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Periodic solutions of approximated normal forms and

simpli�cation of normal transform by using Gröbner basis

J. Flosia,∗, C.-H. Lamarquea, A. Ture Savadkoohia

aUniv Lyon, ENTPE, LTDS UMR CNRS 5513, Rue Maurice Audin - F-69518

Vaulx-en-Velin Cedex, France

Abstract

The paper proposes a methodology based on the normal form perturbation
method and Gröbner basis approach. Spectrum rearrangement allows to exhibit
resonant terms associated with periodic behaviors of the system. Normal forms
generate compatibility equations when one looks for periodic solutions and de-
�ne amplitude-frequency conditions. Gröbner generators are de�ned from these
equations and associated ideal is generated in order to simplify results of �nal
normal form using generalized Euclidean division. Normal transform are sim-
pli�ed, and in some cases can be linearized with nonlinearity remaining hidden
in amplitude-frequency conditions.
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1. Introduction

Normal form has been introduced by Poincaré [1]. It is based on a change
of variables introduced as the identity perturbation. Then several normal forms
have been introduced, such as normal form of Birkho� [2] or normal form of
Gustavson [3], and more detailed information on normal forms are provided in
[4�6]. In this paper, we will consider classical normal form and normal trans-
form. When using normal forms of nonlinear dynamical systems, physicists
normally introduce mono-harmonic periodic solutions of the normal form [7].
In such a case, the obtained amplitude equation provides a relation between
amplitudes of oscillations (amplitude of normal coordinates) and the di�erent
parameters. Indeed, since the amplitude equation contains resonant terms, it
can be written directly with normal coordinates and not only with amplitudes
of normal coordinates. This leads to the following index: if amplitude equations
are seen as generators of an ideal in a rig of polynomials, is it possible to sim-
plify the expression of initial coordinates as functions of normal coordinates?
Or, is it possible to simplify the normal transform taking into account amplitude
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equations? As it is already used in nonlinear mechanics [8], a way to answer
this question is to consider Gröbner basis [9] associated to the set of generators
(amplitude equations), and to calculate the rest of the generalized "Euclidean
division" for each normal transform. This is the idea that we intend to explain
and illustrate in this paper. The paper is organized as it follows: in Sec.2, one
normal form methodology is presented and illustrated for two particular cases.
Section 3 proposes an approach leading to forced or internally resonant systems.
Finally, sec.4 presents a use of Gröbner basis simplifying normal form results
based on generators de�ned for the resonant periodic system. Applications are
given in sec.5 and pros and cons are discussed in conclusion.

2. Normal form calculation

2.1. General case for autonomous dynamical systems

The normal form is applied on a general dynamical system following the
governing matrix equation:

dX

dt
= A.X + F (X) (1)

where A is a linear operator. The system has a �nite dimension and A can
therefore be de�ned as a 2N times 2N matrix.
X is the vector composed of the dynamics coordinates. The vector F (X)
has a maximal chosen degree n ≥ 2 and can be decomposed in F (X) =
F2(X) + ...+ Fn(X).

This approach is based on the normal form. For this matter, we introduce: U the normal coordinates
ϕ = ϕ2 + ...+ ϕn the normal transformation
R = R2 + ...+Rn the resonant terms

(2)

where ϕk and Rk are decomposed in the base of monomials of degree k in the
2N variables u1, ..., u2N for each component of vector equation k.
We introduce the identity perturbation for X:

X = U + ϕ2(U) + ...+ ϕn(U) (3)

Injecting normal expression of X in Eq.1, we obtain:

dX

dt
= A.X + F (X) = A. (U + ϕ2(U) + ...+ ϕn(U))

+F (U + ϕ2(U) + ...+ ϕn(U))
(4)
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The expression of normal forms reads:

dU

dt
= A.U +R2 + ...+Rn (5)

and we can write the time derivative of Eq.3 as:

dX

dt
= (Id + ∂ ϕ2 + ...+ ∂ ϕn)

dU

dt
(6)

Finally, resolution of normal form reads:
(Id + ∂ ϕ2 + ...+ ∂ ϕn) (A.U +R2 + ...+Rn)
= A. (U + ϕ2(U) + ...+ ϕn(U)) + F (U + ϕ2(U) + ...+ ϕn(U))

dU

dt
= A.U +R2 + ...+Rn

(7)

Using Taylor decomposition, the �rst equation of Eq.7 can be re-written as:

(Id + ∂ ϕ2 + ...+ ∂ ϕn) (A.U +R2 + ...+Rn)
= A.U +A.ϕ2(U) + ...+A.ϕn(U)
+G2(U) + ...+Gn(U) + h. o. t.

= A.U +A.ϕ2(U) +G2(U)︸ ︷︷ ︸
d2

+...+A.ϕn(U) +Gn(U)︸ ︷︷ ︸
dn

+h. o. t.

(8)

In this decomposition:{
G2 depends on F2

Gk depends on F2...Fk, ϕ2...ϕk, 3 ≤ k ≤ n
(9)

The normal form in Eq.8 is treated degree per degree as:
d1 : A.U = A.U
d2 : ∂ϕ2A.U −A.ϕ2(U) = G2(U)−R2 = F2 −R2

...
dk : ∂ϕkA.U −A.ϕk(U) = Gk(U)−Rk

(10)

These equations can be set as a system of linear matrix using lexicographic
order on monomials and using vector basis of R2N (see [5]). It can be solved
using Fredhom alternative for the linear system governed by matrix L. In that
case, resonant and normal terms are de�ned by:{

Rk = ProjKer(L)(Gk)
ϕk : solution of the linear system on Range(L )

(11)

ProjKer(L)(Gk) is the projection of matrix Gk on vector of the kernel space of
matrix L and Range(L) is the column space of Gk. According to the form of
the matrix A, we will distinguish two cases.
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2.2. Matrix A being diagonal

In this section, we consider a diagonalized system. We set A = D:

D =

λ1 0 0

0
. . . 0

0 0 λ2N

 (12)

The matrix L (associated to homological equation of Iooss-Adelmayer [5]) is
now diagonal on the vectorial base composed by 2N vectors:

1...
0

 , ...,

0...
1


 (13)

In order to manipulate L, we introduce p1...p2N de�ning the projection up1

1 ...up2N

2N

associated to the kth vector (1 on the kth position of the vector).
The kth diagonal term of L has for expression:

Lkk = [p1, ..., p2N ]︸ ︷︷ ︸
P

. [λ1, ..., λ2N ]T︸ ︷︷ ︸
Λ

−λk
(14)

Therefore, we can distinguish two situations : ⟨P | Λ⟩ − λk = 0 : this case provides resonant terms
⟨P | Λ⟩ − λk ̸= 0 : this case is non-resonant: the corresponding monomial

can be eliminated
(15)

Example 1: Let us consider a single degree of freedom (dof) nonlinear system
de�ned as:

d2x

dt2
+ x+ cx3 = 0 (16)

The matrix form of this system is:

X =

[
ẋ
x

]
, Ẋ =

[
0 −1
1 0

]
X +

[
cx3

0

]
(17)

This system can be diagonalized using:

X = PY =

[
−i i
1 1

]
Y

Ẏ =

[
−i 0
0 i

]
Y +

 i

2
c(y1 + y2)

3

− i

2
c(y1 + y2)

3


(18)
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Normal coordinates U are introduced. Third order terms are decomposed ac-
cording to four monomials u3

1, u
2
1u2, u1u

2
2 and u3

2. Solving normal form equation
at third order, matrix L is de�ned:

−2i 0 0 0 0 0 0 0
0 −i 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 i 0 0 0 0
0 0 0 0 −i 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 i 0
0 0 0 0 0 0 0 2i


︸ ︷︷ ︸

L



⟨ϕ31 | u3
1⟩

⟨ϕ31 | u2
1u2⟩

⟨ϕ31 | u1u
2
2⟩

⟨ϕ31 | u3
2⟩

⟨ϕ32 | u3
1⟩

⟨ϕ32 | u2
1u2⟩

⟨ϕ32 | u1u
2
2⟩

⟨ϕ32 | u3
2⟩


=



ic/2
3ic/2
3ic/2
ic/2
−ic/2
−3ic/2
−3ic/2
−ic/2


(19)

The lines number 3 and number 6 are composing the kernel of L and are inducing
resonant terms; corresponding ϕ3 components are set to 0. All other lines are

able to determine ϕ3 components. Here, ϕ2 =

[
0
0

]
. The calculation has been

done up to the degree 3. Finally:

X =

[
−i i
1 1

]
Y

Y = U +Φ3(U) =


u1 −

c

4
u3
1 −

3c

2
u2
1u2 +

c

2
u3
2

u2 +
c

2
u3
1 −

3c

2
u1u

2
2 −

c

4
u3
2

 (20)

2.3. Matrix A being a Jordan matrix

When the system can't be turned as a diagonal system, the Jordan elimina-
tion can be applied, which permits to obtain A as a block diagonal matrix:

A =

Jn1
0 0

0
. . . 0

0 0 Jnp

 with

p∑
j=1

dim(Jnj) = 2N (21)

dim(Jnj) stands for the dimension of the matrix Jnj .
Each block Jnj is a Jordan block or a diagonal matrix. For each Jordan block,
the matrix L is de�ned by the same way as in the previous section. Therefore, if
the block is diagonal, the resonant terms and normal transformation are de�ned
the same way. If L is not diagonal due to the couplings between equations,
Murdock [4] has developed a way to manage a simple expression of L using
Gröbner basis. This use of Gröbner basis is di�erent from what we are doing
here. Otherwise, the resolution can be proceed terms by terms and favoring
minimal resonant terms.
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3. Resonant spectrum rearrangement

The normal form process can be applied with the spectrum of A without
rearrangement, but particular cases could be considered. As found in other
normal form applications [10, 11], arti�cial perturbation is introduced in the
system. One of interesting situations to be considered is when the linear part is
a perturbation of a matrix. For example:

A = A(ε) = A(0) + εα (22)

where A(0) possesses eigenvalues λ1, ..., λ2N , ε is a scalar representing the per-
turbation parameter and α is a matrix.
This approach permits to introduce a spectrum leading to a situation with a
bigger number of resonant terms, or to take into account external resonances
between external excitation and internal resonance.
The de�nition of a small parameter ϵ depends on the system: for nonlinear os-
cillations of mechanical systems, ϵ can be set according to the damping of the
system as:

Without damping : ẍ+ x+ cx3 = 0 =⇒ A(0) =

[
0 −1
1 0

]

With damping : ẍ+ ϵẋ+ x+ cx3 = 0 =⇒ A(ϵ) =

[
−ϵ −1
1 0

]

= A(0) + ϵ

[
−1 0
0 0

]
(23)

3.1. Methodology for forced systems

For the forced system, we introduce a new variable Z:

˙̃X = A.X̃ + F (X, t) = A.X̃ + F̃ (X̃, Z) (24)

where Z = Z(t) is the solution of a system of di�erential equation Ż = B.Z +
H(Z) veri�ed by the forcing.
In particular, if time dependency occurs via external excitation or parametric
nonlinearities which can be expressed as functions of sin(ωt) only, we can use:

z1 = sin(ωt)

Z =

[
z1
z2

]
 =⇒ Ż =

[
0 −ω2

1 0

]
Z = B.Z (25)

We can now de�ne a new vector X as:

X =

[
X̃
Z

]
=⇒ Ẋ =

[
A 0
0 B

]
X + F (X) (26)
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The forcing system is now expressed as an autonomous system with coordinate
X.

We can now work on the spectrum of

[
A 0
0 B

]
.

The idea is to exploit a 1 : k resonance with external excitation. The nor-
mal form doesn't justify to consider higher order nonlinearities and as it will be
explained, we will not consider higher resonances than k = 3.

Example 2: The methodology is presented through an example of the follow-
ing basic system:

ẍ+ x = sin(ωt) (27)

The procedure is the same for other types of excitation. We can de�ne:

X̃ =

[
ẋ
x

]
˙̃X =

[
0 −1
1 0

]
X̃ +

[
sin(ωt)

0

] (28)

Using Eq.25, we now have the equation:

d

dt

[
X̃
Z

]
=


0 −1 0 1
1 0 0 0
0 0 0 −ω2

0 0 1 0

[
X̃
Z

]
(29)

The spectrum of this equation is {−i, i,−iω, iω}. In order to investigate the
1 : 1 resonance, we need to set ω = 1.
In order to match to the physical system, we prefer to de�ne A = A0 + O(ϵ)
with:

A = P



−iω 0 0 0
0 iω 0 0
0 0 −iω 0
0 0 0 iω

+ iε


1 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0


︸ ︷︷ ︸

D


P−1 (30)
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We can then deduce:

A0 = P


−iω 0 0 0
0 iω 0 0
0 0 −iω 0
0 0 0 iω

P−1 =


0 −ω 0

ω

1 + ω

ω 0
1

1 + ω
0

0 0 0 −ω2

0 0 1 0



A−A0 =


0 ω − 1 0

1

1 + ω

1− ω 0 − 1

1 + ω
0

0 0 0 0
0 0 0 0



(31)

We now need to de�ne ω − 1 as a function of ϵ. We can distinguish 3 cases of
ω − 1:
- as a low order polynomial;
- as a series and do a truncation in order to consider the �rsts n orders n ≥ k
for the normal forms;
- as a singular.
The de�nition of normal forms Eq.5 allows to only consider the �rsts orders be-
cause higher order resonant terms have less e�ects on the behavior. Therefore,
we only consider the �rsts orders of series or polynomials. Moreover, resonant
terms of high order harmonics 1 : k would need to consider high order poly-
nomials or series in order to obtain a 0 diagonal terms in the construction of
matrix L (see Eq.14). Therefore, we do not consider higher order resonance
1 : k superior to k = 3.

3.2. Methodology for internally resonant systems

If the system is composed of di�erent resonators, it's possible to exploit
internal resonances by adding a link between di�erent modal frequencies.
Let's consider a system with two resonators verifying ω2 = 2ω1 + ϵσ. ẍ1 + ω2

1x1 + · · · = 0

ẍ2 + ω2
2x2 + · · · = 0

with ω2 = 2ω1 + εσ (32)

The same explained procedure can be applied, de�ning for example:

D =


−iω1 0 0 0
0 iω1 0 0
0 0 −2iω1 0
0 0 0 2iω1

+ ε


0 0 0 0
0 0 0 0
0 0 −σ 0
0 0 0 σ

 (33)

and permitting the 1 : 2 resonance between the two resonators.
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4. Simpli�cation of normal transform using Gröbner basis

To describe the method, let us consider a general case Eq.1 with diagonaliz-
able matrix:{

X = P.Y

Ẏ = P−1.A.P + P−1.F (P.Y ) with P−1.A.P = D
(34)

Let us assume that λ2j = λ2j−1, j = 1, . . . , N and ℑ(λ2j−1) < 0.
The resolution is led after de�ning:

Identity perturbation: Y = U + ϕ2(U) + ϕ3(U) + . . .

Normal forms:
dU

dt
= D.U +R2(U) +R3(U) + . . .

Normal transform: X = P.Y = P.(U + ϕ2(U) + ϕ3(U) + . . . )

(35)

The last equation is the normal transform expressing X as a function of normal
coordinates U .

4.1. Introduction of periodic solutions

Based on previous assumptions, we can look for approximated periodic solu-
tions U(t) of the normal form. We obtain approximate periodic solutions X(t)
via the normal transform. Since ℑ(λ2j−1) < 0, j = 1, . . . , N , if the principal
resonance is the only one considered, we can look for:

U =

 u1

...
u2N

 =

U1e
−iΩt

...

ŪNeiΩt

 (36)

with u2j−1 = Uje
−iΩt and u2j = U je

iΩt

4.2. Simpli�cation via Gröbner basis

Introducing expression of U in normal form, one obtains for the (2j − 1)th

normal form equation:

iΩU2j−1e
−iΩt + λ2j−1U2j−1e

−iΩt +R2,2j−1(u1, . . . , u2N ) + ...
+Rn,2j−1(u1, . . . , u2N ) = 0

(37)

and its conjugated expressions for the 2jth normal form equation. In fact,
because of resonance conditions, it is clear that this compatibility equation
(and its conjugated) can be written for j = 1, . . . , N as:

0 = iΩu2j−1 + λ2j−1u2j−1 +R2,2j−1(u1, . . . , u2N ) + ...
+Rn,2j−1(u1, . . . , u2N )

0 = −iΩu2j + λ2ju2j +R2,2j(u1, . . . , u2N ) + ...
+Rn,2j(u1, . . . , u2N )

(38)
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These 2N compatibility equations can be written as:{
g2j−1(u1, . . . , u2N ) = 0
g2j(u1, . . . , u2N ) = 0

with j = 1, . . . , N (39)

and they provide 2N functions, generating an ideal in the Ring of polynomials
with 2N variables. The generators of these basis are de�ned from amplitude
equations which are obtained by successively supposing that the normal form
solutions are periodic and averaging with respect to time the normal form equa-
tions, a methodology that is similar to the one in [10, 11]. The polynomial ideal
is now used to get the best Euclidean division decomposition of the physical
coordinates:

X(U) =


...

xj(U)
...

 , j = 1, . . . , N (40)

For each xj , we can write:

xj =

2N∑
k=1

qk(U)gk(U) + rk(U) (41)

where qk (standing for quotient) are polynomials in u1, . . . , u2N and rk (stand-
ing for rest) also. The use of Gröbner basis allows to understand the Euclidean
decomposition according to each element of the ideal.
This process should reduce de degree of xj and it should lead in the best case
to a linear expression xj(U) = xl,j(U)
The simpli�ed expression of approximated periodic solution X is then:

X(U) =


...

xj(U)
...

 =


...

rj(U)
...

 (42)

This process also justi�es the choice of using a designed spectrum in order to
produce adapted terms and perform the most complete Gröbner ideal to sim-
plify the expression of X(U).
In the considered examples, we will choose n = 3.

Remark: If internal resonances 1 : kj are considered, the vector must be adapted
in order to consider these harmonics. We can de�ne:

U =

 u1

...
u2N

 =

U1e
−ik1Ωt

...

ŪNeikNΩt

 (43)

with u2j−1 = Uje
−ikjΩt and u2j = U je

ikjΩt
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5. Applications

5.1. Single dof forced system

The previous method will be applied on a simple single dof forced system.
The normalized dynamical equation of the system is:

ẍ+ w1
2x+ cx3 = f sin (wt) (44)

As explained in the �rst section, forcing coordinates are integrated in principal
coordinates using the following relation:{

z̈ + w2z = 0
z(0) = 0 and ż(0) = w

(45)

We can now adopt the matrix form:

d

dt


ẋ
x

ω cos (ωt)
sin (ωt)


︸ ︷︷ ︸

dX
dt

=


0 −ω2

1 0 f
1 0 0 0
0 0 0 −ω2

0 0 1 0


︸ ︷︷ ︸

A


ẋ
x

ω cos (ωt)
sin (ωt)


︸ ︷︷ ︸

X

+


−c x3

0
0
0


︸ ︷︷ ︸

NL3

(46)

This system can take a diagonal form by using transfer matrix P de�ned as:

P =



0 0
i

2ω

1

2

0 0 − i

2ω

1

2

i

2ω1

1

2

if

2ω1 (ω2 − ω2
1)

f

2 (ω2 − ω2
1)

− i

2ω1

1

2
− if

2ω1 (ω2 − ω2
1)

f

2 (ω2 − ω2
1)


(47)

with diagonal linear operator D:

D =


−iω 0 0 0
0 iω 0 0
0 0 −iω1 0
0 0 0 iω1

 (48)

ω is decomposed in order to allow the 1 : 1 resonance as ω = ω1 + ε, leading to:

D =


−iω 0 0 0
0 iω 0 0
0 0 −iω 0
0 0 0 iω


︸ ︷︷ ︸

D0

+


0 0 0 0
0 0 0 0
0 0 iε 0
0 0 0 −iε


︸ ︷︷ ︸

D1

(49)

11



We introduce Y = P−1.X and NL = P−1.NL3. The system has now for
equation:

Ẏ = D0.Y +D1.Y +NL(Y ) (50)

We can now solve the system using the normal form at the third order because
only cubic nonlinearity is present in the system. The coordinate matrix Y is
decomposed in normal coordinates as:

y1
y2
y3
y4

 = U +Φ2(U) + Φ3(U) (51)

and compatibility equations are de�ned by:

d

dt
U = D0.U +R2 +R3 (52)

The normal form equation presented in Eq.7 is applied to the system:

(Id + ∂ Φ2 + ∂ Φ3)

(
d

dt
U

)
= D0 (Φ3(U) + Φ2(U) + U)

+NL2 (Φ3(U) + Φ2(U) + U) + NL3 (Φ3(U) + Φ2(U) + U)
(53)

And because we only solve up to the third order, we can write:

(Id + ∂ Φ2 + ∂ Φ3) (R3 +R2 +D0.U) = D0 (Φ3(U) + Φ2(U) + U)
+NL2 (Φ2(U) + U) + NL3(U)

(54)

The �rst order form of Eq.54 veri�es:

D0.U = D0.U (ordre 1)

The second order veri�es:

R2 + ∂ Φ2D0.U = D0.ϕ2(U) +D1(ϵ).U (ordre 2)

and leads to:
R2 = D1.U and ϕ2 = 0 (55)

The third order veri�es:

R3 + ∂ Φ3D0.U + ∂ Φ2R2 = D0.ϕ3(U) +D1(ϕ2) +NL(U) (ordre 3)

and according to second order identi�cation in Eq.55, we have to solve:

R3 + ∂ Φ3D0.U = D0.ϕ3(U) +NL(U) (ordre 3)

Both ϕ3 and R3 are determined. X can now be deduced from this method
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in normal coordinates. In this case, we restrict the solution to only the �rst
harmonic components of x. The solution in normal coordinates is the following
highly nonlinear expression:

x = u3 + u4 +
3cf3u2

1u2

4ωω1(ω − ω1)3(ω + ω1)3
− 3cf2u2

1u4

4ωω1(ω − ω1)2(ω + ω1)2

+
3cf3u1u

2
2

4ωω1(ω − ω1)3(ω + ω1)3
− 3cf2u1u2u3

2ωω1(ω − ω1)2(ω + ω1)2

− 3cf2u1u2u4

2ωω1(ω − ω1)2(ω + ω1)2
− 3cf2u2

2u3

4ωω1(ω − ω1)2(ω + ω1)2

+
3cfu1u3u4

2ωω1(ω − ω1)(ω + ω1)
+

3cfu1u
2
4

4ωω1(ω − ω1)(ω + ω1)
+

3cfu2u
2
3

4ωω1(ω − ω1)(ω + ω1)

+
3cfu2u3u4

2ωω1(ω − ω1)(ω + ω1)
− 3cu2

3u4

4ωω1
− 3cu3u

2
4

4ωω1
− fu1

ω2 − ω2
1

− fu2

ω2 − ω2
1

(56)
Compatibility equations deriving from Eq.52 are the two conjugated equations
below: 

g1(U) = −iu3ε+
3iu2

3u4

2ω1
+

3icf3u2
1u2

2ω1(−ω + ω1)3(ω + ω1)

+
3icf2u1u2u3

ω1(−ω + ω1)2(ω + ω1)2
+

3icf2u2
1u4

2ω1(−ω + ω1)2(ω + ω1)2

+
3icfu2u

2
3

2ω1(−ω + ω1)(ω + ω1)
+

3icfu1u3u4

ω1(−ω + ω1)(ω + ω1)
= 0

g2(U) = iu4ε−
3iu3u

2
4

2ω1
− 3icf3u1u

2
2

2ω1(−ω + ω1)3(ω + ω1)

− 3icf2u1u2u4

ω1(−ω + ω1)2(ω + ω1)2
− 3icf2u2

2u3

2ω1(−ω + ω1)2(ω + ω1)2

− 3icfu1u
2
4

2ω1(−ω + ω1)(ω + ω1)
− 3icfu2u3u4

ω1(−ω + ω1)(ω + ω1)
= 0

(57)

The ideal is formed from these two equations and Euclidean division of x(U) by
Gröbner ideal components gives the �nal simpli�ed and linear expression of x:

x = r = xl = u3 + u4 −
f(u1 + u2)

(ω − ω1)(ω + ω1)
− ε(u3 + u4)

2ω
(58)

This expression can't be used when ω = ω1: in that case, the system can't be
diagonalized and Jordan decomposition should be used.
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5.2. An undamped two dof free system

The system is composed of 2 equal masses, linked together via a nonlinear
function de�ne as cα3 where α is relative displacements of the two masses. Both
masses are grounded via linear springs k1 and k2. Therefore, the system takes
the normalized matrix expression:

Ẋ =


0 −ω2

1 0 0
1 0 0 0
0 0 0 −ω2

2

0 0 1 0

X +


−c(x− y)3

0
c(x− y)3

0

 (59)

Using normal coordinates U and diagonalization of the system using matrix P ,
we can write:

U̇ =


−iω1 0 0 0
0 iω1 0 0
0 0 −iω2 0
0 0 0 iω2

 .U +



− ic(u1 + u2 − u3 − u4)
3

2ω1
ic(u1 + u2 − u3 − u4)

3

2ω1
ic(u1 + u2 − u3 − u4)

3

2ω2

− ic(u1 + u2 − u3 − u4)
3

2ω2


(60)

Once more, X is expressed using periodic normal coordinates and we only keep
the �rst harmonic of the solution. We �nally have:

x(U) = u1 + u2 −
3cu2

1u2

4ω2
1

− 3cu2
1u4

2ω1(ω1 − ω2)
− 3cu1u

2
2

4ω2
1

+
3cu1u2u3

ω1(ω1 − ω2)

+
3cu1u2u3

ω1(ω1 + ω2)
+

3cu1u2u4

ω1(ω1 − ω2)
+

3cu1u2u4

ω1(ω1 + ω2)
− 3cu1u3u4

2ω2
1

− 3cu1u
2
4

4ω1(ω1 − ω2)

−3cu1u
2
4

4ω1ω2
− 3cu2

2u3

2ω1(ω1 − ω2)
− 3cu2u

2
3

4ω1(ω1 − ω2)
− 3cu2u

2
3

4ω1ω2
− 3cu2u3u4

2ω2
1

+
3cu2

3u4

2ω1(ω1 − ω2)
+

3cu2
3u4

2ω1(ω1 + ω2)
+

3cu3u
2
4

2ω1(ω1 − ω2)
+

3cu3u
2
4

2ω1(ω1 + ω2)
(61)
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Introducing periodic normal coordinates in normal equations, the method leads
to 4 compatibility equations conjugated two by two:

g1(U) =
3icu2

1u2

2ω1
+

3icu1u3u4

ω1
− iu1(ω − ω1) = 0

g2(U) = −3icu1u
2
2

2ω1
− 3icu2u3u4

ω1
+ iu2(ω − ω1) = 0

g3(U) =
3icu1u2u3

ω2
+

3icu2
3u4

2ω2
− iu3(ω − ω2) = 0

g4(U) = −3icu1u2u4

ω2
− 3icu3u

2
4

2ω2
+ iu4(ω − ω2) = 0

(62)

The ideal is formed from these two equations and Euclidean division of x by
Gröbner ideal components gives the �nal simpli�ed expression:

x =
1

4ω1ω2(ω1 − ω2)(ω1 + ω2)
(−3c(ω1 + ω2) (u1u4(2u1ω2 + u4ω1)

+2u2
2u3ω2 + u2u

2
3ω1

)
+ 2ω2ω

(
ω2
1(−(u1 + u2)) + ω2

2(u1 + u2)

+4ω1ω2(u3 + u4))− 2ω1ω
3
2(3u1 + 3u2 + 4(u3 + u4)) + 6ω3

1ω2(u1 + u2)
)
(63)

This process is expanded to all components of X and we can have the �nal
expression X = M0(ω).U +M1(U).U with M0j,k and M1j,k, j, k ∈ [1, 4]2 being
given in Appendix.
Solving compatibility equations in the case where ω1 and ω2 being very di�erent
leads to set either u1, u2 = 0 or u3, u4 = 0 in order to satisfy the small amplitude
condition of normal form. In both cases, M1 = 0 and a �nal linear expression
of X is obtained.

6. Conclusion

A methodology based on the normal forms has been proposed. We are
managing the spectrum in the methodology which is possible by the introduction
of a �rst order small parameter and of the forcing term in order to exploit
resonances with the excitation and/or internal resonances of the system. Once
the determination of normal transformation and resonant terms is achieved,
the introduction of mono-harmonic periodic normal coordinates in the normal
forms allows to obtain compatibility equations. These equations are amplitude-
frequency relations that have to be veri�ed to ensure periodic solutions. Gröbner
generators have been de�ned based on these compatibility equations. Because
of the previous resonant spectrum, the compatibility equations lead to the most
complete and e�cient Euclidean division of the normal form solutions by the
ideal. This methodology aims to reduce the degree of �nal normal solutions of
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the system but they cannot be expressed linearly in the general case. In some
cases (diagonal system without internal resonance for example), we can however
obtain a linear expression. Nonlinearity would still remain hidden because of
compatibility equations. Furthermore, system cannot be always expressed in a
diagonal manner. Jordan decomposition can be used but it will induce more
resonant terms. Solving the normal form is di�cult due to number of degrees of
freedom and coupling terms and the ideal will need more calculation costs to be
obtained. Finally, Euclidean division will be less e�ective and more nonlinear
terms will be remaining in the �nal expression. When increasing the number of
couplings and degrees of freedom, computation can be simpli�ed by considering
numerical values of the multivariate polynomials involved in Gröbner generators
and X(U) expression. A perspective work could be the introduction of Gröbner
basis in order to de�ne new normal coordinates and to introduce less pairing,
especially when A takes a Jordan form. Time dependent periodic functions
could also be introduced in Gröbner basis as it is the case in [12] to improve the
simpli�cation of normal form solutions.
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Appendix

M01,1 = −1

2
i(ω1 + ω)

M01,2 =
1

2
i(ω1 + ω)

M01,3 =
2iω2

2(ω2 − ω)

(ω1 − ω2)(ω1 + ω2)

M01,4 = − 2iω2
2(ω2 − ω)

(ω1 − ω2)(ω1 + ω2)

M02,1 =
3

2
− ω

2ω1

M02,2 =
3

2
− ω

2ω1

M02,3 =
2ω2(ω − ω2)

(ω1 − ω2)(ω1 + ω2)

M02,4 =
2ω2(ω − ω2)

(ω1 − ω2)(ω1 + ω2)

M03,1 = − 2iω2
1(ω1 − ω)

(ω1 − ω2)(ω1 + ω2)

M03,2 =
2iω2

1(ω1 − ω)

(ω1 − ω2)(ω1 + ω2)

M03,3 = −1

2
i(ω2 + ω)

M03,4 =
1

2
i(ω2 + ω)

M04,1 =
2ω1(ω1 − ω)

(ω1 − ω2)(ω1 + ω2)

M04,2 =
2ω1(ω1 − ω)

(ω1 − ω2)(ω1 + ω2)

M04,3 =
3

2
− ω

2ω2

M04,4 =
3

2
− ω

2ω2

M11,1 =
3icu1u4

2(ω1 − ω2)

M11,2 = − 3icu2u3

2(ω1 − ω2)

M11,3 = −3icu2u3(ω1 − 2ω2)

4ω2(ω1 − ω2)

M11,4 = −3icu1u4(2ω2 − ω1)

4ω2(ω1 − ω2)

M12,1 = − 3cu1u4

2ω1(ω1 − ω2)

M12,2 = − 3cu2u3

2ω1(ω1 − ω2)

M12,3 = − 3cu2u3

4ω2(ω1 − ω2)

M12,4 = − 3cu1u4

4ω2(ω1 − ω2)

M13,1 = −3icu1u4(2ω1 − ω2)

4ω1(ω1 − ω2)

M13,2 =
3icu2u3(2ω1 − ω2)

4ω1(ω1 − ω2)

M13,3 = − 3icu2u3(ω1 − 2ω2)

(ω1 − 3ω2)(ω1 − ω2)

M13,4 =
3icu1u4(ω1 − 2ω2)

(ω1 − 3ω2)(ω1 − ω2)

M14,1 =
3cu1u4

4ω1(ω1 − ω2)

M14,2 =
3cu2u3

4ω1(ω1 − ω2)

M14,3 = − 3cu2u3

(ω1 − 3ω2)(ω1 − ω2)

M14,4 = − 3cu1u4

(ω1 − 3ω2)(ω1 − ω2)
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