N(ρ(2σ−β)+α)/(1+ρ)

t

+
2(5/2+ρ(5−2σ))/2(1+ρ)Dκ

∇
CσC1/2

γ C(1+β−2σ+α)/2(1+ρ)
ρ

µµ1/2
ν N(1+ρ(2σ−β)+α)/(2(1+ρ))

t

+
ΓCρ

µNt

+
2(2+ρ)/(1+ρ)C(2+β−α)/(1+ρ)

ρ π̄∞

µCγN(2+ρβ−α)/(1+ρ)
t

+

23/4+ρ(2−ν)/2 √
Dκ
∇

D1/2
ν D1/2

δ Cρ

√
ψ
ρ
δ/2−ρ(2Nt/Cρ)ψ

ρ
δ/2+ρ(ν−1)(2Nt/Cρ)

µCν/2
ρ Nt

+ 1{Bν,0}Ψt,

as α−ρβ ∈ (1/2, 1) with use of Γ = 2π̄∞/CγC
β
ρ+(1/CγC

β
ρ+21/2Dκ

∇
)δ1/2

0 +21/2+ρDκ
∇
π̄1/2
∞ +2ρC′′

∇
Π̄∞, Dκ

∇
= C∇+2κCκ/Cκ

ρ,
δ = 1{Bν=0}(ρ(2σ − β) + α) + 1{Bν,0}min{ρ(2σ − β) + α, 2ρν}, and Ψt given as

21/2B1/2
ν C1/2

σ Cρ

√
ψ
ρ
ρ(σ−1)(2Nt/Cρ)ψ

ρ
ρ(ν−1)(2Nt/Cρ)

µC(σ+ν)/2
ρ Nt

+
23/2+ρνBνCρψ

ρ
1+ρ(β+ν−1)−α(2Nt/Cρ)

µ3/2µ1/2
ν CγC

β+ν
ρ Nt

+

23/2+ρ(1+ν)BνDκ
∇
Cρ

√
ψ
ρ
2ρ(ν−1)(2Nt/Cρ)

µ3/2µ1/2
ν Cν

ρNt
+

23(1+ρν)BνC
(1−β−ν−α)/(1+ρ)
ρ

µ3/2µ1/2
ν CγN(1+ρ(β+ν)−α)/(1+ρ)

t

+

21+ρ(2−ν)/2B1/2
ν

√
Dκ
∇

D1/4
δ Cρ

√
ψ
ρ
δ/2−ρ(2Nt/Cρ)ψ

ρ
ρ(ν−1)(2Nt/Cρ)

µCν/2
ρ Nt

+
22(1+ρν)B2

νC
′′
∇

Cρψ
ρ
ρ(2ν−1)(2Nt/Cρ)

µ5/2
√
µ′νC

2ν
ρ Nt

(36)

= Õ(N−ρ(σ+ν)/2(1+ρ)
t ) + Õ(N−(1+ρ(β+ν)−α)/(1+ρ)

t ) + Õ(N−(1+2ρν)/2(1+ρ)
t )

+ O(N−(1+ρ(β+ν)−α)/(1+ρ)
t ) + Õ(N−(δ/2+ρν)/2(1+ρ)

t ) + Õ(N−2ρν/(1+ρ)
t ),
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Furthermore, with Õ-notation one can yield,

δ̄1/2
t ≤

Λ1/2

N1/2
t

1{σ=1/2} +
21/2Λ1/2C(1−2σ)/2(1+ρ)

ρ

N(1+2ρσ)/2(1+ρ)
t

1{σ,1/2} +
21/2C′1/2σ C(1−2(σ+σ′))/2(1+ρ)

ρ

µN(1+2ρ(σ+σ′))/2(1+ρ)
t

+
26CσC(2−2σ−β−α)/2(1+ρ)

ρ

µµ1/2
ν C1/2

γ N(2+ρ(β+2σ)−α)/2(1+ρ)
t

+ 1{Bν,0}Ψt +
27(µ−1/2 + C1/2

γ Cβ/2
ρ )C′′

∇
C2
σCγ

µ
√
µ′νC

(1−2ρσ−α)/(1+ρ)
ρ N(ρ(2σ−β)+α)/(1+ρ)

t

+
22Dκ

∇
CσC1/2

γ C(1+β−2σ+α)/2(1+ρ)
ρ

µµ1/2
ν N(1+ρ(2σ−β)+α)/(2(1+ρ))

t

+
ΓCρ

µNt

+
22C(2+β−α)/(1+ρ)

ρ π̄∞

µCγN(2+ρβ−α)/(1+ρ)
t

+ Õ(N−(δ+ρν)/2(1+ρ)
t ), (37)

where Ψt = Õ(N−ρ(σ+ν)/2(1+ρ)
t ) + Õ(N−(1+ρ(β+ν)−α)/(1+ρ)

t ) + Õ(N−(1+2ρν)/2(1+ρ)
t ) + Õ(N−(δ/2+ρν)/2(1+ρ)

t ) + Õ(N−2ρν/(1+ρ)
t ),

implying that ν > 1/2 to obtain the desired rate δ̄t = O(N−1) if Bν = 0.
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