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Outsourcing Intellectual Properties (IPs) from vendors around the globe exposes System-on-Chip (SoC) designs to malicious implants like Hardware Trojans (HTs). Carefully crafted HTs with extremely rare trigger conditions evade conventional validation. While Machine Learning (ML) based validation increases detection accuracy, they themselves are vulnerable to Trojan attacks. Available detection and mitigation techniques fall short when an HT is capable of affecting multiple components of an SoC. This paper proposes an intermittent and robust HT that can attack the Network-on-Chip (NoC), the shared cache, and the cores, all at once. The proposed HT is mounted in the Network Interface (NI) of a malicious IP and can be triggered by specific inputs. Experimental evaluation shows that the proposed HT can increase packet latency by 3.44x (affecting the NoC), increase miss penalty by 15% (affecting the cache) and decrease system speedup by 10% (affecting the cores). Moreover, this paper also discusses why state-of-the-art defence mechanisms are insufficient to tackle the proposed HT and suggests better solutions.

I. INTRODUCTION

To reduce design costs and meet aggressive time-to-market constraints, System-on-Chip (SoC) manufacturers outsource Intellectual Properties (IPs) from different vendors around the globe. This supply-chain exposes SoC designs to malicious implants like Hardware Trojans (HTs). Typically, there are two critical parts in a Trojan, trigger and payload. An example Trojan in Figure 1 shows that a trigger with 2 logic gates is added to the original 4-input circuit. The trigger is usually created using one or more extremely subtle events (rare inputs, signals, transitions). Once triggered, the payload initiates the attack, like information leakage, Denial-of-Service (DoS), performance degradation, etc. In the example, out of the 16 (2 4 ) combination, only when the input is 1101 (unlucky 13), trigger is activated, and the payload inverts the original output.

The exponential growth of input combination space in modern SoCs coupled with carefully crafted HTs makes it infeasible for conventional simulation based validation to detect Trojans [START_REF] Lyu | Scalable Activation of Rare Triggers in Hardware Trojans by Repeated Maximal Clique Sampling[END_REF] [START_REF] Pan | Automated Test Generation for Hardware Trojan Detection using Reinforcement Learning[END_REF]. Machine Learning (ML) based validation offers better detection, but they are computationally expensive, and themselves are susceptible to Trojan attacks [START_REF] Pan | Design of AI Trojans for Evading Machine Learning-based Detection of Hardware Trojans[END_REF]. Moreover, if an HT is capable of attacking multiple components of an SoC, even the existing detection and mitigation techniques will fail to locate and neutralise it. To launch such an attack, the and payload (blue gate). Only when the input is 1101, the trigger is activated, and the payload inverts the original output.

Trojan must be inserted in a place that has access to multiple SoC components. This is the motivation for the proposed HT.

A. Threat Model

Due to the long and distributed supply-chain, HT like implants can be inserted into the Register-Transfer Level (RTL) or netlist of an IP from different access points. There are practical scenarios of Trojan insertion by Computer-Aided Design (CAD) tool, by designer or at the foundry by reverse engineering [START_REF] Areno | Supply Chain Threats Against Integrated Circuits[END_REF] [START_REF] Mishra | Network-on-Chip Security and Privacy[END_REF]. Network-on-Chip (NoC) facilitates communication between the IPs and has access to all the components of an SoC. Hence, it is more vulnerable to attacks, as a malicious IP can simply eavesdrop NoC packets to extract information without the need of hacking into individual IPs [START_REF] Charles | A Survey of Network-on-Chip Security Attacks and Countermeasures[END_REF]. This work considers that the proposed HT is mounted on the Network Interface (NI) of the malicious IP, which connects it to the NoC IP (refer Figure 3). Sitting on the NI, the Trojan is able to attack the NoC, the shared Last-Level Cache (LLC) and other core IPs, all at once. The proposed Trojan attacks the SoC for performance degradation; however, based on intentions, it can always be used for other attacks.

B. Research Contributions

The proposed HT is named as LOKI1 , which is very mischievous in the sense that it sits on one IP but affects multiple components of the SoC, without actually hacking them. Specifically, the major contributions of this work are:

1) LOKI selectively duplicates NoC control packets to attack three SoC components. Using duplicate control packets to attack multiple components without hacking into them is a first of its kind in NoC based SoCs.

2) We show that when the attacker triggers LOKI, packet latency, miss penalty and system speedup are severely affected thereby degrading the overall SoC performance. 3) When multiple components are attacked at the same time, state-of-the-art defence mechanisms fall short to locate and isolate LOKI. Towards the end, we discuss possible ways to tackle LOKI-like malicious implants.

II. RELATED WORK AND MOTIVATION

A. State-of-the-Art

Attackers typically use shared on-chip resources like LLC and NoC as a backdoor to gain access to the victim processes, applications and IPs. One of the earliest attacks on LLC called Prime+Probe tries to identify the cache line eviction pattern of a victim process by creating conflicts to steal sensitive information [START_REF] Osvik | Cache Attacks and Countermeasures: The Case of AES[END_REF]. Other popular attacks on LLC includes Flush+Reload [START_REF] Yarom | FLUSH+RELOAD: A High Resolution, Low Noise, L3 Cache Side-Channel Attack[END_REF], Flush+Flush [START_REF] Gruss | Flush+Flush: A Fast and Stealthy Cache Attack[END_REF], and Streamline [START_REF] Saileshwar | Streamline: A Fast, Flushless Cache Covert-Channel Attack by Enabling Asynchronous Collusion[END_REF]. Being the communication backbone, NoC's positional advantage makes it a prime target for attackers. Moreover, its distributed nature eases attack replication and amplification. For example, a Prime+Probe like side-channel attack is also proposed in NoC, where its infrastructure is used to monitor the contents of the shared LLC [START_REF] Reinbrecht | Side Channel Attack on NoC-based MPSoCs are Practical: NoC Prime+Probe Attack[END_REF]. There are a wide variety of Trojan based attacks launched on NoC based SoCs like, eavesdropping [START_REF] Charles | Lightweight Anonymous Routing in NoC based SoCs[END_REF][13], data integrity [START_REF] Charles | Lightweight and Trust-Aware Routing in NoC-based SoCs[END_REF], information leakage [START_REF] Ancajas | Fort-NoCs: Mitigating the Threat of a Compromised NoC[END_REF][16], DoS [START_REF] Boraten | Mitigation of Denial of Service Attack with Hardware Trojans in NoC Architectures[END_REF] [START_REF] Charles | Real-Time Detection and Localization of DoS Attacks in NoC based SoCs[END_REF], delay-of-service [START_REF] Manju | SECTAR: Secure NoC using Trojan Aware Routing[END_REF][20], performance degradation [START_REF] Kulkarni | Packet Header Attack by Hardware Trojan in NoC based TCMP and its Impact Analysis[END_REF] [START_REF] Khan | Dead Flit Attack on NoC by Hardware Trojan and its Impact Analysis[END_REF], etc. Except [START_REF] Raparti | Lightweight Mitigation of Hardware Trojan Attacks in NoC-based Manycore Computing[END_REF], all other works actively use NoC resources to launch their attacks on the SoC. [START_REF] Raparti | Lightweight Mitigation of Hardware Trojan Attacks in NoC-based Manycore Computing[END_REF] proposed an attack called SIM+THANOS, which mounts the HT on the NI of one IP and steals information for an accomplice thread hiding in another IP. The proposed Trojan LOKI is mounted on the NI of one IP and attacks multiple SoC components without other resources or accomplices, making it difficult to detect by state-of-the-art techniques.

B. Motivation

IPs communicate with each-other by exchanging messages, having a header and a payload 2 , as shown in Figure 2. The header contains necessary information, including source (SRC), destination (DEST), memory address (ADDR), message type (TYPE), etc., for the message traversal, whereas the payload carries data. There are two types of messages, control and data, and the payload remains empty in control messages as they are used to request data or send coherence messages. In an NoC based SoC, when a source (IP SRC ) wants to communicate with its destination (IP DEST ), it forwards the message to the NI (blue IP node), as shown in Figure 3. NI converts the message (yellow) into either a control or a data packet (brown) and forwards it to the router to travel through the NoC and reach destination. Similar steps in reverse are followed to receive the message at the destination (green IP node). Different techniques are proposed to encrypt (and decrypt) the messages and prevent data stealing in modern NoC based SoCs [START_REF] Sepúlveda | Towards Protected MPSoC Communication for Information Protection Against a Malicious NoC[END_REF] [START_REF] Charles | Securing Network-on-Chip using Incremental Cryptography[END_REF]. Usually, only the payload of the message (or packet) is encrypted as the header information is required for routing and arbitration decisions in the NoC. In other words, only the data packets are encrypted as control packets do not carry any payload. Our proposed Trojan LOKI exploits this vulnerability to duplicate control packets in the NI to attack the SoC. LOKI is carefully crafted to get triggered only with read request packets (refer Section III-A). The existing information leakage attack from NI, SIM+THANOS [START_REF] Raparti | Lightweight Mitigation of Hardware Trojan Attacks in NoC-based Manycore Computing[END_REF] ignores the possibility of encryption and duplicates data packets. To the best of our knowledge, this is the first attempt to use read request packets to attack multiple SoC components. 

III. LOKI: DESIGN AND DEMONSTRATION

In this section, we first present the design of LOKI, including the circuit diagram of a possible way of inserting it into the NI. Then, we take multiple example scenarios to demonstrate how LOKI attacks and impacts multiple SoC components.

A. LOKI Design

As shown in Figure 3, NI is responsible for converting a message into a packet and vice-versa. Due to limited NoC channel width, a packet is divided into multiple smaller units called flits. A head flit carries the message header, and multiple body flits ended by the tail flit carries the payload. An NoC control and data packet can be represented as: As proposed in [START_REF] Boraten | Mitigation of Denial of Service Attack with Hardware Trojans in NoC Architectures[END_REF], a backdoor Kill Switch (KS) is used to trigger LOKI and initiate the attack. Packet Type (PT) provides the message type (TYPE from Figure 2), and Flit Type (FT) provides the type of flit (head, body or tail). We target read requests as they are control packets with just one head flit (refer Equation 1), thus less storage overhead to store a duplicate. LOKI uses a buffer of 1-flit size and can store only one duplicate read request packet at any given point of time. As shown in Figure 4, only when P T = READ, F T = F i Head and KS = EN 3 , LOKI gets triggered and copies a head flit (read request packet) from the Flit Generator sub-module into its buffer. LOKI then keeps inserting this duplicate flit into the Flit Queue until KS = DS. Please note that the duplicate flit is inserted only in the free locations to avoid interrupting the usual flow of inter IP communication.

P i CT RL = {F i Head } (1) 
P i DAT A = {F i Head | F i Body0 | . . . | F i Bodyn-1 | F i T ail } (2)

B. LOKI Demonstration

As shown in Figure 5, let us consider an NoC based SoC with 2-levels of on-chip caching. L1 instruction (L1I) and data (L1D) caches are private to each IP core, whereas L2 is shared 3 READ = Read request, EN = Enable, and DS = Disable and distributed and is the Last-Level Cache (LLC). When an IP core encounters an L1 cache miss, it needs to communicate with the LLC to get the data block. Since LLC is distributed as multiple banks, the destination LLC bank could be anywhere, from the nearest to the farthest IP node. This is when the L1 Cache Controller (L1 CTLR) sends a request message to the NI intended for the destination LLC bank. Upon receiving such a request, the destination LLC bank Controller (LLC CTLR) sends a reply message with the corresponding data block.

Let us consider that LOKI is mounted on the NI of the IP node shown in blue in Figure 5, and is now triggered by the KS. We take two example scenarios to demonstrate how LOKI launches the attack on multiple SoC components at once. 1) Scenario 1: IP SRC1 (blue) requests a data block B 3 and encounters an L1 cache miss. The corresponding L1 CTLR forwards a read request message RQ 1 to the NI for the destination LLC bank at IP DEST (green) where B 3 is cached. The destination LLC CTLR sends the requested data block with a reply message RP 1 . When LOKI is active, it copies RQ 1 from the Flit Generator into its buffer and keeps inserting this duplicate request in free locations of the Flit Queue. These duplicate requests reach the destination, and the LLC CTLR treats them like genuine by replying with RP 1 . Since IP SRC1 and IP DEST are sufficiently spaced, the duplicate requests and replies (red) spread over the entire SoC. This kind of scenario increases contention in the routers and links, resulting in increased packet latency (affecting the NoC).

2) Scenario 2: While Scenario 1 (III-B1) is in progress, IP SRC2 (brown) sends a read request message RQ 2 to IP DEST for the data block B 7 . According to the mapping strategy (say modulo 4) employed in the destination LLC bank, B 3 and B 7 are in the same set. Now, due to frequent requests for B 3 by duplicate RQ 1 , B 7 could be evicted from the bank. In fact, the LLC CTLR enters a thrashing phase where useful blocks are evicted to service duplicate requests. Future requests for these B 7 -like evicted blocks encounter LLC miss, which increases the miss penalty (affecting the caches).

From the increase in packet latency and miss penalty, it is intuitive that sources like IP SRC2 will suffer from delayed instruction execution. It has a cascading effect since delayed execution means delayed commit and thus delayed issue of new instructions. This decreases the system speedup (affecting the core). Even though LOKI is mounted on a single NI, it is capable of affecting multiple components without directly intruding in them, thereby paralysing the entire SoC.

IV. EXPERIMENTAL ANALYSIS We consider the following two architectures for evaluation:

• Baseline: Without any Trojan.

• LOKI: With the proposed Trojan on NI of one IP node.

A. Simulation Setup and Workloads

Baseline and LOKI architectures are modelled on eventdriven gem5 simulator [START_REF] Binkert | The gem5 simulator[END_REF], and the system configuration is given in Table 2. We modify the GARNET [START_REF]GARNET: A Detailed On-Chip Network Model inside a Full-System Simulator[END_REF] interconnection module inside gem5 to model LOKI and mount it on the NI of IP core 5 of a 4×4 NoC based SoC (similar to Figure 5).

To evaluate and analyse the attack, we consider multiprogrammed SPEC CPU2006 benchmarks to mimic a modern NoC based SoC running multiple applications in parallel. We select benchmarks that show varying Misses Per Kilo Instructions (MPKIs) and categorise them as high (MPKI ≥ 40), medium (20 ≤ MPKI <40), and low (MPKI < 20). Table 1 presents the workload mixes, where M1 through M3 run 16 copies of the same benchmark on all the 16 cores (1×16: 16). Whereas M4 through M9 run a random combination of 4 different benchmarks with 4 copies each (4×4: 16). All the workloads are run with 5 different combinations (application to core mapping) and the average of each of them are reported. For a relative comparison of the evaluation metrics, all the results are normalised with respect to the baseline architecture. 

B. Impact on NoC

The number of cycles required for a packet to reach from source to its destination is called packet latency. Figure 6 shows the normalised average packet latency when LOKI is active. Duplicate request and reply packets create NoC congestion and increase average packet latency by 3.44x. 

SPEC CPU2006 Benchmark Mixes

C. Impact on Caches

Figure 7 shows the normalised LLC misses when LOKI is active. We observe that duplicate requests create an intermittent probing of the same data block in the LLC bank, which results in the eviction of the genuine blocks. Hence, LLC misses increase across all the workloads with an average of 7%. Significant increase of more than 15% is observed in workloads M5 and M6, as they are made of medium and low MPKIs. Due to low packet injection rate in M5 and M6, LOKI is able to inject more duplicate requests into the Flit Buffer. Workloads M2 and M3 also inject many duplicate requests, but the impact on LLC bank is less, as all the cores run the same benchmark with minimum interference (refer Table 1). The number of cycles required to service an L1 cache miss by bringing in the requested data block is called L1 cache miss penalty. With the increase in number of LLC misses, L1 cache miss penalty is bound to increase, as the missed data blocks are now fetched from the off-chip main memory. Figure 8 shows a maximum of up to 36% and an average of 15% increase in L1 cache miss penalty among the evaluated workloads. 

SPEC CPU2006 Benchmark Mixes

D. Impact on Cores

An increase in packet latency and L1 cache miss penalty directly impacts instruction execution time. We use Instructions Per Cycle (IPC) to compare the system speedup between baseline and LOKI. A maximum of up to 20% and an average of 10% decrease in system speedup can be seen in Figure 9. It shows how LOKI is able to attack multiple SoC components indirectly and bring down the overall system performance.

V. SENSITIVITY AND OVERHEAD ANALYSIS A. LOKI vs An Existing Trojan

A recently proposed Trojan in NoC router alters the destination (DEST in Figure 2) in the header of packets to attack an SoC for performance degradation [START_REF] Kulkarni | Packet Header Attack by Hardware Trojan in NoC based TCMP and its Impact Analysis[END_REF]. For ease of reference, we call that work as Packet Header Attack Trojan (PHAT). Since they considered L1 cache miss penalty as one of the evaluation metrics, we compare LOKI and PHAT with the same. To have a fair comparison, we identify that cactusADM and hmmer benchmarks dominated their workloads and thus consider workload M6 for analysis. As shown in Figure 10, LOKI has a greater impact on the L1 cache miss penalty without any direct presence on the NoC or the shared cache. 

Cores

B. LLC Misses vs L1 Cache Miss Penalty

To understand the relationship between LLC misses and L1 cache miss penalty, we choose to dissect workload M9, which performs the worst in system speedup (refer Figure 9). We show a core-by-core distribution of LLC misses and L1 cache miss penalty of M9 in Figure 11. Except in core 5, the relation between LLC misses and L1 cache miss penalty is almost uniform. The high spike in core 5 is due to the presence of LOKI in its NI. This is owing to the unnecessary delay by duplicate reply packets in the coherence protocol buffer.

C. LLC Misses vs Block Re-Reference

When an evicted LLC block is requested again in the near future, it is called block re-reference [START_REF] Das | Reducing Off-Chip Miss Penalty by Exploiting Underutilised On-Chip Router Buffers[END_REF]. Using the same workload M9, we conduct an analysis to understand how the increased LLC misses on genuine block requests affect the number of their re-references. Figure 12 shows that the number of block re-reference linearly increases across cores with the increase in LLC misses, with an average of 16%. This increase is relatively less in core 5, as the duplicate block requests from this core evict genuine blocks and not the other way around.

D. Timing and Area Overhead

We use ProNoC [START_REF] Monemi | ProNoC: A Low Latency Network-on-Chip based Many-Core System-on-Chip Prototyping Platform[END_REF], that facilitates prototyping of NoC based SoCs. The baseline and LOKI architectures are modelled in Verilog for which ProNoC generates the equivalent RTL. Vivado HLS 2020.2 webpack targeting Xilinx Kintex UltraScale FPGA board is used to synthesize the RTL. LOKI has a negligible increase of 0.29% LookUp Tables (LUTs) and 1.26% FlipFlops (FFs) while meeting the timing constraints.

VI. DISCUSSION ON DETECTION AND MITIGATION

The use of KS prevents logic testing from the accidental triggering of LOKI during the verification process [START_REF] Boraten | Mitigation of Denial of Service Attack with Hardware Trojans in NoC Architectures[END_REF]. As LOKI is intermittent and affects multiple SoC components indirectly, locating its position is difficult. For example, any existing detection technique employed in NoC, LLC or even the cores will not be effective [START_REF] Boraten | Mitigation of Denial of Service Attack with Hardware Trojans in NoC Architectures[END_REF][18] [START_REF] Manju | SECTAR: Secure NoC using Trojan Aware Routing[END_REF]. Prevention and mitigation techniques like obfuscation, encryption, anonymous routing, etc., work well with eavesdropping, data integrity and information leakage attacks, but not LOKI [15][12][13]. This is because LOKI uses control packets for the attack, and they are usually not modified, as the header information is required at every intermediate router for making routing and arbitration decisions. If a technique to mask the header is proposed, unmasking it at every router along the way will fall in the critical path of execution thereby increasing the packet latency.

The mitigation technique proposed in SIM+THANOS [START_REF] Raparti | Lightweight Mitigation of Hardware Trojan Attacks in NoC-based Manycore Computing[END_REF] can not directly tackle LOKI as the header information remain unchanged. However, a similar approach that involves generating a unique message identity between a pair of source and destination can be explored at the IP cores. In this direction, a Packet Leak Detection Unit (PLDU) [START_REF] Hussain | Packet Leak Detection on Hardware-Trojan Infected NoCs for MPSoC Systems[END_REF] that generates a unique tag for every packet can also be tried. A modified version of packet certification from [START_REF] Ancajas | Fort-NoCs: Mitigating the Threat of a Compromised NoC[END_REF] can be implemented to counteract LOKI. Another way of tackling LOKI and other SIM+THANOS-like Trojan attacks could be using something like a Miss Status Handling Register (MSHR) at the NI.

VII. CONCLUSION

This work introduces an HT that has minimal presence yet maximum impact in an NoC based SoC. In a first of its kind, the proposed Trojan uses control packets to attack the NoC, the shared cache and the core IPs to degrade overall system performance without directly intruding in any of them. Being selective and intermittent in nature, detection and mitigation of the Trojan pose unique challenges for future exploration.
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 1 Figure 1: An example Hardware Trojan with trigger (red gates) and payload (blue gate). Only when the input is 1101, the trigger is activated, and the payload inverts the original output.
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 2 Figure 2: Structure of a message exchanged between IPs.
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 3 Figure 3: Communication between IPs in an NoC based SoC.
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 14 Figure 4: Insertion of the proposed Trojan LOKI in NI.
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 4 Figure 4 shows a possible way of inserting the proposed Trojan LOKI into the NI of an IP node. Usually, NI employs the Packetiser and De-Packetiser modules for the source and destination IP nodes, respectively. LOKI is inserted in the Packetiser and hence we omit the details about the De-Packetiser module in Figure 4. When NI receives a message from the source IP core, the Packet Generator sub-module converts it into a packet. The Flit Generator sub-module then converts the packet into one or more flits and stores them in the circular Flit Queue. Stored flits are inserted into the NoC router to travel towards their respective destination IP nodes.As proposed in[START_REF] Boraten | Mitigation of Denial of Service Attack with Hardware Trojans in NoC Architectures[END_REF], a backdoor Kill Switch (KS) is used to trigger LOKI and initiate the attack. Packet Type (PT) provides the message type (TYPE from Figure2), and Flit Type (FT) provides the type of flit (head, body or tail). We target read requests as they are control packets with just one head flit (refer Equation1), thus less storage overhead to store a duplicate. LOKI uses a buffer of 1-flit size and can store only one duplicate read request packet at any given point of time. As shown in Figure4, only when P T = READ, F T = F i Head and KS = EN 3 , LOKI gets triggered and copies a head flit (read request packet) from the Flit Generator sub-module into its buffer. LOKI then keeps inserting this duplicate flit into the Flit Queue until KS = DS. Please note that the duplicate flit is inserted only in the free locations to avoid interrupting the usual flow of inter IP communication.
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 5 Figure 5: Demonstration of the attack launched by LOKI.
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 10 Figure 10: LOKI vs An Existing Trojan
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 11 Figure 11: LLC Misses vs L1 Cache Miss Penalty
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 12 Figure 12: LLC Misses vs Block Re-Reference

Table 1 :

 1 Workload mixes

	Mix Benchmarks	Copies	Characteristics
	M1	GemsFDTD		high MPKI
	M2	astar	1×16: 16	medium MPKI
	M3	cactusADM		low MPKI
	M4	GemsFDTD, lbm, xalancbmk, gobmk		100% high MPKI
	M5	astar, sjeng, omnetpp, sphinx		100% medium MPKI
	M6 M7	cactusADM, gromacs, perlbench, hmmer GemsFDTD, xalancbmk, astar, omnetpp	4×4: 16	100% low MPKI 50% high MPKI, 50% medium MPKI
	M8	astar, omnetpp, cactusADM, perlbench		50% medium MPKI, 50% low MPKI
	M9	cactusADM, perlbench, GemsFDTD, xalancbmk		50% low MPKI, 50% high MPKI
		Table 2: System configuration	
	Processor 16 OoO x86 cores	
	L1 Cache	16KB×16, 4-way, 64B blocks, private, split	
	L2 Cache (LLC) 256KB×16, 8-way, 64B blocks, shared	
		NoC 4×4 2D mesh, 4-VCs/port, 128-bit flit channel	
	Routing	2-stage routers, X-Y dimension-order routing	
	Packets 1-flit control packets, 5-flit data packets	
	Benchmarks	SPEC CPU2006 (multi-programmed)	
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