Towards highly efficient high power X-band AlN/GaN MIS HEMTs operating above 50V

Kathia Harrouche^{*}, Sri Saran Vankatachalam, François Grandpierron, Etienne Okada and Farid Medjdoub^{*}

CNRS-IEMN Institut d'Electronique, de Microélectronique et de Nanotechnologie, Lille, France *kathia.harrouche.etu@univ-lille.fr, Farid.medjdoub@univ-lille.fr

Abstract: We report on AlN/GaN MISHEMT technology on SiC substrate for X-band applications. Transistors with 100 nm gate lengths deliver a high off-state breakdown voltage above 180V and 110 V in semi-on state. RF small signal measurements up to a drain bias (V_{DS}) as high as 70V for two different gate lengths (L_G). The maximum oscillation frequency (F_{max}) strongly increases versus V_{DS} . As a result, F_t/F_{max} of 29/276 GHz with a power gain (U_{max}) of 28 dB at 10 GHz and $V_{DS} = 70V$ has been extracted. To the best of our knowledge, this is the highest small signal power gain achieved at a drain bias of 70 V. These results are attributed to the favorable AlN/GaN epi-design for high frequency operation while inserting a gate dielectric to prevent the gate leakage current and related device degradation under high electric field. Continuous wave (CW) power performances have been assessed at 10 GHz and $V_{DS} = 50V$ in deep class AB operation. A high output power density of 29.1 dBm (8 W/mm) was measured at the peak power added efficiency (PAE) close to 50%. It can be noticed that no-degradation of the transistors occurred subsequently to many load pull sweeps up to $V_{DS} = 50V$, reflecting the promising device robustness under harsh conditions. These results pave the way for superior X-band performances operating beyond 50 V in a reliable way.

Keywords: GaN, HEMT, X-band,

Figure 1. Breakdown voltage transistor characteristics in off-state with $L_G = 100$ nm (a) and F_t , F_{max} versus V_{DS} for 100 nm and 200 nm gate lengths