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ABSTRACT

The paper proposes a methodology based on the normal form perturbation method and Gröbner
basis approach. Spectrum rearrangement allows to exhibit resonant terms associated with periodic
behaviors of the system. Normal forms generate compatibility equations when one looks for periodic
solutions and define amplitude-frequency conditions. Gröbner generators are defined from these
equations and associated ideal is generated in order to simplify results of final normal form using
generalized Euclidean division. Normal transform are simplified, and in some cases can be linearized
with nonlinearity remaining hidden in amplitude-frequency conditions.

Keywords Normal Form · Gröbner basis · nonlinear · spectrum

1 Introduction

Normal form has been introduced by Poincaré Poincaré (1889). It is based on a change of variables introduced as the
identity perturbation. Then several normal forms have been introduced, such as normal form of Birkhoff (Birkhoff,
1927) or normal form of Gustavson (Gustavson, 1966), and more detailed information on normal forms are provided in
Murdock (2003); Iooss (1992); Barenblatt (1983). In this paper, we will consider classical normal form and normal
transform. When using normal forms of nonlinear dynamical systems, physicists normally introduce mono-harmonic
periodic solutions of the normal form (Coullet, 1983). In such a case, the obtained amplitude equation provides a
relation between amplitudes of oscillations (amplitude of normal coordinates) and the different parameters. Indeed,
since the amplitude equation contains resonant terms, it can be written directly with normal coordinates and not only
with amplitudes of normal coordinates. This leads to the following index: if amplitude equations are seen as generators
of an ideal in a rig of polynomials, is it possible to simplify the expression of initial coordinates as functions of normal
coordinates? Or, is it possible to simplify the normal transform taking into account amplitude equations? As it is
already used in nonlinear mechanics (Armbruster, 1985), a way to answer this question is to consider Gröbner basis
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(Buchberger, 1965) associated to the set of generators (amplitude equations), and to calculate the rest of the generalized
"Euclidean division" for each normal transform. This is the idea that we intend to explain and illustrate in this paper.
The paper is organized as it follows: in Sec.2, one normal form methodology is presented and illustrated for two
particular cases. Section 3 proposes an approach leading to forced or internally resonant systems. Finally, sec.4 presents
a use of Gröbner basis simplifying normal form results based on generators defined for the resonant periodic system.
Applications are given in sec.5 and pros and cons are discussed in conclusion.

2 Normal form calculation

2.1 General case for autonomous dynamical systems

The normal form is applied on a general dynamical system following the governing matrix equation:

dX

dt
= A.X + F (X) (1)

where A is a linear operator. The system has a finite dimension and A can therefore be defined as a 2N times 2N
matrix.
X is the vector composed of the dynamics coordinates. The vector F (X) has a maximal chosen degree n ≥ 2 and can
be decomposed in F (X) = F2(X) + ...+ Fn(X).

This approach is based on the normal form. For this matter, we introduce:{
U the normal coordinates
ϕ = ϕ2 + ...+ ϕn the normal transformation
R = R2 + ...+Rn the resonant terms

(2)

where ϕk and Rk are decomposed in the base of monomials of degree k in the 2N variables u1, ..., u2N for each
component of vector equation k.
We introduce the identity perturbation for X:

X = U + ϕ2(U) + ...+ ϕn(U) (3)

Injecting normal expression of X in Eq.1, we obtain:
dX
dt = A.X + F (X) = A. (U + ϕ2(U) + ...+ ϕn(U))

+F (U + ϕ2(U) + ...+ ϕn(U))
(4)

The expression of normal forms reads:
dU
dt = A.U +R2 + ...+Rn (5)

and we can write the time derivative of Eq.3 as:
dX
dt = (Id + ∂ ϕ2 + ...+ ∂ ϕn)

dU
dt

(6)

Finally, resolution of normal form reads:
(Id + ∂ ϕ2 + ...+ ∂ ϕn) (A.U +R2 + ...+Rn)
= A. (U + ϕ2(U) + ...+ ϕn(U)) + F (U + ϕ2(U) + ...+ ϕn(U))

dU

dt
= A.U +R2 + ...+Rn

(7)

Using Taylor decomposition, the first equation of Eq.7 can be re-written as:

(Id + ∂ ϕ2 + ...+ ∂ ϕn) (A.U +R2 + ...+Rn)
= A.U +A.ϕ2(U) + ...+A.ϕn(U)
+G2(U) + ...+Gn(U) + h. o. t.

= A.U +A.ϕ2(U) +G2(U)︸ ︷︷ ︸
d2

+...+A.ϕn(U) +Gn(U)︸ ︷︷ ︸
dn

+h. o. t.
(8)
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In this decomposition: {
G2 depends on F2

Gk depends on F2...Fk, ϕ2...ϕk, 3 ≤ k ≤ n
(9)

The normal form in Eq.8 is treated degree per degree as:
d1 : A.U = A.U
d2 : ∂ϕ2A.U −A.ϕ2(U) = G2(U)−R2 = F2 −R2

...
dk : ∂ϕkA.U −A.ϕk(U) = Gk(U)−Rk

(10)

These equations can be set as a system of linear matrix using lexicographic order on monomials and using vector basis
of R2N (see (Iooss, 1992)). It can be solved using Fredhom alternative for the linear system governed by matrix L. In
that case, resonant and normal terms are defined by:{

Rk = ProjKer(L)(Gk)
ϕk : solution of the linear system on Range(L ) (11)

ProjKer(L)(Gk) is the projection of matrix Gk on vector of the kernel space of matrix L and Range(L) is the column
space of Gk. According to the form of the matrix A, we will distinguish two cases.

2.2 Matrix A being diagonal

In this section, we consider a diagonalized system. We set A = D:

D =

λ1 0 0

0
. . . 0

0 0 λ2N

 (12)

The matrix L (associated to homological equation of Iooss-Adelmayer (Iooss, 1992)) is now diagonal on the vectorial
base composed by 2N vectors: 

1...
0

 , ...,

0...
1


 (13)

In order to manipulate L, we introduce p1...p2N defining the projection up1

1 ...up2N

2N associated to the kth vector (1 on
the kth position of the vector).
The kth diagonal term of L has for expression:

Lkk = [p1, ..., p2N ]︸ ︷︷ ︸
P

. [λ1, ..., λ2N ]T︸ ︷︷ ︸
Λ

−λk (14)

Therefore, we can distinguish two situations :{ ⟨P | Λ⟩ − λk = 0 : this case provides resonant terms
⟨P | Λ⟩ − λk ̸= 0 : this case is non-resonant: the corresponding monomial

can be eliminated
(15)

Example 1: Let us consider a single degree of freedom (dof) nonlinear system defined as:

d2x
dt2 + x+ cx3 = 0 (16)

The matrix form of this system is:

X =

[
ẋ
x

]
, Ẋ =

[
0 −1
1 0

]
X +

[
cx3

0

]
(17)

This system can be diagonalized using:
X = PY =

[
−i i
1 1

]
Y

Ẏ =

[
−i 0
0 i

]
Y +

[
i
2c(y1 + y2)

3

− i
2c(y1 + y2)

3

] (18)

3
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Normal coordinates U are introduced. Third order terms are decomposed according to four monomials u3
1, u2

1u2, u1u
2
2

and u3
2. Solving normal form equation at third order, matrix L is defined:



−2i 0 0 0 0 0 0 0
0 −i 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 i 0 0 0 0
0 0 0 0 −i 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 i 0
0 0 0 0 0 0 0 2i


︸ ︷︷ ︸

L



⟨ϕ31 | u3
1⟩

⟨ϕ31 | u2
1u2⟩

⟨ϕ31 | u1u
2
2⟩

⟨ϕ31 | u3
2⟩

⟨ϕ32 | u3
1⟩

⟨ϕ32 | u2
1u2⟩

⟨ϕ32 | u1u
2
2⟩

⟨ϕ32 | u3
2⟩


=



ic/2
3ic/2
3ic/2
ic/2
−ic/2
−3ic/2
−3ic/2
−ic/2

 (19)

The lines number 3 and number 6 are composing the kernel of L and are inducing resonant terms; corresponding ϕ3

components are set to 0. All other lines are able to determine ϕ3 components. Here, ϕ2 =

[
0
0

]
. The calculation has

been done up to the degree 3. Finally:


X =

[
−i i
1 1

]
Y

Y = U +Φ3(U) =

u1 − c
4u

3
1 − 3c

2 u
2
1u2 +

c
2u

3
2

u2 +
c
2u

3
1 − 3c

2 u1u
2
2 − c

4u
3
2

 (20)

2.3 Matrix A being a Jordan matrix

When the system can’t be turned as a diagonal system, the Jordan elimination can be applied, which permits to obtain A
as a block diagonal matrix:

A =

Jn1
0 0

0
. . . 0

0 0 Jnp

 with
∑p

j=1 dim(Jnj) = 2N (21)

dim(Jnj) stands for the dimension of the matrix Jnj .
Each block Jnj

is a Jordan block or a diagonal matrix. For each Jordan block, the matrix L is defined by the same way
as in the previous section. Therefore, if the block is diagonal, the resonant terms and normal transformation are defined
the same way. If L is not diagonal due to the couplings between equations, Murdock (Murdock, 2003) has developed a
way to manage a simple expression of L using Gröbner basis. This use of Gröbner basis is different from what we are
doing here. Otherwise, the resolution can be proceed terms by terms and favoring minimal resonant terms.

3 Resonant spectrum rearrangement

The normal form process can be applied with the spectrum of A without rearrangement, but particular cases could be
considered. As found in other normal form applications (Zhuravlev, 1997, 2002), artificial perturbation is introduced
in the system. One of interesting situations to be considered is when the linear part is a perturbation of a matrix. For
example:

A = A(ε) = A(0) + εα (22)

where A(0) possesses eigenvalues λ1, ..., λ2N , ε is a scalar representing the perturbation parameter and α is a matrix.
This approach permits to introduce a spectrum leading to a situation with a bigger number of resonant terms, or to take
into account external resonances between external excitation and internal resonance.
The definition of a small parameter ϵ depends on the system: for nonlinear oscillations of mechanical systems, ϵ can be

4
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set according to the damping of the system as:

Without damping : ẍ+ x+ cx3 = 0 =⇒ A(0) =

[
0 −1
1 0

]

With damping : ẍ+ ϵẋ+ x+ cx3 = 0 =⇒ A(ϵ) =

[
−ϵ −1
1 0

]

= A(0) + ϵ

[
−1 0
0 0

]
(23)

3.1 Methodology for forced systems

For the forced system, we introduce a new variable Z:
˙̃X = A.X̃ + F (X, t) = A.X̃ + F̃ (X̃, Z) (24)

where Z = Z(t) is the solution of a system of differential equation Ż = B.Z +H(Z) verified by the forcing.
In particular, if time dependency occurs via external excitation or parametric nonlinearities which can be expressed as
functions of sin(ωt) only, we can use:

z1 = sin(ωt)

Z =

[
z1
z2

]
 =⇒ Ż =

[
0 −ω2

1 0

]
Z = B.Z (25)

We can now define a new vector X as:

X =

[
X̃
Z

]
=⇒ Ẋ =

[
A 0
0 B

]
X + F (X) (26)

The forcing system is now expressed as an autonomous system with coordinate X .

We can now work on the spectrum of
[
A 0
0 B

]
.

The idea is to exploit a 1 : k resonance with external excitation. The normal form doesn’t justify to con-
sider higher order nonlinearities and as it will be explained, we will not consider higher resonances than k = 3.

Example 2: The methodology is presented through an example of the following basic system:

ẍ+ x = sin(ωt) (27)
The procedure is the same for other types of excitation. We can define:

X̃ =

[
ẋ
x

]
˙̃X =

[
0 −1
1 0

]
X̃ +

[
sin(ωt)

0

] (28)

Using Eq.25, we now have the equation:

d
dt

[
X̃
Z

]
=

0 −1 0 1
1 0 0 0
0 0 0 −ω2

0 0 1 0

[
X̃
Z

]
(29)

The spectrum of this equation is {−i, i,−iω, iω}. In order to investigate the 1 : 1 resonance, we need to set ω = 1.
In order to match to the physical system, we prefer to define A = A0 +O(ϵ) with:

A = P


−iω 0 0 0

0 iω 0 0
0 0 −iω 0
0 0 0 iω

+ iε

1 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0


︸ ︷︷ ︸

D

P−1 (30)

5
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We can then deduce:

A0 = P

−iω 0 0 0
0 iω 0 0
0 0 −iω 0
0 0 0 iω

P−1 =


0 −ω 0 ω

1+ω

ω 0 1
1+ω 0

0 0 0 −ω2

0 0 1 0



A−A0 =


0 ω − 1 0 1

1+ω

1− ω 0 − 1
1+ω 0

0 0 0 0
0 0 0 0


(31)

We now need to define ω − 1 as a function of ϵ. We can distinguish 3 cases of ω − 1:
- as a low order polynomial;
- as a series and do a truncation in order to consider the firsts n orders n ≥ k for the normal forms;
- as a singular.
The definition of normal forms Eq.5 allows to only consider the firsts orders because higher order resonant terms have
less effects on the behavior. Therefore, we only consider the firsts orders of series or polynomials. Moreover, resonant
terms of high order harmonics 1 : k would need to consider high order polynomials or series in order to obtain a 0
diagonal terms in the construction of matrix L (see Eq.14). Therefore, we do not consider higher order resonance 1 : k
superior to k = 3.

3.2 Methodology for internally resonant systems

If the system is composed of different resonators, it’s possible to exploit internal resonances by adding a link between
different modal frequencies.
Let’s consider a system with two resonators verifying ω2 = 2ω1 + ϵσ. ẍ1 + ω2

1x1 + · · · = 0

ẍ2 + ω2
2x2 + · · · = 0

with ω2 = 2ω1 + εσ (32)

The same explained procedure can be applied, defining for example:

D =

−iω1 0 0 0
0 iω1 0 0
0 0 −2iω1 0
0 0 0 2iω1

+ ε

0 0 0 0
0 0 0 0
0 0 −σ 0
0 0 0 σ

 (33)

and permitting the 1 : 2 resonance between the two resonators.

4 Simplification of normal transform using Gröbner basis

To describe the method, let us consider a general case Eq.1 with diagonalizable matrix:{
X = P.Y
Ẏ = P−1.A.P + P−1.F (P.Y ) with P−1.A.P = D

(34)

Let us assume that λ2j = λ2j−1, j = 1, . . . , N and ℑ(λ2j−1) < 0.
The resolution is led after defining:

Identity perturbation: Y = U + ϕ2(U) + ϕ3(U) + . . .

Normal forms: dU
dt = D.U +R2(U) +R3(U) + . . .

Normal transform: X = P.Y = P.(U + ϕ2(U) + ϕ3(U) + . . . )

(35)

The last equation is the normal transform expressing X as a function of normal coordinates U .

6
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4.1 Introduction of periodic solutions

Based on previous assumptions, we can look for approximated periodic solutions U(t) of the normal form. We obtain
approximate periodic solutions X(t) via the normal transform. Since ℑ(λ2j−1) < 0, j = 1, . . . , N , if the principal
resonance is the only one considered, we can look for:

U =

 u1

...
u2N

 =

U1e
−iΩt

...
ŪNeiΩt

 (36)

with u2j−1 = Uje
−iΩt and u2j = U je

iΩt

4.2 Simplification via Gröbner basis

Introducing expression of U in normal form, one obtains for the (2j − 1)th normal form equation:

iΩU2j−1e
−iΩt + λ2j−1U2j−1e

−iΩt +R2,2j−1(u1, . . . , u2N ) + ...
+Rn,2j−1(u1, . . . , u2N ) = 0

(37)

and its conjugated expressions for the 2jth normal form equation. In fact, because of resonance conditions, it is clear
that this compatibility equation (and its conjugated) can be written for j = 1, . . . , N as:

0 = iΩu2j−1 + λ2j−1u2j−1 +R2,2j−1(u1, . . . , u2N ) + ...
+Rn,2j−1(u1, . . . , u2N )

0 = −iΩu2j + λ2ju2j +R2,2j(u1, . . . , u2N ) + ...
+Rn,2j(u1, . . . , u2N )

(38)

These 2N compatibility equations can be written as:{
g2j−1(u1, . . . , u2N ) = 0
g2j(u1, . . . , u2N ) = 0

with j = 1, . . . , N (39)

and they provide 2N functions, generating an ideal in the Ring of polynomials with 2N variables. The generators of
these basis are defined from amplitude equations which are obtained by successively supposing that the normal form
solutions are periodic and averaging with respect to time the normal form equations, a methodology that is similar to
the one in (Zhuravlev, 1997, 2002). The polynomial ideal is now used to get the best Euclidean division decomposition
of the physical coordinates:

X(U) =


...

xj(U)
...

 , j = 1, . . . , N (40)

For each xj , we can write:
xj =

∑2N
k=1 qk(U)gk(U) + rk(U) (41)

where qk (standing for quotient) are polynomials in u1, . . . , u2N and rk (standing for rest) also. The use of Gröbner
basis allows to understand the Euclidean decomposition according to each element of the ideal.
This process should reduce de degree of xj and it should lead in the best case to a linear expression xj(U) = xl,j(U)
The simplified expression of approximated periodic solution X is then:

X(U) =


...

xj(U)
...

 =


...

rj(U)
...

 (42)

This process also justifies the choice of using a designed spectrum in order to produce adapted terms and perform the
most complete Gröbner ideal to simplify the expression of X(U).
In the considered examples, we will choose n = 3.

7
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Remark: If internal resonances 1 : kj are considered, the vector must be adapted in order to consider these
harmonics. We can define:

U =

 u1

...
u2N

 =

U1e
−ik1Ωt

...
ŪNeikNΩt

 (43)

with u2j−1 = Uje
−ikjΩt and u2j = U je

ikjΩt

5 Applications

5.1 Single dof forced system

The previous method will be applied on a simple single dof forced system. The normalized dynamical equation of the
system is:

ẍ+ w1
2x+ cx3 = f sin (wt) (44)

As explained in the first section, forcing coordinates are integrated in principal coordinates using the following relation:{
z̈ + w2z = 0
z(0) = 0 and ż(0) = w

(45)

We can now adopt the matrix form:

d

dt

 ẋ
x

ω cos (ωt)
sin (ωt)


︸ ︷︷ ︸

dX
dt

=

0 −ω2
1 0 f

1 0 0 0
0 0 0 −ω2

0 0 1 0


︸ ︷︷ ︸

A

 ẋ
x

ω cos (ωt)
sin (ωt)


︸ ︷︷ ︸

X

+

−c x3

0
0
0


︸ ︷︷ ︸

NL3

(46)

This system can take a diagonal form by using transfer matrix P defined as:

P =



0 0 i
2ω

1
2

0 0 − i
2ω

1
2

i
2ω1

1
2

if

2ω1(ω2−ω2
1)

f

2(ω2−ω2
1)

− i
2ω1

1
2 − if

2ω1(ω2−ω2
1)

f

2(ω2−ω2
1)


(47)

with diagonal linear operator D:

D =

−iω 0 0 0
0 iω 0 0
0 0 −iω1 0
0 0 0 iω1

 (48)

ω is decomposed in order to allow the 1 : 1 resonance as ω = ω1 + ε, leading to:

D =

−iω 0 0 0
0 iω 0 0
0 0 −iω 0
0 0 0 iω


︸ ︷︷ ︸

D0

+

0 0 0 0
0 0 0 0
0 0 iε 0
0 0 0 −iε


︸ ︷︷ ︸

D1

(49)

We introduce Y = P−1.X and NL = P−1.NL3. The system has now for equation:

Ẏ = D0.Y +D1.Y +NL(Y ) (50)
We can now solve the system using the normal form at the third order because only cubic nonlinearity is present in the
system. The coordinate matrix Y is decomposed in normal coordinates as:y1

y2
y3
y4

 = U +Φ2(U) + Φ3(U) (51)
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and compatibility equations are defined by:

d

dt
U = D0.U +R2 +R3 (52)

The normal form equation presented in Eq.7 is applied to the system:

(Id + ∂ Φ2 + ∂ Φ3)

(
d

dt
U

)
= D0 (Φ3(U) + Φ2(U) + U)

+NL2 (Φ3(U) + Φ2(U) + U) + NL3 (Φ3(U) + Φ2(U) + U)
(53)

And because we only solve up to the third order, we can write:

(Id + ∂ Φ2 + ∂ Φ3) (R3 +R2 +D0.U) = D0 (Φ3(U) + Φ2(U) + U)
+NL2 (Φ2(U) + U) + NL3(U)

(54)

The first order form of Eq.54 verifies:
D0.U = D0.U (ordre 1)

The second order verifies:
R2 + ∂ Φ2D0.U = D0.ϕ2(U) +D1(ϵ).U (ordre 2)

and leads to:
R2 = D1.U and ϕ2 = 0 (55)

The third order verifies:

R3 + ∂ Φ3D0.U + ∂ Φ2R2 = D0.ϕ3(U) +D1(ϕ2) +NL(U) (ordre 3)

and according to second order identification in Eq.55, we have to solve:

R3 + ∂ Φ3D0.U = D0.ϕ3(U) +NL(U) (ordre 3)

Both ϕ3 and R3 are determined. X can now be deduced from this method in normal coordinates. In this case, we restrict
the solution to only the first harmonic components of x. The solution in normal coordinates is the following highly
nonlinear expression:

x = u3 + u4 +
3cf3u2

1u2

4ωω1(ω−ω1)3(ω+ω1)3
− 3cf2u2

1u4

4ωω1(ω−ω1)2(ω+ω1)2

+
3cf3u1u

2
2

4ωω1(ω−ω1)3(ω+ω1)3
− 3cf2u1u2u3

2ωω1(ω−ω1)2(ω+ω1)2

− 3cf2u1u2u4

2ωω1(ω−ω1)2(ω+ω1)2
− 3cf2u2

2u3

4ωω1(ω−ω1)2(ω+ω1)2

+ 3cfu1u3u4

2ωω1(ω−ω1)(ω+ω1)
+

3cfu1u
2
4

4ωω1(ω−ω1)(ω+ω1)
+

3cfu2u
2
3

4ωω1(ω−ω1)(ω+ω1)

+ 3cfu2u3u4

2ωω1(ω−ω1)(ω+ω1)
− 3cu2

3u4

4ωω1
− 3cu3u

2
4

4ωω1
− fu1

ω2−ω2
1
− fu2

ω2−ω2
1

(56)

Compatibility equations deriving from Eq.52 are the two conjugated equations below:

g1(U) = −iu3ε+
3iu2

3u4

2ω1
+

3icf3u2
1u2

2ω1(−ω+ω1)3(ω+ω1)

+ 3icf2u1u2u3

ω1(−ω+ω1)2(ω+ω1)2
+

3icf2u2
1u4

2ω1(−ω+ω1)2(ω+ω1)2

+
3icfu2u

2
3

2ω1(−ω+ω1)(ω+ω1)
+ 3icfu1u3u4

ω1(−ω+ω1)(ω+ω1)
= 0

g2(U) = iu4ε− 3iu3u
2
4

2ω1
− 3icf3u1u

2
2

2ω1(−ω+ω1)3(ω+ω1)

− 3icf2u1u2u4

ω1(−ω+ω1)2(ω+ω1)2
− 3icf2u2

2u3

2ω1(−ω+ω1)2(ω+ω1)2

− 3icfu1u
2
4

2ω1(−ω+ω1)(ω+ω1)
− 3icfu2u3u4

ω1(−ω+ω1)(ω+ω1)
= 0

(57)
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The ideal is formed from these two equations and Euclidean division of x(U) by Gröbner ideal components gives the
final simplified and linear expression of x:

x = r = xl = u3 + u4 − f(u1+u2)
(ω−ω1)(ω+ω1)

− ε(u3+u4)
2ω (58)

This expression can’t be used when ω = ω1: in that case, the system can’t be diagonalized and Jordan decomposition
should be used.

5.2 An undamped two dof free system

The system is composed of 2 equal masses, linked together via a nonlinear function define as cα3 where α is relative
displacements of the two masses. Both masses are grounded via linear springs k1 and k2. Therefore, the system takes
the normalized matrix expression:

Ẋ =

0 −ω2
1 0 0

1 0 0 0
0 0 0 −ω2

2
0 0 1 0

X +

−c(x− y)3

0
c(x− y)3

0

 (59)

Using normal coordinates U and diagonalization of the system using matrix P , we can write:

U̇ =

−iω1 0 0 0
0 iω1 0 0
0 0 −iω2 0
0 0 0 iω2

 .U +


− ic(u1+u2−u3−u4)

3

2ω1
ic(u1+u2−u3−u4)

3

2ω1
ic(u1+u2−u3−u4)

3

2ω2

− ic(u1+u2−u3−u4)
3

2ω2

 (60)

Once more, X is expressed using periodic normal coordinates and we only keep the first harmonic of the solution. We
finally have:

x(U) = u1 + u2 − 3cu2
1u2

4ω2
1

− 3cu2
1u4

2ω1(ω1−ω2)
− 3cu1u

2
2

4ω2
1

+ 3cu1u2u3

ω1(ω1−ω2)

+ 3cu1u2u3

ω1(ω1+ω2)
+ 3cu1u2u4

ω1(ω1−ω2)
+ 3cu1u2u4

ω1(ω1+ω2)
− 3cu1u3u4

2ω2
1

− 3cu1u
2
4

4ω1(ω1−ω2)

− 3cu1u
2
4

4ω1ω2
− 3cu2

2u3

2ω1(ω1−ω2)
− 3cu2u

2
3

4ω1(ω1−ω2)
− 3cu2u

2
3

4ω1ω2
− 3cu2u3u4

2ω2
1

+
3cu2

3u4

2ω1(ω1−ω2)
+

3cu2
3u4

2ω1(ω1+ω2)
+

3cu3u
2
4

2ω1(ω1−ω2)
+

3cu3u
2
4

2ω1(ω1+ω2)

(61)

Introducing periodic normal coordinates in normal equations, the method leads to 4 compatibility equations conjugated
two by two: 

g1(U) =
3icu2

1u2

2ω1
+ 3icu1u3u4

ω1
− iu1(ω − ω1) = 0

g2(U) = − 3icu1u
2
2

2ω1
− 3icu2u3u4

ω1
+ iu2(ω − ω1) = 0

g3(U) = 3icu1u2u3

ω2
+

3icu2
3u4

2ω2
− iu3(ω − ω2) = 0

g4(U) = − 3icu1u2u4

ω2
− 3icu3u

2
4

2ω2
+ iu4(ω − ω2) = 0

(62)

The ideal is formed from these two equations and Euclidean division of x by Gröbner ideal components gives the final
simplified expression:

x = 1
4ω1ω2(ω1−ω2)(ω1+ω2)

(−3c(ω1 + ω2) (u1u4(2u1ω2 + u4ω1)

+2u2
2u3ω2 + u2u

2
3ω1

)
+ 2ω2ω

(
ω2
1(−(u1 + u2)) + ω2

2(u1 + u2)

+4ω1ω2(u3 + u4))− 2ω1ω
3
2(3u1 + 3u2 + 4(u3 + u4)) + 6ω3

1ω2(u1 + u2)
) (63)

This process is expanded to all components of X and we can have the final expression X = M0(ω).U +M1(U).U
with M0j,k and M1j,k, j, k ∈ [1, 4]2 being given in Appendix.
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Solving compatibility equations in the case where ω1 and ω2 being very different leads to set either u1, u2 = 0 or
u3, u4 = 0 in order to satisfy the small amplitude condition of normal form. In both cases, M1 = 0 and a final linear
expression of X is obtained.

6 Conclusion

A methodology based on the normal forms has been proposed. We are managing the spectrum in the methodology which
is possible by the introduction of a first order small parameter and of the forcing term in order to exploit resonances with
the excitation and/or internal resonances of the system. Once the determination of normal transformation and resonant
terms is achieved, the introduction of mono-harmonic periodic normal coordinates in the normal forms allows to obtain
compatibility equations. These equations are amplitude-frequency relations that have to be verified to ensure periodic
solutions. Gröbner generators have been defined based on these compatibility equations. Because of the previous
resonant spectrum, the compatibility equations lead to the most complete and efficient Euclidean division of the normal
form solutions by the ideal. This methodology aims to reduce the degree of final normal solutions of the system but
they cannot be expressed linearly in the general case. In some cases (diagonal system without internal resonance for
example), we can however obtain a linear expression. Nonlinearity would still remain hidden because of compatibility
equations. Furthermore, system cannot be always expressed in a diagonal manner. Jordan decomposition can be used
but it will induce more resonant terms. Solving the normal form is difficult due to number of degrees of freedom and
coupling terms and the ideal will need more calculation costs to be obtained. Finally, Euclidean division will be less
effective and more nonlinear terms will be remaining in the final expression. When increasing the number of couplings
and degrees of freedom, computation can be simplified by considering numerical values of the multivariate polynomials
involved in Gröbner generators and X(U) expression. A perspective work could be the introduction of Gröbner basis in
order to define new normal coordinates and to introduce less pairing, especially when A takes a Jordan form. Time
dependent periodic functions could also be introduced in Gröbner basis as it is the case in (Zhuravlev, 2002) to improve
the simplification of normal form solutions.
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Appendix

M01,1 = − 1
2 i(ω1 + ω)

M01,2 = 1
2 i(ω1 + ω)

M01,3 =
2iω2

2(ω2−ω)
(ω1−ω2)(ω1+ω2)

M01,4 = − 2iω2
2(ω2−ω)

(ω1−ω2)(ω1+ω2)

M02,1 = 3
2 − ω

2ω1

M02,2 = 3
2 − ω

2ω1

M02,3 = 2ω2(ω−ω2)
(ω1−ω2)(ω1+ω2)

M02,4 = 2ω2(ω−ω2)
(ω1−ω2)(ω1+ω2)

M03,1 = − 2iω2
1(ω1−ω)

(ω1−ω2)(ω1+ω2)

M03,2 =
2iω2

1(ω1−ω)
(ω1−ω2)(ω1+ω2)

M03,3 = − 1
2 i(ω2 + ω)

M03,4 = 1
2 i(ω2 + ω)

M04,1 = 2ω1(ω1−ω)
(ω1−ω2)(ω1+ω2)

M04,2 = 2ω1(ω1−ω)
(ω1−ω2)(ω1+ω2)

M04,3 = 3
2 − ω

2ω2

M04,4 = 3
2 − ω

2ω2

M11,1 = 3icu1u4

2(ω1−ω2)

M11,2 = − 3icu2u3

2(ω1−ω2)

M11,3 = − 3icu2u3(ω1−2ω2)
4ω2(ω1−ω2)

M11,4 = − 3icu1u4(2ω2−ω1)
4ω2(ω1−ω2)

M12,1 = − 3cu1u4

2ω1(ω1−ω2)

M12,2 = − 3cu2u3

2ω1(ω1−ω2)

M12,3 = − 3cu2u3

4ω2(ω1−ω2)

M12,4 = − 3cu1u4

4ω2(ω1−ω2)

M13,1 = − 3icu1u4(2ω1−ω2)
4ω1(ω1−ω2)

M13,2 = 3icu2u3(2ω1−ω2)
4ω1(ω1−ω2)

M13,3 = − 3icu2u3(ω1−2ω2)
(ω1−3ω2)(ω1−ω2)

M13,4 = 3icu1u4(ω1−2ω2)
(ω1−3ω2)(ω1−ω2)

M14,1 = 3cu1u4

4ω1(ω1−ω2)

M14,2 = 3cu2u3

4ω1(ω1−ω2)

M14,3 = − 3cu2u3

(ω1−3ω2)(ω1−ω2)

M14,4 = − 3cu1u4

(ω1−3ω2)(ω1−ω2)
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